首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present investigation attempts to quantify the temporal variation of Solar Flare Index(SFI)with other activity indices during solar cycles 21-24 by using different techniques such as linear regression,correlation,cross-correlation with phase lag-lead,etc.Different Solar Activity Indices(SAI)considered in this present study are Sunspot Number(SSN),10.7 cm Solar Radio Flux(F10.7),Coronal Index(CI)and MgⅡCore-to-Wing Ratio(MgⅡ).The maximum cycle amplitude of SFI and considered SAI has a decreasing trend from solar cycle 22,and cycle 24 is the weakest solar cycle among all other cycles.The SFI with SSN,F10.7,CI and MgⅡshows hysteresis during all cycles except for solar cycle 22 where both paths for ascending and descending phases are intercepting each other,thereby representing a phase reversal.A positive hysteresis circulation exists between SFI and considered SAI during solar cycles 22 and 23,whereas a negative circulation exists in cycles 21 and 24.SFI has a high positive correlation with coefficient values of 0.92,0.94,0.84 and 0.81 for SSN,F10.7,CI and MgⅡrespectively.According to crosscorrelation analysis,SFI has a phase lag with considered SAI during an odd-number solar cycle(solar cycles21 and 23)but no phase lag/lead during an even-numbered solar cycle(solar cycles 22 and 24).However,the entire smoothed monthly average SFI data indicate an in-phase relationship with SSN,F10.7 and MgⅡ,and a one-month phase lag with CI.The presence of those above characteristics strongly confirms the outcomes of different research work with various solar indices and the highest correlation exists between SFI and SSN as well as F10.7 which establishes that SFI may be considered as one of the prime activity indices to interpret the characteristics of the Sun’s active region as well as for more accurate short-range or long-range forecasting of solar events.  相似文献   

2.
In this paper, the monthly counts of flare index in the northern and southern hemispheres are used to investigate the hemispheric variation of the flare index in each of solar cycles 20–23. It is found that, (1) the flare index is asymmetrically distributed in each solar cycle and its asymmetry is a real phenomenon; (2) the flare index in the northern hemisphere begins earlier than that in the southern hemisphere in each of solar cycles 20–23, and the phase shifts between the two hemispheres show an odd‐even pattern; (3) although the flare index dominating in a hemisphere does not mean that it leads in phase in this hemisphere in individual solar cycle, these two features have an intrinsic relationship. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The record of flare incidence from January 1969 to October 1988 indicates that the north-south (N-S) distribution of large flares is periodic and approximately in phase with the 11-year sunspot cycle. These data are based on observations of the whole-disk Sun in continuum soft X-rays which commenced in early 1969 and have proceeded without interruption to the present time. The pattern of occurrence, observed for slightly less than two sunspot cycles, is that large flares concentrate in north heliographic latitudes soon after solar minimum and then migrate gradually southward as the cycle progresses. By the end of the cycle, most large flares occur in the south. The degree of N-S asymmetry apparently is a function of the intensity of the flare; the most intense flares show the largest amount of N-S asymmetry. The data suggest that sunspots and flares may be driven by distinctly different excitation mechanisms arising at different levels in the convection zone. This conjecture is supported by recent work of Bai (1987, 1988), who has discovered that the superactive regions producing the majority of flares rotate at a speed substantially different from the Carrington rate, which is based primarily on the observed motion of sunspots.  相似文献   

4.
Solar proton events have been studied for over thirty years and a great deal of lore has grown around them. It is the purpose of this paper to test some of this lore against the actual data. Data on solar proton events now exist for the period from 1956 to 1985 during which time 140 events took place in which the event integrated fluxes for protons of energy > 30 MeV was larger than 105 particles cm-2. We have studied statistical properties of event integrated fluxes for particles with energy > 10 MeV and for particles with energy > 30 MeV. Earlier studies based on a single solar cycle had resulted in a sharp division of events into ordinary and anomalously large events.Two such entirely separate distributions imply two entirely separate acceleration mechanisms, one common and the other very rare. We find that the sharp division is neither required nor justified by this larger sample. Instead the event intensity forms a smooth distribution for intensities up to the largest observed implying that any second acceleration mechanism cannot be rare. We have also studied the relation of event sizes to the sunspot number and the solar cycle phase. We find a clear bimodal variation of annual integrated flux with solar cycle phase but no statistically significant tendency for the large events to avoid sunspot maximum. We show there is almost no relation between the maximum sunspot number in a solar cycle and the solar cycle integrated flux. We also find that for annual sunspot numbers greater than 35 (i.e., non-minimum solar cycle conditions) there is no relation whatsoever between the annual sunspot numbers and annual integrated flux.  相似文献   

5.
We have studied the latitude and longitude (northern and southern hemispheric) distributions based on 2277 LDE flares observed during the period from 1966 to 1986. We have found that there exist active zones, in which the LDE flare occurrence rate is much higher. Latitudinal belts between 11–20° and longitudinal belts around 80–100° are the most prolific places to produce LDE flares. During cycles 20 and 21 these active zones produced 36% of the total number of LDE flares by occupying only 6% area of the Sun.  相似文献   

6.
We compare average values of solar wind stream amplitude, maximum velocity and half-width for periods shortly after the minima preceding Solar Cycles 20 and 21. The differences between average amplitudes and half-widths are not significant, but higher maximum velocities were observed for streams during the early part of Cycle 21. Comparing with previously published results, we conclude that, except for the large streams seen late in the solar cycle, the variation of these stream parameters is nearly as large from cycle to cycle as it is within a solar cycle.  相似文献   

7.
The periodicities of monthly values of major flare numbers and comprehensive major flare index (CFI) have been studied for the 20th solar cycle. It has been proved that the periodicity 152 days exists also in the southern (S) solar hemisphere. This periodicity has been previously defined in the earlier cycles to be a northern (N) periodicity, but it has migrated to the southern hemisphere (S) during the cycles 19, 20, 21. For the whole solar disk data, it has been found that the periodicity at 78.43d is much remarkable than its first harmonic at 156.86d. We have also detected very strong periodicity at 548.96d in N-hemisphere while a strong one has been found near 100d in both solar hemispheres. The detected periodicities at 80±2d and 101-+1d seems to have a global origin . The 87.1d periodicity is present and it is suggested that it is related to 88d periodicity attributed to the tidal influence of the planet Mercury on sunspots. Both hemispheres present their periodicities independently.  相似文献   

8.
9.
This paper reports the results of a study of the N-S asymmetry in the flare index using the results of Knoka (1985) combined with our results for the solar cycles 17 to the current cycle 22. By comparing the time-variation of the asymmetry curve with the solar activity variation of the 11-year cycle, we have found that the flare index asymmetry curve is not in phase with the solar cycle and that the asymmetry peaks during solar minimum. A periodic behaviour in the N-S asymmetry appears: the activity in one hemisphere is more important during the ascending part of the cycle whereas during the descending part the activity becomes more important in the other hemisphere. The dominance of flare activity in the southern hemisphere continues during cycle 22 and, according to our findings, this dominance will increase gradually during the following cycle 23.  相似文献   

10.
11.
Studies on the periodic variation and the phase relationship between different solar activity indicators are useful for understanding the long-term evolution of solar activity cycles.Here we report the statistical analysis of grouped solar flare(GSF) and sunspot number(SN) during the time interval from January 1965 to March 2009.We find that,(1) the significant periodicities of both GSF and SN are related to the differential rotation periodicity,the quasi-biennial oscillation(QBO),and the eleven-year Schwabe cycle(ESC),but the specific values are not absolutely identical;(2) the ESC signal of GSF lags behind that of SN with an average of 7.8 months during the considered time interval,which implies that the systematic phase delays between GSF and SN originate from the inter-solar-cycle signal.Our results may provide evidence about the storage of magnetic energy in the corona.  相似文献   

12.
Some statistical aspects of three types of rapid processes (surges, activations, and eruptions) in solar prominences during cycle No. 20 are presented and compared with those of cycle No. 21: the distribution of the events over the cycles, the active longitude intervals each year within a solar cycle and the north-south asymmetry.  相似文献   

13.
The flare index of the current solar cycle 22 is analysed to detect intermediate-term periodicities from Sep. 1, 1986 to Dec. 31, 1991. Power spectral analysis of the time series of solar flare index data reveals a periodicity around 73 and 53 days. We find that a periodicity of 73 days was in operation from 1988 November to the end of 1991 December. We also find that when the 73-day periodicity or the 154-day periodicity is in operation, the flare index is well correlated with the relative sunspot numbers. As a conclusion, we do not expect to see a resumption of the 154-day or 73-day periodicity, but we do expect only one of the periodicity near the integral multiples of 25d.8 in the next solar cycles.  相似文献   

14.
The flare index of the current solar cycle 22 is analysed to detect periodicities. Power spectral analysis of the time series of solar flare index data reveals a periodicity around 73 and 53 days. We find that a periodicity of 73 days was in operation from November 1988 to the end of December 1991. We also find that when the 73-day periodicity or the 154-day periodicity is in operation the flare index is well correlated with the relative sunspot numbers.  相似文献   

15.
Measurements of electron concentrations in the ionosphere, between 100 and 250 km altitude, were used to compute the increase in solar ionizing radiation during two flares on 21 and 23 May 1967. Since the altitude of maximum absorption of the solar energy (approximately unit optical depth) depends on the wavelength of the radiation, it is possible to estimate separately the energy enhancement in different portions of the spectrum. An ionizing energy flux increase of nearly 5 erg cm–2 sec–1 was observed on 21 May, while on the 23rd, the increase was over 7 erg cm–2 sec–1. In both flares, most of the absolute increase occurred in the 20–205 Å region of the spectrum, although the relative increase was much larger at the shorter wavelengths.  相似文献   

16.
A major solar flare on 15 November, 1991 produced a striking perturbation in the position and shape of the sunspot related most closely to the flare. We have studied these perturbations by use of the aspect-sensor images from the Soft X-ray Telescope on board YOHKOH, and with ground-based data from the Mees Solar Observatory. The perturbation occurred during the impulsive phase of the flare, with a total displacement on the order of 1 arc sec. The apparent velocity of approximately 2 km s–1 exceeds that typically reported for sunspot proper motions even in flare events. We estimate that the magnetic energy involved in displacing the sunspot amounted to less than 4 × 1030 ergs, comparable to the radiant energy from the perturbed region. Examination of the Mees Observatory data shows that the spot continued moving at lower speed for a half-hour after the impulsive phase. The spot perturbation appears to have been a result of the coronal restructuring and flare energy release, rather than its cause.  相似文献   

17.
Results are presented from a study of solar radius measurements taken with the solar astrolabe at the TUBITAK National Observatory (TUG) over seven years, 2001–2007. The data series with standard deviation of 0.35 arcsec shows the long-term variational trend with 0.04 arcsec/year. On the other hand, the data series of solar radius are compared with the data of sunspot activity and H-α flare index for the same period. Over the seven year trend, we have found significant linear anti-correlations between the solar radius and other indicators such as sunspot numbers, sunspot areas, and H-α flare index. While the solar radius displays the strongest anti-correlation (−0.7676) with sunspot numbers, it shows a significant anti-correlation of −0.6365 with sunspot areas. But, the anti-correlation between the solar radius and H-α flare index is found to be −0.4975, slightly lower than others. In addition, we computed Hurst exponent of the data sets ranging between 0.7214 and 0.7996, exhibiting the persistent behavior for the long term trend. In the light of the strong correlations with high significance, we may suggest that there are a causal relationship between the solar radius and solar time series such as sunspot activity and H-α flare index.  相似文献   

18.
Bazilevskaya  G.A.  Krainev  M.B.  Makhmutov  V.S.  Flückiger  E.O.  Sladkova  A.I.  Storini  M. 《Solar physics》2000,197(1):157-174
A distinctive peak and gap structure in a number of solar indices was observed in the maximum phase of solar cycles 21 and 22. The effect became even more prominent after separating the northern and southern solar hemispheres. In cycle 21 the multi-peaked structures observed in the two solar hemispheres were not synchronous and their sum resulted in the rather shallow two-peaked solar maximum for the parameters taken over the whole solar disk. In cycle 22 there were only double peaks in each hemisphere which were rather synchronous. Examination of solar activity in the northern and southern hemispheres has shown that the structured maximum appears to be due to the superposition of two quasi-oscillating processes with characteristic time-scales of 11 years and of 1–3 years (quasi-biennial oscillations). The absolute amplitude of the quasi-biennial oscillations depends on the 11-year cycle phase and reaches its maximum at the maximum of the 11-year cycle. This explains the occurrence of a double- or triple-peak structure in the solar maximum phase.  相似文献   

19.
A. zgü  T. Ata 《New Astronomy》2003,8(8):745-750
We study the hysteresis effect between the solar flare index and cosmic ray intensity for the past 37 years from January 1, 1965 to December 31, 2001 on a daily basis. We show that smoothed time series of flare index and the daily Calgary Galactic Cosmic Ray intensity values exhibit significant solar cycle dependent differences in their relative variations during the studied period. The shapes of these differences vary from cycle to cycle. So we investigate the momentary time lags between the two time series for the odd and even cycles.  相似文献   

20.
Starting with the quasi-linear equation of the distribution function of particles in a regular electric field, a combined diffusion coefficient in the momentum space conbining the effects of the regular field and a turbulent field is obtained and a combined mechanism of acceleration by the regular and turbulent fields in the neutral sheet of solar proton flares is proposed. It is shown by calculation that conditions in solar proton flares are such that the charged particles can be effectively accelerated to tens of MeV, even ~1 GeV. It is shown that the combined acceleration by a regular electric field and ion-acoustic turbulence pumps the protons and other heavy ions into ranges of energy where they can be accelerated by Langmuir turbulence. By considering the combined acceleration by Langmuir turbulence and the regular electric field, the observed spectrum of energetic protons and the power-law spectrum of energetic electrons can be reproduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号