首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The generation of internal waves by the barotropic tide in a two-layer ocean of variable depth is studied within the framework of the linear theory of long waves in view of the Coriolis force. A barotropic wave climbs at an arbitrary angle to the axis of the extensive ridge with constantly varying profile. The relationships between the amplitudes of the generated internal waves, the location of the ridge, and the angle of climb of the barotropic tide are studied. The analogous research is given in refs 1 and 2.Translated by Mikhail M. Trufanov. UDK 532.59.  相似文献   

2.
Internal waves generated by a barotropic wave impinging on a bottom ridge with continuously varying height are studied within the framework of the linear theory of long waves. We consider the case where the diurnal tide travels at an arbitrary angle to the axis of the ridge located in the area of a geostrophic flow caused by tilting of the free sea surface and the interface of a two-layer ocean. We study the dependences of the amplitudes of internal waves on the velocity of the geostrophic flow, the direction of propagation of the barotropic tide, and the geometry of the ridge. Translated by Peter V. Malyshev and Dmitry V. Malyshev  相似文献   

3.
Within the framework of the linear theory of long waves, we study internal waves generated by a barotropic tide in a two-layer ocean of variable depth taking into account the influence of the Coriolis force. Barotropic waves run over an extended unevenness of the bottom at an arbitrary angle. This unevenness is regarded as a model of the continental slope and shelf. We establish the dependences of the amplitudes of generated internal waves on the angle of incidence of the barotropic tide, topography of the bottom, and stratification. Translated by Peter V. Malyshev and Dmitry V. Malyshev  相似文献   

4.
A three-dimensional nonhydrostatic numerical model is used to study the generation of internal waves by the barotropic tidal flow over a steep two-dimensional ridge in an ocean with strong upper-ocean stratification. The process is examined by varying topographic width, amplitude of the barotropic tide, and stratification at three ridge heights. The results show that a large amount of energy is converted from the barotropic tide to the baroclinic wave when the slope parameter, defined as the ratio of the maximum ridge slope to the maximum wave slope, is greater than 1. The energy flux of internal waves can be normalized by the vertical integral of the buoyancy frequency over the ridge depths and the kinetic energy of the barotropic tides in the water column. A relationship between the normalized energy flux and the slope parameter is derived. The normalized energy flux reaches a constant value independent of the slope parameter when the slope parameter is greater than 1.5. It is inferred that internal wave generation is most efficient at the presence of strong upper-ocean stratification over a steep, tall ridge. In the Luzon Strait, the strength of the shallow thermocline and the location of the Kuroshio front could affect generation of internal solitary waves in the northern South China Sea.  相似文献   

5.
Within the framework of the linear theory of long waves taking into account the action of the Coriolis force, we solve the problem of generation of internal waves by a barotropic tide impinging on a bottom irregularity of the sea-ridge type. The cross section of the ridge is assumed to be rectangular and the stratification of the ocean is regarded as stepwise with two thermoclines (three-layer model). We study the dependences of the characteristics of generated waves on the parameters of stratification and the period of the impinging barotropic tide. Translated by Peter V. Malyshev and Dmitry V. Malyshev  相似文献   

6.
The horizontal wave velocity field generated by a barotropic tide impinging upon a subwater ridge is considered in the linear theory assumptions for long waves. The ocean is assumed to be twolayered, with the tidal wave on-running at an arbitrary angle to the ridge axis. The dependence of the horizontal velocity amplitudes on stratification, the angle of barotropic tide impinging, and the bottom feature geometry is studied.Translated by V. Puchkin.  相似文献   

7.
In the framework of the linear theory for long waves, the paper studies internal waves generated by a semi-diurnal barotropic tide impinging on a bottom ridge at an arbitrary angle. The ocean is assumed to be double-layered. In the vicinity of the ridge, whose height is continuously changing, geostrophic flows occurring due to the inclination of the free surface and interface are considered. The dependencies of the generated wave's amplitudes on the angle of incidence of the tide and on the magnitude and direction of the geostrophic current velocity are determined, allowing a conclusion that the current contributes to the generation of internal waves. Translated by Vladimir A. Puchkin.  相似文献   

8.
In the frame of the linear theory for long waves, the paper studies long waves generated by a barotropic tide running at an arbitrary angle over a bottom ridge. The ocean is assumed to be two-layered. In the area of a ridge with a rectangular cross section, geostrophic flows are considered, coupled with the inclinations of the free surface and interface. Wave amplitudes are shown to depend on the angle of an onrunning tide and this allows us to reach a conclusion about the influence of a geostrophic current on the generation of internal waves. Translated by Vladimir A. Puchkin.  相似文献   

9.
南海东沙岛西南大陆坡内潮特征   总被引:2,自引:0,他引:2  
2008年4月-10月,在南海东沙岛西南大陆坡底部布放了1套全剖面锚系,同时沿大陆坡底部布放了3套近底锚系,应用谱分析和调和分析方法分析温度和海流连续观测资料,进而研究该海域的内潮特征.结果表明,东沙岛西南大陆坡存在强内潮现象,大陆坡底部温度变化受到内潮波的影响,上层海洋存在强日潮周期的内潮波振动;正压潮和斜压潮均以O...  相似文献   

10.
底地形变化对内潮产生影响的数值研究   总被引:2,自引:0,他引:2  
本文结合南沙群岛海域出现内潮的水文背景,建立了一个两层数值模式,并通过数值试验来探讨由正压潮波作用下的内潮产生机制。结果表明:底形效庆是促使内潮产生的重要因子;内潮心要在大陆坡产生,然后分别沿着大陆架和深海平原两个方向传播;内潮斜压流速的量级可与正压流速的相比拟。  相似文献   

11.
A numerical model is developed for the generation of internal waves induced by a barotropic tidal wave travelling over large bottom features. Motion equations consider the non-linear terms, as well as the terms responsible for horizontal turbulent exchange. The fluid is assumed to be continuously stratified. In the framework of the developed model, a packet of short non-linear internal waves is shown to occur together with a long baroclinic tide. In the absence of non-linear terms in the equations of motion, the model data are qualitatively and quantitatively consistent with the data provided by known linear models.Translated by V. Puchkin.  相似文献   

12.
Tidal observations on the West Coast,South Island,New Zealand   总被引:1,自引:1,他引:0  
Harmonic tidal constants, calculated from sea surface elevation observations at Jackson Bay on the West Coast of the South Island, are consistent with available semi‐diurnal and diurnal tidal phase distributions. Current observations taken over a 111 day period at mid‐depth in 1505 m of water on the southern flank of the Challenger Plateau and over a 240 day period in 1430 m of water on the South Island western coast continental slope, are subject to tidal analysis. At both sites there is a component of energy flux directed across the isobaths and only at the northern site for the M2 tide is the phase consistent with a dominant progressive barotropic tide. The successive 30 day harmonic constants at the southern continental slope site exhibit a trend in the M2 tidal ellipse speed and ellipticity suggesting the presence of a regular internal tide. Superposition of ‘internal tidal’ and barotropic tidal flows, as prescribed from progressive‐ and standing‐wave elevations, to fit the observations indicates that the ‘internal tide’ is probably associated with the first baroclinic mode. At the current‐meter depths the speeds of the ‘internal tide’ for the M2 tide are about the same as the barotropic speeds, whereas, the S2 ‘internal tide’ speeds are larger than those of the barotropic tide. The consistency of the trend in ellipse parameters lends support to the theoretical progressive trapped barotropic tidal flows being a good approximation to the actual barotropic tide. Some support for the hypothesis that the S2 tide on the West Coast of New Zealand has a substantial standing wave contribution is given by the northern observations, where the ratio of the S2: M2 internal tidal ellipse current amplitudes are substantially larger than the ratio of the elevations, the internal tide being generated by across‐isobath flows.  相似文献   

13.
This paper addresses the problem of the generation of internal waves by a barotropic tide propagating in a uniformly stratified sea across the frontal zone overlying a submerged ridge or a continental slope. Using Riemann's technique, we have performed computations and analysed the wave fields' spatial characteristics and have defined the dependences of the generated wave amplitudes, bottom topography parameters, and density field. It is shown that the presence of a horizontally-inhomogeneous density region over a subwater feature may lead to substantial alteration of the maximum amplitudinal values of internal waves, both inside and around the frontal zone.Translated by Vladimir A. Puchkin.  相似文献   

14.
In the framework of the linear theory for the long waves occurring in a fluid with a density gradient, the paper concentrates on the field of wave disturbances generated by a barotropic tide in the vicinity of the Mid-Atlantic ridge. Dependences of the wave amplitudes and velocities on the stratification parameters, the angle of onrunning and the period of the barotropic tide have been obtained. A similar study for a model ridge relief of paraboloidal shape has been conducted in ref. 1. Translated by Vladimir A. Puchkin.  相似文献   

15.
Widespread short-period internal wave (SPIW) activity in the White Sea has been revealed for the first time based on long-term (2009–2013) monitoring performed using satellite and in situ observations, and the statistical characteristics of these waves have been obtained. Two main regions where short-period waves constantly exist have been identified: the shelf area near the frontal zone at the boundary between the Basin and the Gorlo Strait and the shallow shelf area where the depths are about 30–50 m near Solovetskie Islands. Intense internal waves (IIWs), which are substantially nonlinear and are related to specific phases of a barotropic tide, are regularly observed near frontal zones. The wave height can reach half the sea depth and the wave periods vary from 7 to 18 min.  相似文献   

16.
Mode-1 internal tides were observed the western North Atlantic using an ocean acoustic tomography array deployed in 1991–1992 centered on 25°N, 66°W. The pentagonal array, 700-km across, acted as an antenna for mode-1 internal-tides. Coherent internal-tide waves with O(1 m) displacements were observed traveling in several directions. Although the internal tides of the region were relatively quiescent, they were essentially phase locked over the 200–300 day data record lengths. Both semidiurnal and diurnal internal waves were detected, with wavenumbers consistent with those calculated from hydrographic data. The M2 internal-tide energy flux was estimated to be about 70 W m−1, suggesting that mode-1 waves radiate 0.2 GW of energy, with large uncertainty, from the Caribbean island chain at this frequency. A global tidal model (TPXO 5) suggested that 1–2 GW is lost from the M2 barotropic tide over this region, but the precise value was uncertain because the complicated topography makes the calculation problematic. In any case, significant conversion of barotropic to baroclinic tidal energy does not occur in the western North Atlantic basin. It is apparent, however, that mode-1 internal tides have very weak decay and retain their coherence over great distances, so that ocean basins may be filled up with such waves. Observed diurnal amplitudes were an order of magnitude larger than expected. The amplitude and phase variations of the K1 and O1 constituents observed over the tomography array were consistent with the theoretical solutions for standing internal waves near their turning latitude. The energy densities of the resonant diurnal internal waves were roughly twice those of the barotropic tide at those frequencies.  相似文献   

17.
Internal waves occurring in the specific Mid-Atlantic ridge area as a result of the impinging of a barotropic tide are studied in the terms of the linear theory for surface waves. The ocean is assumed to be double-layered, with a tidal wave running onto it at an arbitrary angle. The dependences of the wave amplitudes and horizontal velocities on the angle of run-on of a tidal wave are derived. Similar studies for the model bottom topography have been reported in refs 1–3. Translated by Vladimir A. Puchkin.  相似文献   

18.
E.D. Zaron  G.D. Egbert   《Ocean Modelling》2007,18(3-4):210-216
We use a synthetic data experiment to assess the accuracy of ocean tides estimated from satellite altimetry data, with emphasis on the impact of the phase-locked internal tide, which has a surface expression of several centimeters near its sites of genesis. Previous tidal estimates have regarded this signal as a random measurement error; however, it is deterministic and not scale-separated from the barotropic (surface) tide around complex bathymetric features. The synthetic data experiments show that the internal tide has a negligible impact on the barotropic tidal fields inferred under these circumstances, and the barotropic dissipation (a quadratic functional of the tidal fields) is in good agreement with the energetics of the three-dimensional regional primitive equations model which is the source of the synthetic data.  相似文献   

19.
莫桑比克海峡及其邻近海区是全球海洋潮流和潮能耗散最强的海区之一。文章利用高分辨率通用环流模式对该海区的正压潮流进行模拟, 并对该海区潮能通量和潮能耗散特征进行分析。结果表明, 莫桑比克海峡及其邻近海区的潮波主要是半日分潮占主导地位, 全日分潮可忽略不计, M2分潮形成1个左旋潮波系统和1个右旋潮波系统, S2分潮形成1个左旋潮波系统。莫桑比克海峡和马达加斯加岛南部等绝大数区域的M2和S2半日潮流是逆时针旋转, 在马达加斯加岛顶部等局部区域是顺时针旋转, 而且在海峡通道等复杂地形处潮流流速量级较大。潮能通量矢量主要来自东边界, 大部分潮能通量沿马达加斯岛北部传入莫桑比克海峡区域, 其中经过马达加斯加岛北部和进入莫桑比克海峡的M2 (S2)分潮的潮能通量分别为156.86GW (40.53GW)和148.07GW (36.05GW), S2分潮潮能通量的量级大约为M2分潮的1/5~1/4。底摩擦耗散主要发生莫桑比克海峡和马达加斯加岛南北部, 其中莫桑比克海峡M2 (S2)分潮的底摩擦耗散为1.762GW (0.460GW), 占其底部总耗散的43.74% (39.72%)。  相似文献   

20.
吐噶喇海峡是西北太平洋重要的内潮产生区域,该区域内产生的内潮对于东海陆架和西北太平洋的混合和物质输运有十分重要的作用。水平分辨率为3km的JCOPE-T(JapanCoastalOcean PredictabilityExperiment—Tides)水动力学模式的结果表明,吐噶喇海峡的内潮主要产生在地形变化剧烈的海山和海岛附近,其引起的等密面起伏振幅可达30m。吐噶喇海峡的内潮在垂直于等深线方向分为两支向外传播:一支向西北方向传播,进入东海陆架后迅速减小;另一支向东南方向传播,进入西北太平洋。吐噶喇海峡潮能丰富,其在约半个月内的平均输入的净正压潮能通量为13.92GW,其中约有3.73GW转化为内潮能量。生成的内潮能量有77.2%在当地耗散,传出的内潮能通量为0.84GW,主要通过西北和东南两个边界传出。该区域潮能通量有显著的大小潮变化,大潮期间输入的正压潮净能通量和产生的内潮能通量均约为小潮期间的2倍,但其主要产生区域基本不变,且内潮能量耗散比率均在产生的内潮通量的76%—79%。另外,内潮能通量的传播方向也没有发生变化,仍主要通过西北和东南两个边界传出。因此,大小潮的变化仅影响吐噶喇海峡处产生的内潮能量的大小,不影响其产生区域、传播方向和耗散比率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号