首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mean July and January temperatures are reconstructed from radiocarbon-dated fossil beetle assemblages from late-glacial sites in the Maritimes Region of eastern Canada. Fossil-bearing sediments date from 12 700 14 C yr BP (14 950 cal yr BP) to younger than 10 800 14 C yr BP (12 730 cal yr BP), spanning a period which includes stratigraphic, palynological, chironomid and coleopteran evidence for a climatic deterioration during the Younger Dryas in North America. Mutual Climatic Range data suggest several 'events' in the coleopteran record from the Maritimes that appear similar to climate events recorded in the GRIP ice-core record, including the (Younger Dryas) cooling event from GI-1a to GS-1 beginning c. 12 650 GRIP yr BP Some of the major temperature oscillations of Greenland Interstadial 1 may also be reflected in the coleopteran record of the Maritimes.  相似文献   

2.
Pollen data from a Levinson-Lessing Lake sediment core (74°28'N, 98°38'E) and Cape Sabler, Taymyr Lake permafrost sequences (74°33'N, 100°32'E) reveal substantial environmental changes on the northern Taymyr Peninsula during the last c. 32 000 [Formula: See Text]C years. The continuous records confirm that a scarce steppe-like vegetation with Poaceae, Artemisia and Cyperaceae dominated c. 32 000-10 300 [Formula: See Text]C yr BP, while tundra-like vegetation with Oxyria, Ranunculaceae and Caryophyllaceae grew in wetter areas. The coldest interval occurred c. 18 000 yr BP. Lateglacial pollen data show several warming events followed by a climate deterioration c. 10 500 [Formula: See Text]C yr BP, which may correspond with the Younger Dryas. The Late Pleistocene/Holocene transition, c. 10 300-10 000 [Formula: See Text]C yr BP, is characterized by a change from the herb-dominated vegetation to shrubby tundra with Betula sect. Nanae and Salix. Alnus fruticosa arrived locally c. 9000-8500 [Formula: See Text]C yr BP and disappeared c. 4000-3500 [Formula: See Text]C yr BP. Communities of Betula sect. Nanae, broadly distributed at c. 10 000-3500 [Formula: See Text]C yr BP, almost disappeared when vegetation became similar to the modern herb tundra after 3500-3000 [Formula: See Text]C yr BP. Quantitative climate reconstructions show Last Glacial Maximum summer temperature about 4°C below the present and Preboreal (c. 10 000 [Formula: See Text]C yr BP) temperature 2-4°C above the present. Maximum summer temperature occurred between 10 000 and 5500 [Formula: See Text]C yr BP; later summers were similar to present or slightly warmer.  相似文献   

3.
We present two new quantitative July mean temperature (Tjul) reconstructions from the Arctic tree-line region in the Kola Peninsula in north-western Russia. The reconstructions are based on fossil pollen records and cover the Younger Dryas stadial and the Holocene. The inferred temperatures are less reliable during the Younger Dryas because of the poorer fit between the fossil pollen samples and the modern samples in the calibration set than during the Holocene. The results suggest that the Younger Dryas Tjul in the region was 8.0–10.0°C, being 2.0–3.0°C lower than at present. The Holocene summer temperature maximum dates to 7500–6500 cal yr BP, with Tjul about 1.5°C higher than at present. These new records contribute to our understanding of summer temperature changes along the northern-European tree-line region. The Holocene trends are consistent in most of the independent records from the Fennoscandian–Kola tree-line region, with the beginning of the Holocene thermal maximum no sooner than at about 8000 cal yr BP. In the few existing temperature-related records farther east in the Russian Arctic tree line, the period of highest summer temperature begins already at about 10,000 cal yr BP. This difference may reflect the strong influence of the Atlantic coastal current on the atmospheric circulation pattern and the thermal behaviour of the tree-line region on the Atlantic seaboard, and the more direct influence of the summer solar insolation on summer temperature in the region east of the Kola Peninsula.  相似文献   

4.
Recessional positions of the Newfoundland ice sheet 14-9 ka BP are represented by fjord-mouth submarine moraines, fjord-head emerged ice-contact marine deltas, and inland moraine belts. The arcuate submarine moraines have steep frontal ramparts and comprise up to 80 m of acoustically incoherent ice-contact sediment (or till) interfingered distally with glaciomarine sediment that began to be deposited c. 14.2 ka BP. The moraines formed by stabilization of ice that calved rapidly back along troughs on the continental shelf. The ice front retreated to fjord-heads and stabilized to form ice-contact delta terraces declining in elevation westward from +26 m to just below present sea level. Stratified glaciomarine sediments accumulated in fjords, while currents outside fjords eroded the upper part of the glaciomarine deposits, forming an unconformity bracketed by dates of 12.8 and 8.5 ka BP. The delta terraces are broadly correlated with the 12.7 ka BP Robinson's Head readvance west of the area. The ice front retreated inland, pausing three or four times to form lines of small bouldery stillstand moraines, heads of outwash, sidehill meltwater channels, and beaded eskers. Lake-sediment cores across this belt yield dated pollen evidence of three climatic reversals to which the moraines are equated: the Killarney Oscillation c. 11.2 ka BP, the Younger Dryas chronozone 11.0-10.4 ka BP, and an unnamed cold event c. 9.7 ka BP. Relative sea level fell in the early Holocene because of crustal rebound, so that outwash and other alluvium accumulated in deltas now submerged due to relative sea-level rise.  相似文献   

5.
Detailed pollen, charcoal and loss on ignition profiles were analysed from Llyn Cororion, North Wales, UK. The chronology was based on 11 radiocarbon dates. This site is particularly important for this region because its high-resolution record improves the spatial and temporal resolution of records of Holocene vegetation change in an area characterized by a highly variable environment. An early Holocene phase of Juniperus-Betula scrub was succeeded by Betula-Corylus woodland. Quercus and Ulmus were established by c. 8600 14C yr BP, with Pinus dominating at c. 8430 14C yr BP. Local disturbance then allowed the spread of Alnus; Tilia was a common component of the forest by 5650 14C yr BP. Charcoal and pollen records suggest that by c. 2600 14C yr BP there was progressive deforestation, increased use of fire and spread of grassland; the first cereal grain was recorded at c. 2900 14C yr BP. Compared with data from upland Snowdonia, the results show that within a topographically diverse region there were significant local variations in forest composition. These variations developed as a response to interactions between many environmental parameters and were further complicated by the influence of human activity. In an area such as North Wales it is therefore unlikely that one site can be representative of regional Holocene vegetational development. The site is additionally important because it contributes to the data available for meta-analyses of environmental change in the North Atlantic region, particularly as detailed pollen diagrams from coastal lake sites around western Europe are rare.  相似文献   

6.
A Holocene sedimentary record from the deep-silled Malangen fjord in northern Norway reveals regional changes in sedimentary environment and climate. Down-core analysis of two sediment cores includes multi-core sensor logging, grain size, x-radiography, foraminifera, oxygen isotopes, dinoflagellates, pollen, trace elements and radiocarbon datings. The cores are located just proximal to the submarine Younger Dryas moraine complex, and reveal the deglaciation after Younger Dryas and the postglacial evolution. Five sedimentary units have been identified. The oldest units, V and IV, bracket the Younger Dryas glacial readvance in the fjord between 12 700 cal. years BP and 11 800 cal. years BP. This is followed by deposition of glaciomarine sediments (units IV and III) starting around 12 100 cal. years BP. Glaciomarine sedimentation ceased in the fjord c. 10 300 cal. years BP and was replaced by open marine sedimentation (units II and I). A rapid stepwise warming occurred during the Preboreal. Onset of surface water warming lagged bottom water warming by several hundred years. The δ[Formula: See Text]O record indicates a significant, gradual bottom water cooling (c. 4°C) between 8000 and 2000 cal. years BP, a trend also supported by the other proxy data. Other records in the region, as well as GCM simulations, also support this long-term climatic evolution. Superimposed on this cooling were brief warmings around 6000 cal. years BP and 2000 cal. years BP. The long-term change may be driven by orbitally forced reduction in insolation, whereas the short-term changes may be linked to for example solar forcing, meltwater and NAO changes all causing regional changes in the North Atlantic heat transport.  相似文献   

7.
A sediment core from Chuna Lake (Kola Peninsula, northwest Russia) was studied for pollen, diatoms and sediment chemistry in order to infer post‐glacial environmental changes and to investigate responses of the lake ecosystem to these changes. The past pH and dissolved organic carbon (DOC) of the lake were inferred using diatom‐based transfer functions. Between 9000 and 4200 cal. yr BP, slow natural acidification and major changes in the diatom flora occurred in Chuna Lake. These correlated with changes in regional pollen, the arrival of trees in the catchment, changes in erosion, sediment organic content and DOC. During the past 4200 yr diatom‐based proxies showed no clear response to changes in vegetation and erosion, as autochthonous ecological processes became more important than external climate influences during the late Holocene. The pollen stratigraphy reflects the major climate patterns of the central Kola Peninsula during the Holocene, i.e. a climate optimum between 9000 and 5400/5000 cal. yr BP when climate was warm and dry, and gradual climate cooling and an increase in moisture during the past 5400/5000 yr. This agrees with the occurrence of the north–south humidity gradient in Fennoscandia during the Holocene. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
High-temporal resolution analysis of pollen records from Lake Maliq (Albania) provides quantitative estimates of monthly temperature and precipitation changes since the last deglaciation. The climate parameters were estimated using the best modern analogue technique with an updated modern pollen-climate database composed of 2748 surface samples. The record shows two main cooling phases in the Maliq area (the Oldest and Younger Dryas) and a cooling event around 8200 years, which suggests that the forcing factors driving climate variations in the North Atlantic area since the Last Glacial period also extended their influence into the Mediterranean area. The Oldest and Younger Dryas are also characterized by an arid climate and a change in the seasonality of precipitation: the summer precipitation tends to be greater during the cooling phases than during the temperate periods. The Holocene climate is relatively stable and the values of each parameter reach their modern levels, except for an arid event between 8300 and 8100 cal BP.  相似文献   

9.
Zhu, C., Ma, C., Yu, S.-Y., Tang, L., Zhang, W. & Lu, X. 2009: A detailed pollen record of vegetation and climate changes in Central China during the past 16 000 years. Boreas , 10.1111/j.1502-3885.2009.00098.x. ISSN 0300-9483.
Detailed pollen analyses, along with magnetic and loss-on-ignition (LOI) measurements, were conducted on a 3 m long peat sequence recovered from the Dajiuhu Basin, the Shennongjia Mountains in Central China. Ten AMS 14C dates provide a firm age control on this pollen record in terms of vegetation changes governed essentially by the rise and fall of the Asian summer monsoon during the past 16 000 years. Between 16 000 and 12 700 cal. yr BP, pollen assemblages were dominated by coniferous and broad-leaved trees, indicating a mixed forest landscape corresponding to the initial establishment of the monsoonal climate after the Last Glaciation. The progressive increases in percentages of evergreen tree pollen after 12 700 cal. yr BP point to a steady enhancement of the summer monsoon, which was episodically weakened during the Younger Dryas stadial. From 11 000 to 6000 cal. yr BP, values of coniferous and deciduous tree pollen decreased, while evergreen broad-leaved tree pollen increased substantially, implying a stronger than normal monsoonal climate condition corresponding to the Holocene Hypsithermal Interval. A great reduction in the values of evergreen tree pollen at about 4000 cal. yr BP indicates a sudden retreat of the summer monsoon from this area.  相似文献   

10.
Palaeoenvironmental records from permafrost sequences complemented by infrared stimulated luminescence (IRSL) and [Formula: See Text]Th/U dates from Bol'shoy Lyakhovsky Island (73°20'N, 141°30'E) document the environmental history in the region for at least the past 200 ka. Pollen spectra and insect fauna indicate that relatively wet grass-sedge tundra habitats dominated during an interstadial c. 200-170 ka BP. Summers were rather warm and wet, while stable isotopes reflect severe winter conditions. The pollen spectra reflect sparser grass-sedge vegetation during a Taz (Late Saalian) stage, c. 170-130 ka BP, with environmental conditions much more severe compared with the previous interstadial. Open Poaceae and Artemisia plant associations dominated vegetation at the beginning of the Kazantsevo (Eemian) c. 130 ka BP. Some shrubs (Alnus fruticosa, Salix, Betula nana) grew in more protected and wetter places as well. The climate was relatively warm during this time, resulting in the melting of Saalian ice wedges. Later, during the interglacial optimum, shrub tundra with Alnus fruticosa and Betula nana s.l. dominated vegetation. Climate was relatively wet and warm. Quantitative pollen-based climate reconstruction suggests that mean July temperatures were 4-5°C higher than the present during the optimum of the Eemian, while late Eemian records indicate significant climate deterioration.  相似文献   

11.
Lake-level fluctuations in the Jura mountains (France) during the Younger Dryas and the early Holocene are reconstructed using sedimentological analyses. Major transgressive phases culminated just before the Laacher See tephra deposition, at the beginning of the Younger Dryas, between 9000 and 8000 BP and between 7000 and 6000 BP. The Younger Dryas appears to be characterized by increasing dryness. Other major lowering phases occurred during the middle Allerød and during the Preboreal. A transgressive event developed between c . 9700 and 9500 BP. These palaeohydrological changes can be related to climatic oscillations reconstructed from pollen and isotopic records in Swiss lakes, from glacier movements and timberline variations in the Alps, and from isotopic records in the Greenland ice sheet.  相似文献   

12.
A high-resolution Younger Dryas–late Holocene record of climate and environment from the Malangen fjord has been established on the basis of two marine sediment cores. Five pollen-spore assemblage zones have been defined covering the period c . 11 500 cal. yr BP (10 200 14C yr BP) to c . 1600 cal. yr BP (1600 14C yr BP) with a hiatus of c . 2000 cal. years between c . 10 200 and 8100 cal. yr BP (9000 and 7300 14C yr BP). The Holocene vegetation development from pioneer vegetation to forest development, identified in the marine pollen record, correlates well with pollen records from terrestrial sections of northern Norway. The marine pollen record was also correlated directly with marine proxy records of the bottom water temperature investigated in the same sediment cores. Correlation between the marine and terrestrial proxies suggests that changes in the influx of warm Atlantic Water to the fjord led to an instant change in the vegetation of the surrounding land area. The results thus support a strong link between marine and atmospheric mean climatic states in the North Atlantic region throughout the Holocene.  相似文献   

13.
An Erratum has been published for this article in Journal of Quaternary Science 17(7) 2002, 721. There is conflicting evidence concerning the extent and timing of late Quaternary climate variability in southern South America and how this may be linked to climate change in the Northern Hemisphere. Critical unresolved questions include whether or not a cool period occurred in southern South America during the Younger Dryas Chronozone (YDC) (11 000–10 000 14C yr BP; 13 000–11 200 yr BP), and the timing of wet and dry phases during the Holocene. To date most evidence is from glacial, pollen and beetle records but, in an attempt to resolve these questions, we have used chironomid midges as an independent proxy in one of the first studies of its kind in Patagonia. We investigated the dynamics of midge assemblages during the Late‐glacial and Holocene at Lago Stibnite on the Taitao Peninsula, southern Chile (46°S). Changes in the midge assemblage suggest that the climate may have become cooler and drier during the YDC. During the Holocene there were cyclical changes in the midge assemblage that may have been in response to trophic change and/or to changes in precipitation when conditions appear to have been drier than today at 9400–6300 14C yr BP and 2400–1600 14C yr BP. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
A study of changes in siliceous microfossil assemblages and chemical analyses in a well-dated offshore sediment core from the Bornholm Basin, southwestern Baltic Sea, is carried out with the objective of increasing knowledge of the Holocene history of the area. The core covers about 11 300 calendar years from the brackish phase of the Yoldia Sea stage to the present. The first weak marine influence in the Ancylus Lake stage is recorded about 10 100 cal. yr BP (c. 8900 14C BP), indicating a complex transition to the Litorina Sea with different phases of brackish-water inflow. The lithology, organic carbon content and C/N and C/S ratios indicate no major changes in the sedimentary environment during the Litorina-Post-Litorina Sea stages. A high productivity event recorded in the Post-Litorina Sea stage around 950 cal. yr BP correlates with the Medieval warm event. A biostratigraphical change indicating a colder climate is recorded in the sediment at about 800 cal. yr BP, which might mark the beginning of the Little Ice Age.  相似文献   

15.
Vegetation dynamics during the Younger Dryas-Holocene transition in the extreme northern taiga zone of the Usa basin, northeastern European Russia, were reconstructed using plant macrofossil and pollen evidence from a sediment core from Lake Llet-Ti. The pollen stratigraphy during the Younger Dryas (about 12 500-11 500 cal. yr BP) is characterized by pollen types indicative of treeless arctic vegetation, whereas the macrofossil evidence shows the occurrence of scattered spruce and birch trees around the lake. The Younger Dryas-early Holocene transition is characterized by a rapid increase in vegetation density, including an increase in the birch population, followed by the expansion of the spruce population at about 10 000 cal. yr BP. Dense spruce-birch forest dominated until 5000 cal. yr BP. Our results contribute to the debate about the Lateglacial environments in northern Russia, and illustrate the importance of plant macrofossil records in Lateglacial vegetation reconstructions.  相似文献   

16.
The authors discuss Late Pleistocene–Holocene depositional environments in one of the Fuegian Andes valleys on the basis of palynological, geomorphological, and sedimentological analyses from two sites located near the Beagle Channel. The results obtained at these localities reinforce and refine the Late Pleistocene–Holocene climatic pattern previously recorded there. A colder period, associated with the Younger Dryas stadial event, is suggested by low Nothofagus pollen frequency, and communities of grass, low scrub, and shrub heath expanded into the low/middle slopes (10,310 14C yr BP). By ca. 9500 14C yr BP, warmer and drier conditions occurred, as evidenced by the development of open-grown vegetation in the valley floors (pollen zone O-3), followed by the expansion of open Nothofagus woodland (pollen zone O-2) in the middle Holocene. The milder climate subsequently changed, as indicated by the spreading of the closed forest and mire (pollen zone O-1), to more humid and cooler conditions during the last ca. 5000 yr BP.  相似文献   

17.
A new pollen record from an upland lake in north-west Spain, Laguna de la Roya, spans the last ca 14,500 yrs and includes clear evidence of a Weichselian Lateglacial event correlative with the Younger Dryas. Pollen-climate response surfaces have been used to make quantitative reconstructions of palaeoclimate conditions at this and two other sites in the region. These reconstructions indicate that the climate was dry and cool during both the Late Weichselian and the Younger Dryas; in contrast, conditions during the Lateglacial Interstadial were relatively moist. During the early Holocene the climate was more continental in character than it has been for the last three millenia. Human activity has had a substantial impact upon the upland vegetation around Laguna de la Roya only during the last two millennia.  相似文献   

18.
Werner, K., Tarasov, P. E., Andreev, A. A., Müller, S., Kienast, F., Zech, M., Zech, W. & Diekmann, B. 2009: A 12.5‐kyr history of vegetation dynamics and mire development with evidence of Younger Dryas larch presence in the Verkhoyansk Mountains, East Siberia, Russia. Boreas, 10.1111/j.1502‐3885.2009.00116.x. ISSN 0300‐9483. A 415 cm thick permafrost peat section from the Verkhoyansk Mountains was radiocarbon‐dated and studied using palaeobotanical and sedimentological approaches. Accumulation of organic‐rich sediment commenced in a former oxbow lake, detached from a Dyanushka River meander during the Younger Dryas stadial, at ~12.5 kyr BP. Pollen data indicate that larch trees, shrub alder and dwarf birch were abundant in the vegetation at that time. Local presence of larch during the Younger Dryas is documented by well‐preserved and radiocarbon‐dated needles and cones. The early Holocene pollen assemblages reveal high percentages of Artemisia pollen, suggesting the presence of steppe‐like communities around the site, possibly in response to a relatively warm and dry climate ~11.4–11.2 kyr BP. Both pollen and plant macrofossil data demonstrate that larch woods were common in the river valley. Remains of charcoal and pollen of Epilobium indicate fire events and mark a hiatus ~11.0–8.7 kyr BP. Changes in peat properties, C31/C27 alkane ratios and radiocarbon dates suggest that two other hiatuses occurred ~8.2–6.9 and ~6.7–0.6 kyr BP. Prior to 0.6 kyr BP, a major fire destroyed the mire surface. The upper 60 cm of the studied section is composed of aeolian sands modified in the uppermost part by the modern soil formation. For the first time, local growth of larch during the Younger Dryas has been verified in the western foreland of the Verkhoyansk Mountains (~170 km south of the Arctic Circle), thus increasing our understanding of the quick reforestation of northern Eurasia by the early Holocene.  相似文献   

19.
Sediment cores recovered from four emerged lakes (54, 41, 22, and 7 m a.s.l.) provide new data on the deglaciation and relative sea-level history of the Murman coast, Kola Peninsula. The transition from marine to lacustrine sediment is identified in the cores by analysis of sediment physical properties and diatom assemblages. Fourteen AMS-radiocarbon ages on organic macrofossils isolated from core sediment provide chronology for the records. Basal ages from two of the cores indicate deglaciation of the area prior to 11000 BP. Radiocarbon ages associated with the marine-lacustrine sediment transition in the cores further constrain the emergence history of the area. The prominent late-glacial shoreline on the Murman coast (48 m a.s.l.) is dated to c . 10500–10300 BP, the emergence ages of lake basins 54 and 41 m a.s.l. Glaciofluvial terraces graded to this shore level indicate remnant glaciers on the north-central Kola Peninsula during the Younger Dryas.  相似文献   

20.
A mean varve thickness curve has been constructed for a part of the Swedish varve chronology from the northwestern Baltic proper. The mean varve thickness curve has been correlated with the δ18O record from the GRIP ice-core using the Younger Dryas–Preboreal climate shift. This climate shift was defined by pollen analyses. The Scandinavian ice-sheet responded to a warming at the end of the Younger Dryas, ca. 10995 to 10700 clay-varve yr BP. Warming is recorded as a sequence of increasing mean varve thickness and ice-rafted debris suggesting intense calving of the ice front. The Younger Dryas–Preboreal climatic shift is dated to ca. 10650 clay-varve yr BP, about 40 yr after the final drainage of the Baltic Ice Lake. Both the pollen spectra and a drastic increase in varve thickness reflect this climatic shift. A climate deterioration, correlated with the Preboreal oscillation, is dated to ca. 10440 to 10320 clay-varve yr BP and coincides with the brackish water phase of the Yoldia Sea stage. The ages of the climatic oscillations at the Younger Dryas–Preboreal transition show an 875 yr discrepancy compared with the GRIP record, suggesting a large error in the Swedish varve chronology in the part younger than ca. 10300 clay-varve yr BP. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号