首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《New Astronomy Reviews》2004,48(9):727-730
We present results of our ongoing observing program on search and studies of massive stars (O type) in binary systems in our neighbour galaxies, the Magellanic Clouds. Radial velocity orbits are presented for two new binaries, one in the Small Magellanic Cloud and another in the Large Magellanic Cloud.  相似文献   

2.
Chemical evolution of the Magellanic Clouds: analytical models   总被引:1,自引:0,他引:1  
We have extended our analytical chemical evolution modelling ideas for the Galaxy to the Magellanic Clouds. Unlike previous authors (Russell &38; Dopita, Tsujimoto et al. and Pilyugin), we assume neither a steepened initial mass function nor selective galactic winds, since among the α-particle elements only oxygen shows a large deficit relative to iron and a similar deficit is also found in Galactic supergiants. Thus we assume yields and time delays identical to those that we previously assumed for the solar neighbourhood. We include inflow and non-selective galactic winds and consider both smooth and bursting star formation rates, the latter giving a better fit to the age–metallicity relations. We predict essentially solar abundance ratios for primary elements and these seem to fit most of the data within their substantial scatter. Our model for the Large Magellanic Cloud also gives a remarkably good fit to the anomalous Galactic halo stars discovered by Nissen &38; Schuster.   Our models predict current ratios of Type Ia supernova to core-collapse supernova rates enhanced by 50 and 25 per cent respectively relative to the solar neighbourhood, in fair agreement with ratios found by Cappellaro et al. for Sdm–Im relative to Sbc galaxies, but these ratios are sensitive to detailed assumptions about the bursts and a still higher enhancement in the Large Magellanic Cloud has been deduced from X-ray studies of remnants by Hughes et al. The corresponding ratios integrated over time up to the present are slightly below 1, but they exceed 1 if one compares the Magellanic Clouds with the Galaxy at times when it had the corresponding metallicities.  相似文献   

3.
Using high-resolution spectra, we study 31 yellow supergiants of the Large and Small Magellanic Clouds by the method of atmosphere models. Abundance values of 20 chemical elements are determined. It is shown that ??-elements are in a slight excess and neutron-capture elements have an excess up to 0.60 dex. Approbation of a new technique for the determination of absolute stellar magnitudes of late-type supergiants is performed. The technique is based on the use of the spectroscopic criterion, namely, depth-line ratios for iron. Absolute stellar magnitudes of nine supergiants of the Large Magellanic Cloud are calculated using this technique. A value of the distance modulus of the Large Magellanic Cloud is estimated: m ? M = 18.4 ± 0.3 m .  相似文献   

4.
The Small Magellanic Cloud is a close, irregular galaxy that has experienced a complex star formation history due to the strong interactions occurred both with the Large Magellanic Cloud and the Galaxy. Despite its importance, the chemical composition of its stellar populations older than ∼ 1–2 Gyr is still poorly investigated. I present the first results of a spectroscopic survey of ∼ 200 Small Magellanic Cloud giant stars performed with FLAMES@VLT. The derived metallicity distribution peaks at [Fe/H] ∼ –0.9/–1.0 dex, with a secondary peak at [Fe/H] ∼ –0.6 dex. All these stars show [α /Fe] abundance ratios that are solar or mildly enhanced (∼+0.1 dex). Also, three metal‐poor stars (with [Fe/H] ∼ –2.5 dex and enhanced [α /Fe] ratios compatible with those of the Galactic Halo) have been detected in the outskirts of the SMC: These giants are the most metal‐poor stars discovered so far in the Magellanic Clouds. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Well pronounced molecular bands displayed by the spectra of carbon stars make their detection possible in relatively distant galaxies. However, so far, extensive surveys for this kind of object have only been made in the Galactic halo galaxies, mainly in the Magellanic Clouds and in the dwarf spheroidals. We review the carbon star surveys of these systems with special emphasis on low luminosity carbon stars that have been found in the Small Magellanic Cloud and recently in the Fornax dwarf galaxy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The Magellanic Clouds, especially the Large Magellanic Cloud, are places where multiple distance indicators can be compared with each other in a straight-forward manner at considerable precision. We here review the distances derived from Cepheids, Red Variables, RR Lyraes, Red Clump Stars and Eclipsing Binaries, and show that the results from these distance indicators generally agree to within their errors, and the distance modulus to the Large Magellanic Cloud appears to be defined to ±3% with a mean value (mM)0=18.48 mag, corresponding to 49.7 kpc. The utility of the Magellanic Clouds in constructing and testing the distance scale will remain as we move into the era of Gaia.  相似文献   

7.
Star formation is a fundamental process that dominates the life-cycle of various matters in galaxies: Stars are formed in molecular clouds, and the formed stars often affect the surrounding materials strongly via their UV photons, stellar winds, and supernova explosions. It is therefore revealing the distribution and properties of molecular gas in a galaxy is crucial to investigate the star formation history and galaxy evolution. Recent progress in developing millimeter and sub-millimeter wave receiver systems has enabled us to rapidly increase our knowledge on molecular clouds. In this proceedings, the recent results from the surveys of the molecular clouds in the Milky Way and the Magellanic Clouds as well as the Galactic center as the most active regions in the Milky Way are presented. The high sensitivity with unrivaled high resolution of ALMA will play a key role in detecting denser gas that is tightly connected to star formation.  相似文献   

8.
A nearly complete sample of 24 Magellanic Cloud WC/WO subclass Wolf–Rayet stars is studied spectroscopically and photometrically to determine its binary frequency. Theory predicts the Roche lobe overflow produced Wolf–Rayet binary frequency to be 52±14 per cent in the Large Magellanic Cloud and 100 per cent in the Small Magellanic Cloud, not counting non-Roche lobe overflow Wolf–Rayet binaries. Lower ambient metallicity ( Z ) leads to lower opacity, preventing all but the most massive (hence luminous) single stars from reaching the Wolf–Rayet stage. However, theory predicts that Roche lobe overflow even in binaries of modest mass will lead to Wolf–Rayet stars in binaries with periods below approximately 200 d, for initial periods below approximately 1000 d, independent of Z . By examining their absolute continuum magnitudes, radial velocity variations, emission-line equivalent widths and full widths at half-maximum, a WC/WO binary frequency of only 13 per cent, significantly lower than the prediction, is found in the Large Magellanic Cloud. In the unlikely event that all of the cases with a less certain binary status actually turn out to be binary, current theory and observation would agree. (The Small Magellanic Cloud contains only one WC/WO star, which happens to be a binary.) The three WC+O binaries in the Large Magellanic Cloud all have periods well below 1000 d. The large majority of WC/WO stars in such environments apparently can form without the aid of a binary companion. Current evolutionary scenarios appear to have difficulty explaining either the relatively large number of Wolf–Rayet stars in the Magellanic Clouds, or the formation of Wolf–Rayet stars in general.  相似文献   

9.
Posters: Because of the large number of contributions, some oral presentations had to be transferred into Posters. The reader is referred to the final programme for the actual allocation of Posters. A01 Chemical Enrichment of the Intracluster Medium A02 Structural analysis of high‐velocity clouds – Evidence for an interaction between the Milky Way and the Magellanic System A03 Multi‐Phase Chemo‐Dynamical SPH code for galaxy evolution A04 The proper motion of M33 A05 Wavelet analysis of Intra–group Light in Hickson Compact Groups A06 Evidence for an evolutionary connection between early and late type dwarf galaxies A07 Dwarf Galaxies in the NGC 5846 Group A08 X‐ray spectroscopy of serendipitous clusters of galaxies in XMM‐Newton observations A09 Evolution of smale scale systems of galaxies: X‐ray detected E+S galaxy pairs A10 Modelling Star Formation in Interacting Galaxies A11 NGC 1427A – the beginning of the end: a lonely dwarf irregular entering the dense core of the Fornax cluster A12 Dwarf galaxies in galaxy groups: Photo‐evaporation, orbits and gas stripping A13 High resolution stellar kinematics for the central component of the Polar Ring Galaxy NGC 4650A A14 The Influence of Environment on the Morphological Evolution of Disk‐Dominated Galaxies A15 Interactions and star formation in galaxies A16 Dust Condensations and Molecular Clouds in Interacting Spirals A17 Star formation rates and kinematics of modelled interacting galaxies A18 Evolution of Galaxies and the Tully–Fisher Relation A19 Evolution and Collision of Galaxies on the GRID A20 Multiwavelength observations of two S+E merger candidates: the Medusa and NGC 4441 A21 Interacting Galaxies in Small Galaxy Groups A22 Virial and total masses of galaxy triplets in the Local Supercluster A23 Simulations of Interaction Processes of Galaxies with the Intra‐Cluster Medium A24 Chemical evolution of the thick and thin disks of our Galaxy A25 Dust properties of UV‐bright galaxies at z ∼ 2 A26 Simulation of the Gravitational Collapse and Fragmentation of Rotating Molecular Clouds A27 NGC 5719/13: interacting spirals forming a counter‐rotating stellar disc A28 Starbursts in very metal‐poor dwarfs due to interactions and mergers: link to the processes in the high‐redshift young galaxies A29 Testing galaxy evolution in the field: morphology and properties of the diffuse X‐ray emission in shell galaxies A30 Effects of galactic winds on dIrrs with particular emphasis on NGC 1569 and the refill of superbubble cavities A31 Galaxy formation through merging at z ≈ 2 A32 3D simulations of the ISM‐ICM interaction of disk galaxies in clusters A33 Gas replenishment in ram pressure stripped disk galaxies A34 New Results on the Kinematics of the Outer Cluster System of NGC 1399 A35 Chemical gradient evolution in massive galaxy disk due to its minor merger with dwarf galaxy A36 The complex kinematics of galaxies in Hickson 62 A37 Dust in the outer regions of interacting galaxies A38 Dynamical interaction of M31 and M32 A39 A comparative study of galaxy properties in low‐ and high density environment A40 Compact Groups in Dense Environment: The Case of IC1370 A41 The Star Formation History of CG J1720‐67.8 A42 Galaxy populations in the infall regions of intermediate redshift clusters A43 The study of gravitational fragmentation in two‐clumps collisions A44 Star Formation Activity in Galaxy Clusters Near and Far A45 An Exploration of the Merging History of the Local Starburst Galaxy, NGC 3310 A46 The high‐velocity clouds of M31: tracers of galactic evolution A47 The Properties of Fossil Groups  相似文献   

10.
We have applied the near-infrared surface-brightness method to 111 Cepheids in the Milky Way and in the Large and the Small Magellanic Clouds determining distances and luminosities for the individual stars. We find that the K-band Period-Luminosity (PL-)relations for Milky Way and Large Magellanic Cloud Cepheids are almost identical, whereas the zero point of the Wesenheit relation depends significantly on metallicity, metal poor Cepheids being fainter.  相似文献   

11.
Six stars out of a sample of ∼2300 carbon stars in the Magellanic Clouds have been identified as having strong C2 bands but CN bands that are very weak or absent. It is argued that five of these are likely to be R Coronae Borealis (RCB) stars on the basis of their spectral characteristics and peculiar colours. Most are variables and the Large Magellanic Cloud (LMC) members have extreme radial velocities that are more like the planetary nebula population than the carbon stars. This sample consists of four LMC members (only one of them previously recognized as an RCB star), one Small Magellanic Cloud (SMC) member (the first RCB star reported in the SMC) and one foreground Galactic star.  相似文献   

12.
We report the extragalactic radio-continuum detection of 15 planetary nebulae (PNe) in the Magellanic Clouds (MCs) from recent Australia Telescope Compact Array+Parkes mosaic surveys. These detections were supplemented by new and high-resolution radio, optical and infrared observations which helped to resolve the true nature of the objects. Four of the PNe are located in the Small Magellanic Cloud (SMC) and 11 are located in the Large Magellanic Cloud (LMC). Based on Galactic PNe the expected radio flux densities at the distance of the LMC/SMC are up to ∼2.5 and ∼2.0 mJy at 1.4 GHz, respectively. We find that one of our new radio PNe in the SMC has a flux density of 5.1 mJy at 1.4 GHz, several times higher than expected. We suggest that the most luminous radio PN in the SMC (N S68) may represent the upper limit to radio-peak luminosity because it is approximately three times more luminous than NGC 7027, the most luminous known Galactic PN. We note that the optical diameters of these 15 Magellanic Clouds (MCs) PNe vary from very small (∼0.08 pc or 0.32 arcsec; SMP L47) to very large (∼1 pc or 4 arcsec; SMP L83). Their flux densities peak at different frequencies, suggesting that they may be in different stages of evolution. We briefly discuss mechanisms that may explain their unusually high radio-continuum flux densities. We argue that these detections may help solve the 'missing mass problem' in PNe whose central stars were originally  1–8 M  . We explore the possible link between ionized haloes ejected by the central stars in their late evolution and extended radio emission. Because of their higher than expected flux densities, we tentatively call this PNe (sub)sample –'Super PNe'.  相似文献   

13.
The chemical composition of the PMMR23 red supergiant located in the Small Magellanic Cloud (SMC) is analyzed. The abundance of 35 chemical elements and the upper limits of abundance for Tl and U are found. The relative abundance of heavy elements is higher by 0.6–1.0 dex with respect to iron peak elements. The spectra of several SMC red supergiants PMMR27, PMMR28, and PMMR144—located in the region where the velocities of stars and interstellar gas are quite high— show the emission components in the wings of the hydrogen line. This emission is not detected for PMMR23. A possibility of interstellar gas accretion on the atmospheres of PMMR23 and other supergiants in Magellanic Clouds is discussed. The analysis is carried out using spectra measured at ESO 3.6 m telescope with the spectral resolving power R = 30000.  相似文献   

14.
Previous models for the chemical evolution of the Magellanic Clouds have assumed either a steepened IMF compared to the solar neighbourhood or preferential expulsion of oxygen and α-particle elements by selective galactic winds. These assumptions were largely motivated by a belief that the O/Fe ratio in the Clouds is substantially lower than in the Galaxy, but the difference appears to have been exaggerated: Galactic supergiants have a similar O/Fe ratio as Cloud supergiants, there is no corresponding effect in Mg and other α-elements and a combination of data from planetary nebulae, H II regions and supernova remnants indicates an O/Fe ratio more or less equal to solar. Consequently new analytical models for the chemical evolution of the Magellanic Clouds have been developed, assuming chemical yields and time delays identical to those we previously assumed for the solar neighbourhood, but assuming (in addition to infall) non-selective galactic winds and burst-like modes of star formation represented by discontinuous variations in the star formation rate per unit gas mass. We find adequate agreement with age-metallicity relations and element:element ratios within their substantial uncertainties, whereas our LMC model turns out to give an excellent fit to the anomalous Galactic halo stars discovered by Nissen and Schuster (1997). It also gives an enhanced SNIa/SNII ratio compared to the solar neighbourhood, due to the assumption that the SFR has declined in the past 1 to 2 Gyr. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
A simple sticky-particle numerical model has been developed in order to check whether extended structures of gas created due to the dynamical evolution of the Galaxy and the Magellanic Clouds system can be explained as remnants of a tidal interaction. Influence of dissipative nature of gaseous medium has been taken into account. The most remarkable features are: the Magellanic Stream, the common HI envelope surrounding both the LMC and SMC and the bridge extended between the Clouds. In contrast to previous works of Murai and Fujimoto (1980), Gardiner et al. (1994) and H and Rohlfs (1994) no presumptions were done on the actual galactocentric velocities of the Magellanic Clouds. The mean values of the LMC and SMC velocity vectors obtained from the Hipparcos proper motion measurements (Kroupa and Bastian, 1997) were used in order to verify whether they allow to reproduce the observed HI distribution. Numerical simulations showed that tidal forces are really significant for the evolution of extended structures such as the Magellanic Stream but this approach becomes unsufficient for the internal regions of galaxies where self-gravity and dissipative properties of the gas cannot be neglected. More precise proper motion measurements are urgently needed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Period–colour (PC) and amplitude–colour (AC) relations at maximum, mean and minimum light are constructed from a large grid of full amplitude hydrodynamic models of Cepheids with a composition appropriate for the Small Magellanic Cloud (SMC). We compare these theoretical relations with those from observations. The theoretical relations are, in general, in good agreement with their observational counterparts, though there exist some discrepancy for short period  (log [ P ] < 1)  Cepheids. We outline a physical mechanism which can, in principle, be one factor to explain the observed PC/AC relations for the long and short period Cepheids in the Galaxy, Large Magellanic Cloud (LMC) and SMC. Our explanation relies on the hydrogen ionization front (HIF)–photosphere interaction and the way this interaction changes with pulsation period, pulsation phase and metallicity. Since the PC relation is connected with the period–luminosity (PL) relation, it is postulated that such a mechanism can also explain the observed properties of the PL relation in these three galaxies.  相似文献   

17.
《New Astronomy Reviews》2000,44(1-2):87-91
Novae are expected to form in all stellar systems with a binary population. Detection of extragalactic novae provides direct evidence of close binary populations and possible spatial variations in those populations. Comparison of extragalactic novae with their local counterparts can yield valuable tests of close binary evolution theory. I report early results from surveys of globular clusters, the Large Magellanic Cloud and M81 for classical novae in eruption and in quiescence. T Sco, the nova of 1860 A.D. in the globular cluster M80, has now been recovered. It is three magnitudes fainter than canonical old novae, though this might be an inclination effect. Seven quiescent old novae in the Large Magellanic Cloud have been recovered (at brightnesses comparable to their Galactic counterparts). Their orbital periods are now within reach. Twenty-three novae have been detected on archival 5 meter Palomar plates of M81. The spatial distribution of these novae strongly suggests that most come from the spiral arm population.  相似文献   

18.
We present new evolutionary synthesis models for simple stellar populations for a wide range of ages and metallicities. The models are based on the Padova isochrones. The core of the spectral library is provided by the medium resolution Lejeune et al. atmosphere models. These spectra are complemented by Non Local Thermodynamic Equilibrium (NLTE) atmosphere models for hot stars that have an important impact on the stellar cluster's ionizing spectra: O, B and WR stellar spectra at the early ages, and spectra of post asymptotic giant branch stars and planetary nebulae, at intermediate and old ages. At young ages, our models compare well with other existing models, but we find that the inclusion of the nebular continuum, not considered in several other models, significantly reddens the integrated colours of very young stellar populations. This is consistent with the results of spectral synthesis codes particularly devised for the study of starburst galaxies. At intermediate and old ages, the agreement with the literature model is good and, in particular, we reproduce the observed colours of star clusters in Large Magellanic Cloud well. Given the ability to produce good integrated spectra from the far-ultraviolet to the infrared at any age, we consider that our models are particularly suited for the study of high-redshift galaxies. These models are available on the web site http://www.fractal-es.com/SEDmod.htm and also through the Virtual Observatory Tools on the PopStar server.  相似文献   

19.
Using the classification scheme for planetary nebulae in the Magellanic Clouds using four criteria proposed in Paper I, all nebulae are divided into three classes on the basis of the mass of their central stars. The features of individual chemical abundances in the Magellanic Cloud planetary nebulae and the way in which these differ from the galactic planetary nebulae are investigated separately for each class of nebulae. The role of CN and ON cycling in intermediate mass star evolution is discussed.  相似文献   

20.
We present photometric evolution models of galaxies, in which, in addition to the stellar component, the effects of an evolving dusty interstellar medium have been included with particular care. Starting from the work of Calura et al., in which chemical evolution models have been used to study the evolution of both the gas and dust components of the interstellar medium in the solar neighbourhood, elliptical and irregular galaxies, it has been possible to combine these models with a spectrophotometric stellar code that includes dust reprocessing ( grasil ) to analyse the evolution of the spectral energy distributions (SEDs) of these galaxies. We test our models against observed SEDs both in the local universe and at high redshift, and use them to predict how the percentage of reprocessed starlight evolves for each type of galaxy. The importance of following the dust evolution is investigated by comparing our results with those obtained by adopting simple assumptions to treat this component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号