首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
We present evidence that there is a significant correlation between the fraction of the mass of a galaxy that lies in its central black hole and the age of the galactic stellar population. Since the absorption-line indices that are used to estimate the age are luminosity-weighted, they essentially measure the time since the last significant episode of star formation in the galaxy. The existence of this correlation is consistent with several theories of galaxy formation, including the currently favoured hierarchical picture of galaxy evolution, which predicts just such a relation between the black hole mass and the time since the last burst of merger-induced star formation. It is not consistent with models in which the massive black hole is primordial, and hence uncoupled from the stellar properties of the galaxy.  相似文献   

5.
6.
We introduce a multipolar scheme for describing the structure of stationary, axisymmetric, force-free black hole magnetospheres in the '3+1' formalism. We focus here on Schwarzschild spacetime, giving a complete classification of the separable solutions of the stream equation. We show a transparent term-by-term analogy of our solutions with the familiar multipoles of flat-space electrodynamics. We discuss electrodynamic processes around disc-fed black holes in which our solutions find natural applications: (i) 'interior' solutions in studies of the BlandfordZnajek process of extracting the rotational energy of holes, and of the formation of relativistic jets in active galactic nuclei and 'microquasars'; (ii) 'exterior' solutions in studies of accretion disc dynamos, disc-driven winds and jets. On the strength of existing numerical studies, we argue that the poloidal field structures found here are also expected to hold with good accuracy for rotating black holes, except for the cases of the maximum possible rotation rates. We show that the closed-loop exterior solutions found here are not in contradiction with the MacdonaldThorne theorem, as these solutions, which diverge logarithmically on the horizon of the hole , only apply to those regions that exclude .  相似文献   

7.
We consider the problem of tidal disruption of stars in the centre of a galaxy containing a supermassive binary black hole with unequal masses. We assume that over the separation distance between the black holes, the gravitational potential is dominated by the more massive primary black hole. Also, we assume that the number density of stars is concentric with the primary black hole and has a power-law cusp. We show that the bulk of stars with a small angular-momentum component normal to the black hole binary orbit can reach a small value of total angular momentum through secular evolution in the gravitational field of the binary, and hence they can be tidally disrupted by the larger black hole. This effect is analogous to the so-called Kozai effect well known in celestial mechanics. We develop an analytical theory for the secular evolution of the stellar orbits and calculate the rate of tidal disruption. We compare our analytical theory with a simple numerical model and find very good agreement.
Our results show that for a primary black hole mass of  ∼106–107 M  , the black hole mass-ratio   q > 10−2  , cusp size ∼1 pc, the tidal disruption rate can be as large as  ∼10−2–1 M yr−1  . This is at least 102–104 times larger than estimated for the case of a single supermassive black hole. The duration of the phase of enhanced tidal disruption is determined by the dynamical-friction time-scale, and it is rather short: ∼105 yr. The dependence of the tidal disruption rate on the mass ratio, and on the size of the cusp, is also discussed.  相似文献   

8.
9.
10.
The differing   M bh– L   relations presented in McLure & Dunlop, Marconi & Hunt and Erwin et al. have been investigated. A number of issues have been identified and addressed in each of these studies, including but not limited to the removal of a dependency on the Hubble constant, a correction for dust attenuation in the bulges of disc galaxies, the identification of lenticular galaxies previously treated as elliptical galaxies and the application of the same ( Y ∣ X ) regression analysis. These adjustments result in relations which now predict similar black hole masses. The optimal K -band relation is  log( M bh/M) =−0.37(±0.04)( M K + 24) + 8.29(±0.08)  , with a total (not intrinsic) scatter in log M bh equal to 0.33 dex. This level of scatter is similar to the value of 0.34 dex from the     relation of Tremaine et al. and compares favourably with the value of 0.31 dex from the   M bh– n   relation of Graham & Driver. Using different photometric data, consistent relations in the B and R band are also provided, although we do note that the small  ( N = 13)  R -band sample used by Erwin et al. is found here to have a slope of −0.30 ± 0.06. Performing a symmetrical regression on the larger K -band sample gives a slope of ∼−0.40, implying M bh∝ L 1.00. Implications for galaxy–black hole co-evolution, in terms of dry mergers, are briefly discussed, as are the predictions for intermediate mass black holes. Finally, as noted by others, a potential bias in the galaxy sample used to define the   M bh– L   relations is shown and a corrective formula provided.  相似文献   

11.
12.
13.
14.
15.
The X-ray holes at the centre of the Perseus cluster of galaxies are not all at the same position angle with respect to the centre of the cluster. This configuration would result if the jet inflating the bubbles is precessing, or moving around, and the bubbles detach at different times. The orientations which best fit the observed travel directions are an inclination of the precession axis to the line of sight of 120° and an opening angle of 50°. From the time-scales for the bubbles seen in the cluster, the precession time-scale, τprec, is around  3.3 × 107 yr  . The bubbles rising up through different parts of the cluster may have interacted with the central cool gas, forming the whorl of cool gas observed in the temperature structure of the cluster. The dynamics of bubbles rising in fluids is discussed. The conditions present in the cluster are such that oscillatory motion, observed for bubbles rising in fluids on Earth, should take place. However, the time-scale for this motion is longer than that taken for the bubbles to evolve into spherical-cap bubbles, which do not undergo a path instability, so such motion is not expected to occur.  相似文献   

16.
Variability of black hole accretion discs: the cool, thermal disc component   总被引:1,自引:0,他引:1  
We extend the model of King et al. for variability in black hole accretion discs by taking proper account of the thermal properties of the disc. Because the degree of variability in the King et al. model depends sensitively on the ratio of disc thickness to radius, H / R , it is important to follow the time dependence of the local disc structure as the variability proceeds. In common with previous authors, we develop a one-zone model for the local disc structure. We agree that radial heat advection plays an important role in determining the inner disc structure, and also find limit-cycle behaviour. When the stochastic magnetic dynamo model of King et al. is added to these models, we find similar variability behaviour to before.
We are now better placed to put physical constraints on model parameters. In particular, we find that in order to be consistent with the low degree of variability seen in the thermal disc component of black hole binaries, we need to limit the energy density of the poloidal field that can be produced by local dynamo cells in the disc to less than a few per cent of the energy density of the dynamo field within the disc itself.  相似文献   

17.
18.
19.
We present the results of a study which uses the 3C RR sample of radio-loud active galactic nuclei to investigate the evolution of the black hole:spheroid mass ratio in the most massive early-type galaxies from  0 < z < 2  . Radio-loud unification is exploited to obtain virial (linewidth) black hole mass estimates from the 3C RR quasars, and stellar mass estimates from the 3C RR radio galaxies, thereby providing black hole and stellar mass estimates for a single population of early-type galaxies. At low redshift  ( z ≲ 1)  , the 3C RR sample is consistent with a black hole:spheroid mass ratio of   M bh/ M sph≃ 0.002  , in good agreement with that observed locally for quiescent galaxies of similar stellar mass  ( M sph≃ 5 × 1011 M)  . However, over the redshift interval  0 < z < 2  the 3C RR black hole:spheroid mass ratio is found to evolve as   M bh/ M sph∝ (1 + z )2.07±0.76  , reaching   M bh/ M sph≃ 0.008  by redshift   z ≃ 2  . This evolution is found to be inconsistent with the local black hole:spheroid mass ratio remaining constant at a moderately significant level (98 per cent). If confirmed, the detection of evolution in the 3C RR black hole:spheroid mass ratio further strengthens the evidence that, at least for massive early-type galaxies, the growth of the central supermassive black hole may be completed before that of the host spheroid.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号