首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method is suggested for finding the preliminary orbit from three complete measurements of the angular coordinates of a celestial body developed by analogy with the classic Lagrange–Gauss method. The proposed method uses the intermediate orbit that we had constructed in an earlier paper based on two position vectors and the corresponding time interval. This intermediate orbit allows for most of the perturbations in the motion of the body. Using the orbital motion of asteroid 1566 Icarus as an example, we compare the results obtained by applying the classic and the new method. The comparison shows the new method to be highly efficient for studying perturbed motion. It is especially efficient if applied to high-precision observational data covering short orbital arcs.  相似文献   

2.
We propose a new method for the determination of the preliminary orbit of a small celestial body using three pairs of its angular coordinates in three moments of time. The method is based on the use of the intermediate orbit we constructed earlier using three position vectors and the corresponding time moments. This intermediate orbit accounts for the main part of the perturbations of the motion of the body under study. We compare the results obtained by the classical Lagrange-Gauss method, Herrick-Gibbs method, generalized Herrick-Gibbs method, and the new method by the examples of the determination of the orbit of the small planet 1566 Icarus. The comparison showed that the new method is a highly efficient tool for the study of perturbed motion. It is especially efficient when applied to high-precision observational data covering short arcs of the orbit.  相似文献   

3.
We suggest a new approach to solving the problem of finding the orbit of a celestial body from its three spatial position vectors and the corresponding times. It allows most of the perturbations in the motion of a celestial body to be taken into account. The approach is based on the theory of intermediate orbits that we developed previously. We construct the orbit the motion along which is a combination of two motions: the motion of a fictitious attracting center whose mass varies according to Mestschersky’s first law and the motion relative to the fictitious center. The first motion is generally parabolic, while the second motion is described by the equations of the Gylden-Mestschersky problem. The constructed orbit has such parameters that their limiting values at any reference epoch define a superosculating intermediate orbit with a fourth-order tangency. We have performed a numerical analysis to estimate the accuracy of approximating the perturbed motion of two minor planets, 145 Adeona and 4179 Toutatis, by the orbits computed using two-position procedures (the classical Gauss method and the method that we suggested previously), a three-position procedure based on the Herrick-Gibbs equation, and the new method. Comparison of the results obtained suggests that the latter method has an advantage.  相似文献   

4.
A new non-simplified model of formation flying is derived in the presence of an oblate mainbody and third-body perturbation.In the proposed model,considering the perturbation of the thirdbody in an inclined orbit,the effect of obliquity(axial tilt) of the main-body is becoming important and has been propounded in the absolute motion of a reference satellite and the relative motion of a follower satellite.From a new point of view,J2 perturbed relative motion equations and considering a disturbing body in an elliptic inclined three dimensional orbit,are derived using Lagrangian mechanics based on accurate introduced perturbed reference satellite motion.To validate the accuracy of the model presented in this study,an auxiliary model was constructed as the Main-body Center based Relative Motion(MCRM) model.Finally,the importance of the main-body's obliquity is demonstrated by several examples related to the Earth-Moon system in relative motion and lunar satellite formation keeping.The main-body's obliquity has a remarkable effect on formation keeping in the examined in-track and projected circular orbit(PCO) formations.  相似文献   

5.
Two new methods are described for finding the orbit of a small celestial body from three or more pairs of angular measurements and the corresponding time points. The methods are based on, first, the approach that has been developed previously by the author to the determination, from a minimum number of observations, of intermediate orbit considering most of the perturbations in the bodies’ motion and, second, Herget’s algorithmic procedure enabling the introduction of additional observations. The errors of orbital parameters calculated by the proposed methods are two orders of magnitude smaller than the corresponding errors of the traditional approach based on the construction of an unperturbed Keplerian orbit. The thus-calculated orbits of the minor planets 1566 Icarus, 2002 EC1, and 2010 TO48 are used to compare the results of Herget’s multiposition procedure and the new methods. The comparison shows that the new methods are highly effective in the study of perturbed motion. They are particularly beneficial if high-precision observational data covering short orbital arcs are available.  相似文献   

6.
Based on the theory of intermediate orbits developed earlier by the author of this paper, a new approach is proposed to the solution of the problem of finding the orbit of a celestial body with the use of two position vectors of this body and the corresponding time interval. This approach makes it possible to take into account the main part of perturbations. The orbit is constructed, the motion along which is a combination of two motions: the uniform motion along a straight line of a fictitious attracting center, whose mass varies according to the first Meshchersky law, and the motion around this center. The latter is described by the equations of the Gylden–Meshchersky problem. The parameters of the constructed orbit are chosen so that their limiting values at any reference epoch determine a superosculating intermediate orbit with third-order tangency. The accuracy of approximation of the perturbed motion by the orbits calculated by the classical Gauss method and the new method is illustrated by an example of the motion of the unusual minor planet 1566 Icarus. Comparison of the results obtained shows that the new method has obvious advantages over the Gauss method. These advantages are especially prominent in cases where the angular distances between the reference positions are small.  相似文献   

7.
We present a simple method for determination of the orbital parameters of binary pulsars, using data on the pulsar period at multiple observing epochs. This method uses the circular nature of the velocity space orbit of Keplerian motion and produces preliminary values based on two one-dimensional searches. Preliminary orbital parameter values are then refined using a computationally efficient linear least-squares fit. This method works for random and sparse sampling of the binary orbit. We demonstrate the technique on (i) the highly eccentric binary pulsar PSR J0514−4002 (the first known pulsar in the globular cluster NGC 1851) and (ii) 47 Tuc T, a binary pulsar with a nearly circular orbit.  相似文献   

8.
We propose two algorithms to provide a full preliminary orbit of an Earth-orbiting object with a number of observations lower than the classical methods, such as those by Laplace and Gauss. The first one is the Virtual debris algorithm, based upon the admissible region, that is the set of the unknown quantities corresponding to possible orbits for a given observation for objects in Earth orbit (as opposed to both interplanetary orbits and ballistic ones). A similar method has already been successfully used in recent years for the asteroidal case. The second algorithm uses the integrals of the geocentric 2-body motion, which must have the same values at the times of the different observations for a common orbit to exist. We also discuss how to account for the perturbations of the 2-body motion, e.g., the J 2 effect.  相似文献   

9.
刘林  张巍 《天文学报》2007,48(2):220-227
论述的短弧定轨,是指在无先验信息情况下又避开多变元迭代的初轨计算方法,它需要相应的动力学问题有一能反映短弧内达到一定精度的近似分析解.探测器进入月球引力作用范围后接近月球时可以处理成相对月球的受摄二体问题,而在地球附近,则可处理成相对地球的受摄二体问题,但在整个过渡段的力模型只能处理成一个受摄的限制性三体问题.而限制性三体问题无分析解,即使在月球引力作用范围外,对于大推力脉冲式的过渡方式,相对地球的变化椭圆轨道的偏心率很大(超过Laplace极限),在考虑月球引力摄动时亦无法构造摄动分析解.就此问题,考虑在地球非球形引力(只包含J2项)和月球引力共同作用下,构造了探测器飞抵月球过渡轨道段的时间幂级数解,在此基础上给出一种受摄二体问题意义下的初轨计算方法,经数值验证,定轨方法有效,可供地面测控系统参考.  相似文献   

10.
It has long been recognized and demonstrated in the astrodynamic literature that three observations of angular position are not always sufficient to determine a preliminary orbit. One reason for this is due to the fact that as the plane of the observer's motion approaches the plane of the orbit of the observed object, the determination of the orbit of the object becomes indeterminant. Merely changing the coordinate system will not eliminate the inherent indeterminacy or singularity. When the observed object is moving in the same plane as the observer, their relative motion is described in two dimensions rather than three. The problem reduces to defining two components of position and two of velocity given only three angular measures and no solution is possible. Although this singularity is a rather old, albeit infrequently arising problem in celestial mechanics, it has received renewed interest due to the advent of satellite observatories that observe other spacecraft. In this new circumstance the plane of the observer's motion is rather frequently near the plane of the object (12% to 35% of the time) and the co-planar singularity becomes a subject that deserves additional attention.It is the purpose of this paper to develop a practical and simple method of orbit determination using four observations. This method also allows one to avoid the problem of multiple orbit-determination solution roots, and provides numerical indices that are useful in assessing the degree of indeterminacy in any given observer/object geometry. This paper does not dwell at length on the theory of orbital singularities, since they have been already treated in celestial mechanics literature. Instead, the emphasis is on the details of a new computational technique, which has been found to be computationally more efficient than previous four-observation methods, and which is unique in being formulated in the geocentric system and involves only one scalar quantity in the correction process.The equations for the new method are developed and a numerical example is presented that demonstrates the efficiency of the method.  相似文献   

11.
Giacomo Giampieri 《Icarus》2004,167(1):228-230
A planetary body moving on an eccentric orbit around the primary is subject to a periodic perturbing potential, affecting its internal mass distribution. In a previous paper (Rappaport et al., 1997, Icarus 126, 313), we have calculated the periodic modulation of the gravity coefficients of degree 2, for a body on a synchronous orbit. Here, the previous analysis is extended by considering also non-synchronous orbits, and by properly accounting for the apparent motion of the primary due to the non uniform motion along the elliptical orbit. The cases of Titan and Mercury are briefly discussed.  相似文献   

12.
We present an exact solution of the equations for orbit determination of a two body system in a hyperbolic or parabolic motion. In solving this problem, we extend the method employed by Asada, Akasaka and Kasai (AAK) for a binary system in an elliptic orbit. The solutions applicable to each of elliptic, hyperbolic and parabolic orbits are obtained by the new approach, and they are all expressed in an explicit form, remarkably, only in terms of elementary functions. We show also that the solutions for an open orbit are recovered by making a suitable transformation of the AAK solution for an elliptic case.  相似文献   

13.
A modification of the Laplace method for the determination of a preliminary orbit of a body moving in the plane of the ecliptic is presented. It is shown that on the basis of three close positions on the celestial sphere, the parabolic orbit can be determined in cases, when the classical Laplace method is not suitable. The numerical estimation of the number of possible solutions is carried out, and their spatial distribution depending on initial conditions is shown. An example of the determination of an orbit for the comet C/2007 N3 (Lulin) is given.  相似文献   

14.
Large Near-Earth-Asteroids have played a role in modifying the character of the surface geology of the Earth over long time scales through impacts. Recent modeling of the disruption of large meteoroids during atmospheric flight has emphasized the dramatic effects that smaller objects may also have on the Earth's surface. However, comparison of these models with observations has not been possible until now. Peekskill is only the fourth meteorite to have been recovered for which detailed and precise data exist on the meteoroid atmospheric trajectory and orbit. Consequently, there are few constraints on the position of meteorites in the solar system before impact on Earth. In this paper, the preliminary analysis based on 4 from all 15 video recordings of the fireball of October 9, 1992 which resulted in the fall of a 12.4 kg ordinary chondrite (H6 monomict breccia) in Peekskill, New York, will be given. Preliminary computations revealed that the Peekskill fireball was an Earth-grazing event, the third such case with precise data available. The body with an initial mass of the order of 10(4) kg was in a pre-collision orbit with a = 1.5 AU, an aphelion of slightly over 2 AU and an inclination of 5 degrees. The no-atmosphere geocentric trajectory would have lead to a perigee of 22 km above the Earth's surface, but the body never reached this point due to tremendous fragmentation and other forms of ablation. The dark flight of the recovered meteorite started from a height of 30 km, when the velocity dropped below 3 km/s, and the body continued 50 km more without ablation, until it hit a parked car in Peekskill, New York with a velocity of about 80 m/s. Our observations are the first video records of a bright fireball and the first motion pictures of a fireball with an associated meteorite fall.  相似文献   

15.
The preliminary orbit determination with optical angular measure- ments plays an important role in the survey of space objects. The classical method of orbit computation based on the least square error estimation is not robust while outliers occur in the observation. A robust method is proposed by employing the least absolute deviation estimation. The method reduces the problem of orbit determination to a linear programming problem, and gives the variance of the estimation with the bootstrap method. Numerical check shows that the method is effective and robust, and has a high breakdown point.  相似文献   

16.
Apparent acceleration of proper motion is one of the observable manifestations of orbital motion in binary stars. Owing to the increasing accuracy of astrometric measurements, it may also be a method to detect binarity of stars. This paper presents some analytical expressions for the effects of binary motion on proper motions when the orbital period is at least several times the span of observations. We estimate orbit dimensions and distances at which low‐mass companions and planets may be detected around main‐sequence stars, using preliminary estimates of precision for the AMEX, GAIA and SIM space missions.  相似文献   

17.
At present the fundamental lunar ephemeris is based on Brown's theory of the motion of the Moon with improvements based on the bypassing of Brown's Tables, the removal of the great empirical term, the substitution of the relevant constants of the IAU system of astronomical constants and the retransformation of Brown's series in rectangular coordinates to spherical coordinates. Even so this ephemeris does not represent adequately the recent range and range-rate radio observations, and it will be inadequate for use in the analysis of laser observations of corner reflectors on the Moon. Numerical integrations for these purposes have already been made at the Jet Propulsion Laboratory, but improved theoretical developments are also required; new solutions of the main problem are in hand elsewhere. Work at H.M. Nautical Almanac Office is aimed at obtaining improved values of the constants of the lunar orbit by a rediscussion of occultation observations made since 1943 and at the redevelopment of the series for the planetary perturbations using more precise theories of the motion of the Sun and planets. The techniques and preliminary results of exploratory numerical integrations were briefly described.Presented at the Conference on Celestial Mechanics, Oberwolfach, Germany, 17–23 August, 1969.  相似文献   

18.
New methods are proposed for solving equations of motion of celestial bodies. The methods are based on the use of superosculating orbits with second- and third-order tangency to the trajectory of the real motion of a body. The construction of these orbits is related to the concept of a fictitious attracting center, whose mass varies in accordance with the first Meshchersky law. In the original reference methods, the perturbed trajectory is represented by a sequence of small arcs of superosculating orbits. The order of accuracy of the reference methods coincides with the order of tangency of the superosculating orbit used in calculations. Using Runge's rule and Richardson's extrapolation scheme leads to the methods of higher order. The efficiency of the new methods in comparison with the numerical integration of equations of motion based on the well-known fourth- and seventh-order Runge–Kutta–Fehlberg methods is illustrated by examples of the calculation of perturbed orbits of some asteroids.  相似文献   

19.
20.
The process of calculating a good orbit from astrometric observations of the same object involves three main steps: preliminary orbit determination, least squares orbit fitting, and quality control assessing the orbit's uncertainty and reliability. For the next generation sky surveys, with much larger number density of observations, new algorithms, or at least substantial revisions of the classical ones, are needed. The classical theory of preliminary orbit algorithms was incomplete in that the consequences of the topocentric correction had not been fully studied. We show that it is possible to rigorously account for topocentric observations and that this correction may increase the number of alternate preliminary orbits without impairing the overall performance. We have developed modified least squares algorithms including the capability of fitting the orbit to a reduced number of parameters. The restricted fitting techniques can be used to improve the reliability of the orbit computing procedure when the observed arcs have small curvature. False identification (where observations of different objects are incorrectly linked together) can be discarded with a quality control on the residuals and a ‘normalization’ procedure removing duplications and contradictions. We have tested our algorithms on two simulations based on the expected performance of Pan-STARRS—one of the next generation all-sky surveys. The results confirm that large sets of discoveries can be handled very efficiently resulting in good quality orbits. In these tests we lost only 0.6 to 1.3% of the possible objects, with a false identification rate in the range 0.02 to 0.06%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号