首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of the nonbreaking surface wave-induced mixing under the mixed layer on the oceanic circulation was investigated using an isopycnal-coordinate oceanic circulation model. The effect of the wave-induced mixing within the mixed layer was eliminated via a bulk mixed layer model. The results show that the wave-induced mixing can penetrate through the mixed layer and into the oceanic interior. The wave-induced mixing under the mixed layer has an important effect on the distribution of temperature of the upper ocean at middle and high latitudes in summer, especially the structure of the seasonal thermocline. Moreover, the wave-induced mixing can affect the oceanic circulation, such as western boundary currents and the North Equatorial Currents through changes of sea surface height associated with the variation of the thermal structure of the upper ocean.  相似文献   

2.
中西太平洋延绳钓黄鳍金枪鱼渔场时空分布与温跃层关系   总被引:3,自引:2,他引:1  
为了解热带中西太平洋延绳钓黄鳍金枪鱼(Thunnus albacares)适宜的温跃层参数分布区间,采用Argo浮标温度信息和中西太平洋渔业委员会(The Western and Central Pacific Fisheries Commission,WCPFC)的黄鳍金枪鱼延绳钓渔获数据,绘制了热带中西太平洋月平均温跃层特征参数和月平均CPUE的空间叠加图,用于分析热带中西太平洋黄鳍金枪鱼中心渔场时空分布和温跃层特征参数间的关系。分析结果表明:热带中西太平洋温跃层上界深度、温度具有明显的季节性变化,而温跃层下界深度、温度季节性变化不明显,黄鳍金枪鱼中心渔场分布和温跃层季节性变化有关。全年中心渔场的位置分布在温跃层上界深度高值区域,随温跃层上界深度高值区域季节性南北移动。在新几内亚以东纬向区域(5°N~10°S,150°E~170°W)上界深度值全年都在70~100m之间,全年都是延绳钓黄鳍金枪鱼中心渔场。中心渔场上界温度多在26℃以上,但是在上界温度超过30℃区域,CPUE值较小。中心渔场主要分布在温跃层下界深度两条高值带之间区域,在温跃层下界深度超过300m和小于150m区域,CPUE值均偏低。中心渔场主要分布在下界温度低于13℃区域,下界温度超过17℃难以形成中心渔场。频次分析和经验累积分布函数计算其适宜温跃层特征参数分布,得出中西太平洋黄鳍金枪鱼适宜的温跃层上界温度和深度分别是27~29.9℃和70~109m;适宜的温跃层下界温度和深度分别是11~13.9℃和250~299m。文章初步得出中西太平洋黄鳍金枪鱼中心渔场温跃层各特征参数的适宜分布区间及季节变化特征,为我国金枪鱼实际生产作业提供技术支持。  相似文献   

3.
声跃层结构变化对深海汇聚区声传播的影响   总被引:1,自引:0,他引:1  
张旭  张永刚  董楠  张健雪 《台湾海峡》2011,30(1):114-121
根据射线理论建立了线性声速结构条件下的声跃层强度与深海汇聚区关系模型,用最小位移角讨论了海洋环境变化(如声跃层强度变化、声跃层位置变化及季节性跃层生消等)与汇聚区距离和宽度变化的相关性.结果表明,声跃层的结构变化对汇聚区特征影响很大.声跃层强度增大使汇聚区向远离声源的方向变化,跃层强度每增加0.01 s-1对应的汇聚区位移增大约为3.5~5.0 km.声跃层位置变化对汇聚区的影响小于声跃层强度,与两层结构的声速剖面相比,上行结构使汇聚区向靠近声源的方向变化,声跃层上升200 m对应的汇聚区位移减小约为1.0~1.5 km,声跃层越浅,汇聚区距离越近;下行结构使汇聚区向远离声源的方向变化,混合层加深200 m对应的汇聚区位移增大约为1.0~1.5 km,混合层越深,汇聚区距离越远.季节性跃层的生消使近表层有负梯度、零梯度和正梯度的变化.负梯度结构的变化规律与两层结构条件下的声跃层强度变化类似,但对汇聚区的影响程度相对较小;正梯度结构使汇聚区在近表层出现表面声道,梯度值的增强将使汇聚区向靠近声源的方向变化.  相似文献   

4.
菲律宾海的声速剖面结构特征及季节性变化   总被引:3,自引:0,他引:3       下载免费PDF全文
应用Argo资料研究了菲律宾海的声速剖面结构特征。通过统计分析选取了合理的跃层标准,分析了主跃层、季节性跃层和表面正梯度层的区域性分布及季节性变化。结果表明,菲律宾海主要受赤道流系和北太平洋西边界流系的支配,其环流结构和水团配置对声场结构影响很大;主跃层的经向差异显著,但季节性变化较小,其平均位置由南向北逐渐加深,强度逐渐减弱;季节性跃层的分布及变化主要受混合层的季节性变化以及北部海区冬季温跃层通风过程的影响,夏季较强较厚,冬季较弱较薄;深海声道轴季节性变化较小,南极中层水和北太平洋中层水的温盐差异是其经向分布差异的主要原因。综合考虑海区声速结构区域性和季节性特征,将其归纳为6种典型结构,得出了各类声速剖面的模态特征及垂直结构参数的统计特征值。  相似文献   

5.
A one-dimentional three-layer model for the thermal structure in the Huanghai Sea is presented in this study, me model consists of the upper mixed layer caused by heating and wind mixing, the lower mixed layer driven by tidal mixing, and the thermocline with certain thickness. The entrainment velocities of the upper and lower layers are obtained respectively. The results show that the model is capable of describing the development and decline processes of the seasonal thermocline in the Huanghai Sea, simulating successfully the Huanghai Sea Cold Water Mass, the nearshore front and surface cold water off North Jiangsu and explaining reasonably their formation mechanisms as well as the strong thermocline off Qingdao. It is suggested that the tidal mixing plays key role in the formation of the nearshore front off North Jiangsu and the strong thermocline off Qingdao. The wind mixing and the tidal mixing make the lower layer water with high nutrients go up to the upper layer. This physical process may be sig  相似文献   

6.
The Soya Warm Current (SWC), which is the coastal current along the northeastern part of Hokkaido, Japan, has a notable baroclinic jet structure during summer. This study addresses the formation mechanism of the baroclinic jet by analyzing a realistic numerical model and conducting its sensitivity experiment. The key process is the interaction between the seasonal thermocline and the bottom Ekman layer on the slope off the northeastern coast of Hokkaido; the bottom Ekman transport causes subduction of the warm seasonal thermocline water below the cold lower-layer water, so the bottom mixed layer develops with a remarkable cross-isobath density gradient. Consequently, the buoyancy transport vanishes as a result of the thermal wind balance in the mixed layer. The SWC area is divided into two regions during summer: upstream, the adjustment toward the buoyancy shutdown is in progress; downstream, the buoyancy shutdown occurs. The buoyancy shutdown theory assesses the bottom-mixed-layer thickness to be 50 m, consistent with observations and our numerical results. The seasonal thermocline from June to September is strong enough to establish the dominance of the buoyancy shutdown process over the frictional spindown.  相似文献   

7.
The hydrographic surveys in an area immediately northeast of Taiwan showed that the Kuroshio surface water intruded onto the shelf in the spring and there was a thick mixed layer and weak vertical stratification in the Kuroshio at the time. During the summer season, a strong thermocline was developed in the Kuroshio and the flow shifted offshore from Taiwan in front of the continental shelf break of the East China Sea. A numerical model is used to examine the effect of this seasonal thermocline on the flow pattern of the survey area. We find that the surface strength of the disturbance above the Su-Ao ridge is closely related to the occurrence of the on-shelf intrusion of Kuroshio. The presence of a seasonal thermocline in the Kuroshio can greatly diminish this disturbance in the surface level.  相似文献   

8.
南黄海浮游植物季节性变化的数值模拟与影响因子分析   总被引:26,自引:1,他引:25  
用三维物理-生物耦合模式研究南黄海浮游植物(以叶绿素a为指标)的季节变化.对于物理模式采用Princeton ocean model(POM),对于生物模式考虑溶解无机营养盐(氮、磷、硅)、浮游植物、食草性浮游动物和碎屑.给定已知的初始场和外加边界强迫,模拟了观测到叶绿素a的主要时、空分布特征,如浮游植物的春、秋季水华和夏季次表层叶绿素a极大值现象等.研究表明,浮游植物春季水华最先发生于黄海中央海域,主要原因是该海域透明度较高,流速较小.春季水华开始于垂直对流减弱和层化开始形成之前(约3月底至4月上旬),显著地依赖水层的稳定性.水体层化以后(约5~9月)叶绿素a浓度高值区分布在南黄海的南部和锋区.夏季的南黄海中央海域,由于上混合层营养盐几乎耗尽,限制了浮游植物的生长,在紧贴温跃层下部的真光层,具有丰富的营养盐和合适的光照,次表层叶绿素a极大值得以形成.秋季(约9~11月份,略迟于海表面开始降温的时间,随地点不同而异)随垂直混合的增强,有利于营养盐向上输运,浮游植物出现一次较小的峰值.  相似文献   

9.
Variability in water temperature, salinity and density was investigated based on field measurements near Anzali Port, in the Southern Caspian Sea in 2008. Seasonal changes of seawater properties were mainly observed through the upper 100 m layer, while below this layer seasonal variations of the parameters were minor. Vertical structure of the temperature in the southern coastal waters of the Caspian Sea is characterized by a significant seasonal thermocline between 20–50 m depths with vertical variation in temperature about 16°C in midsummer (August). Decrease of the thermocline occurs with the general cooling of the air and sea surface water, and deepening of the mixed layer during late of autumn and winter. Seasonal averages of the salinity were estimated in a range of 12.27–12.37 PSU. The structure of thermocline and pycnocline indicated agreement between changes of temperature and density of seawater. Seasonal pycnocline was observed in position of the thermocline layer.  相似文献   

10.
A method for characterizing the upper ocean structure is developed. Each temperature (density) profile is fitted by an ideal function based on the assumption that the permanent and seasonal thermoclines can be approximated respectively by steady state and transients of turbulent-diffusive processes and that the mixed layer can advance sharply under external forcing. The ideal profile is composed of two pieces joined at the mixed layer depth (MLD). The upper part is a constant; the part below the MLD is a product of an exponential decay and a Gaussian, representing the seasonal thermocline and decaying asymptotically to a straight line that describes the permanent thermocline. The composition of an exponential decay and a Gaussian accurately fits a wide family of solutions of the diffusion equation and includes the case of a shift of the boundary. The ideal fit for each profile relies on six adjustable parameters including the MLD. As the function is non-linear and non-differentiable, a Differential Evolution optimization algorithm is proposed to make the fitting. The solution gives a good estimate of the MLD based on the topology of the profile. It also provides a measure of the gradient and the shape of each profile, which are intuitive parameters for characterizing the upper ocean structure with direct applicability in ecosystem models. The algorithm is applied to a time series of monthly conductivity–temperature–depth (CTD) profiles from a hydrographical station in the southern Bay of Biscay. The construction of a local climatology of the vertical structure evolution (mixed layer development) is presented as a practical application. Other potential uses of the method are also discussed.  相似文献   

11.
大亚湾温跃层形成及其对有关环境要素的影响   总被引:4,自引:0,他引:4  
温跃层是海洋环境中的一种重要物理现象,对海洋的环境生态系统有着重要的影响。大亚湾温跃层是受粤东上升流和夏季表层海水升温双重作用而形成的。通过对大亚湾海域水温、盐度、溶解氧等众多环境要素的长期调查取样分析显示,该海域温跃层是季节性温跃层,一般发生在每年的5—10月份,6月下旬到9月中旬分层现象比较显著,盐跃层和氧跃层会相伴发生。受核电站热排水的影响,湾西侧尤其是核电站前海域的温跃层较其它区域明显和持久。数据显示在温跃层发生期内,由于海水的分层效应,温度、盐度、pH值、DO、BOD5和COD、营养盐及叶绿素等都受到不同程度的影响,形成明显的表底层差异或层次梯度。  相似文献   

12.
We study specific features of the vertical distribution of elements of the main biogenic cycle in the upper layers of waters on the northwest shelf of the Black Sea in spring and autumn and the correlation between the specific features of the vertical distributions of hydrochemical and hydrological characteristics. It is shown that the location of the halocline always specifies the location of the chemocline, whereas the effect of the thermocline on the distribution of hydrochemical characteristics is ambiguous. The vertical distribution of the hydrochemical parameters can be homogeneous in the presence of the seasonal thermocline. At the same time, in its absence, one may observe significant vertical gradients in the distributions of hydrochemical characteristics inside the upper mixed layer.  相似文献   

13.
Temperature, wave and wind data over two years off Ho Peng, Shi Ti and Jang Yuan of east Taiwan are analyzed to study their seasonal variations. A model for predicting the mixed layer thickness is developed by use of wave data. The vertical profile of temperature indicates that there are basically three layers; mixed layer, thermocline layer and deep cold layer. The surface mixed layer appears in winter and disappears in summer. While surface water is warmer in summer than in winter, water at a depth of 50 m is warmer in winter than in summer. The seasonal variation in the deep cold layer is weak. The sea surface temperature is generally higher offshore than nearshore. The surface temperature off east Taiwan is almost equal to that in Taiwan Strait in summer, but in winter it is about 4°C warmer off northeast Taiwan than in the northeast of the Taiwan Strait, if compared at the same latitude. This is an effect of the seasonal variation of the Kuroshio. A model is developed for predicting the mixed layer thickness in terms of the input wave energy. The model successfully accounts for the observed features.  相似文献   

14.
北黄海冷水团环流结构探讨──潮混合锋对环流结构的影响   总被引:10,自引:4,他引:10  
赵保仁 《海洋与湖沼》1996,27(4):429-435
简述北黄海冷水团环流结构研究现状,指出已有研究成果中的主要问题,然后用一个诊断模型给出了冷水团环流结构,得到冷水团环向主要存在于海洋上层接近冷水团边界处,径向运动也主要存在于断面两端,上层为离岸流,下层为向岸流;冷水团中心的上升流极为微弱,且仅存在于海洋上层,温跃层下的冷水团中心区域的流动极为微弱,几乎为“死水”一般,上述环流结构对冷水团中心部分的温、盐度长期保持不变及跃层底部溶解氧最大值的形成和  相似文献   

15.
付克忖 《海洋学报》1980,2(3):51-58
本文讨论了南黄海北部海域及青岛近海海水激光(6328Å)衰减系数的垂直分布与温跃层的相关性。依据三个年度不同季节(春、夏、秋)现场实测结果,叙述了衰减系数垂直分布的季节变化,并对现场测量方法提出了改进方案。  相似文献   

16.
南海暖水的季节变化特征及数值模拟   总被引:16,自引:2,他引:14  
根据Levitus资料,对具有立体结构的南海暖水给出了定义,分析发现:南海暖水的季节变化过程可分为发展、维持、退缩和消失4个阶段;就气候平均而言,南海暖水在季节变化中始终保持西北部浅、东南部深的特点;南海暖水的深度与同期温跃层上界的深度在空间分布特征与季节变化趋势上都基本类似。采用“intermediate”模式模拟了南海暖水的范围和厚度,结果表明发展阶段的南海暖水范围和厚度的增长主要是因为南海地  相似文献   

17.
1 IntroductionIn the Equatorial Pacific, due to the difference between the atmospheric circulation and air-sea interaction, the near-surface seawater heat structure in the eastern and western Pacific presents two ℃obviously different characteristics: warm pool ( > 28 ) in the western equatorial Pacific and cold ℃tongue ( < 24 ) in the eastern equatorial Pacific. The water bodies of these two heat structures would give rise to change in spatial distribution under the action of the equato…  相似文献   

18.
The computation of the water-mass transformation rate in a particular density range from thermodynamic and dynamic methods are compared and reconciled by diagnosis of the Atlantic sector of a global integration of an ocean model driven by analyzed air–sea fluxes. In the absence of diffusive processes, the rate of subduction of fluid between two density surfaces across a fixed control surface, and integrated across the ocean from one solid boundary to another, must be equal to the rate of formation of fluid at the sea surface induced by surface fluxes in that density range. But due to the action of mixing on the body of fluid between the control surface and the sea-surface, transformation may differ from the integrated subduction. We find that vertical diffusive fluxes at the base of the winter mixed layer and in the seasonal thermocline can substantially modify transformation due to air–sea interaction and bring about an accommodation between it and the subduction rate. In high latitudes, an additional accommodation is achieved by lateral diffusive fluxes directed across the almost vertical isopycnals, typical of the deep, end-of-winter mixed layers of the sub-polar gyre. Finally we speculate on the likely nature and intensity of the mixing processes at work in the boundary layer of the ocean and their role in subduction and transformation.  相似文献   

19.
Short-period temperature fluctuations were observed in the uppermost region of the seasonal thermocline in Lake Biwa-Ko, under the existence of the strong wind-stirring. In the observation period, the temperature profile had a sharp discontinuity at the bottom of the surface mixed layer, and a large gradient in the discontinuity layer of about 2-m thickness. The most dominant disturbances occurred in the discontinuity layer had the period of 2 to 3 minutes and the amplitude of about 1 m. They occurred intermittently with 5-to 15-minute intervals, and the growth and decay cycles were repeated locally. On the basis of these results, it is suggested that they were caused by the shear instability, and that such disturbances may control the erosion process of the seasonal thermocline.  相似文献   

20.
基于ROMS模型数值研究南海温跃层的季节变化   总被引:2,自引:0,他引:2  
On the basis of the regional ocean modeling system (ROMS), the seasonal variations of the thermocline in the South China Sea (SCS) were numerically investigated. The simulated hydrodynamics are in accordance with previous studies: the circulation pattern in the SCS is cyclonic in winter and anticyclonic in summer, and such a change is mostly driven by the monsoon winds. The errors between the modeled temperature profiles and the observations obtained by cruises are quite small in the upper layers of the ocean, indicating that the ocean status is reasonably simulated. On the basis of the shapes of the vertical temperature profiles, five thermocline types (shallow thermocline, deep thermocline, hybrid thermocline, double thermocline, and multiple thermocline) are defined herein. In winter, when the northeasterly monsoon prevails, most shallow shelf seas in the northwest of the SCS are well mixed, and there is no obvious thermocline. The deep region generally has a deep thermocline, and the hybrid or double thermocline often occurs in the areas near the cold eddy in the south of the SCS. In summer, when the southwesterly monsoon prevails, the shelf sea area with a shallow thermocline greatly expands. The distribution of different thermocline types shows a relationship with ocean bathymetry: from shallow to deep waters, the thermocline types generally change from shallow or hybrid to deep thermocline, and the double or multiple thermocline usually occurs in the steep regions. The seasonal variations of the three major thermocline characteristics (the upper bound depth, thickness, and intensity) are also discussed. Since the SCS is also an area where tropical cyclones frequently occur, the response of thermocline to a typhoon process in a short time scale is also analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号