首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Burbey TJ 《Ground water》2008,46(2):202-211
A 62 day controlled aquifer test was conducted in thick alluvial deposits at Mesquite, Nevada, for the purpose of monitoring horizontal and vertical surface deformations using a high-precision global positioning system (GPS) network. Initial analysis of the data indicated an anisotropic aquifer system on the basis of the observed radial and tangential deformations. However, new InSAR data seem to indicate that the site may be bounded by an oblique normal fault as the subsidence bowl is both truncated to the northwest and offset from the pumping well to the south. A finite-element numerical model was developed using ABAQUS to evaluate the potential location and hydromechanical properties of the fault based on the observed horizontal deformations. Simulation results indicate that for the magnitude and direction of motion at the pumping well and at other GPS stations, which is toward the southeast (away from the inferred fault), the fault zone (5 m wide) must possess a very high permeability and storage coefficient and cross the study area in a northeast-southwest direction. Simulated horizontal and vertical displacements that include the fault zone closely match observed displacements and indicate the likelihood of the presence of the inferred fault. This analysis shows how monitoring horizontal displacements can provide valuable information about faults, and boundary conditions in general, in evaluating aquifer systems during an aquifer test.  相似文献   

2.
Strategies for offsetting seasonal impacts of pumping on a nearby stream   总被引:4,自引:0,他引:4  
Ground water pumping from aquifer systems that are hydraulically connected to streams depletes streamflow. The amplitude and timing of stream depletion depend on the stream depletion factor (SDF(i)) of the pumping wells, which is a function of aquifer hydraulic characteristics and the distance from the wells to the stream. Wells located at different locations, but having the same SDF and the same rate and schedule of pumping, will deplete streamflow equally. Wells with small SDF(i) deplete streamflow approximately synchronously with pumping. Wells with large SDF(i) deplete streamflow at approximately a constant rate throughout the year, regardless of the pumping schedule. For large values of SDF(i), artificial recharge that occurs on a different schedule from pumping can offset streamflow depletion effectively. The requirements are (1) that the pumping and recharge wells both have the same SDF(i) and (2) that the annual total quantities of recharge and pumping be equal. At larger SDF(i) values, it takes longer for pumping to impact streamflow in a wide aquifer than it does in a narrow aquifer. In basins that are closed to further withdrawals because streamflow is fully allocated, water-use changes replace new allocations as the source of water for new developments. Ground water recharge can be managed to offset the impacts of new ground water developments, allowing for changes in the timing and source of withdrawals from a basin without injuring existing users or instream flows.  相似文献   

3.
Limited information exists on one of the mechanisms governing sediment input to streams: streambank erosion by ground water seepage. The objective of this research was to demonstrate the importance of streambank composition and stratigraphy in controlling seepage flow and to quantify correlation of seepage flow/erosion with precipitation, stream stage and soil pore water pressure. The streambank site was located in Northern Mississippi in the Goodwin Creek watershed. Soil samples from layers on the streambank face suggested less than an order of magnitude difference in vertical hydraulic conductivity (Ks) with depth, but differences between lateral Ks of a concretion layer and the vertical Ks of the underlying layers contributed to the propensity for lateral flow. Goodwin Creek seeps were not similar to other seeps reported in the literature, in that eroded sediment originated from layers underneath the primary seepage layer. Subsurface flow and sediment load, quantified using 50 cm wide collection pans, were dependent on the type of seep: intermittent low‐flow (LF) seeps (flow rates typically less than 0·05 L min?1), persistent high‐flow (HF) seeps (average flow rate of 0·39 L min?1) and buried seeps, which eroded unconsolidated bank material from previous bank failures. The timing of LF seeps correlated to river stage and precipitation. The HF seeps at Goodwin Creek began after rainfall events resulted in the adjacent streambank reaching near saturation (i.e. soil pore water pressures greater than ?5 kPa). Seep discharge from HF seeps reached a maximum of 1·0 L min?1 and sediment concentrations commonly approached 100 g L?1. Buried seeps were intermittent but exhibited the most significant erosion rates (738 g min?1) and sediment concentrations (989 g L?1). In cases where perched water table conditions exist and persistent HF seeps occur, seepage erosion and bank collapse of streambank sediment may be significant. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
A drift and pumpback experiment was conducted in a brackish water sandfill. The sandfill was reclaimed from the sea in the eastern part of Singapore and contains sands with low organic and clay/silt contents. The high salinity in the ground water precludes the use of chloride and bromide as tracers in such an environment, and a field experiment was conducted to assess the viability of using fluorescein as a tracer in brackish water aquifers. Nitrate was used as a second tracer to serve as a check. Initial laboratory studies showed that fluorescence was unaffected over the range of electrical conductivity and pH of the ground water. Results from the field experiment show that fluorescein appears to behave conservatively.  相似文献   

5.
The calculation of ground water transit times is one important factor in ground water protection. In this paper, we present an analytical solution for the transit time for a Dupuit-type flow system applicable to saturated flow through a horizontal leaky aquifer discharging to a downgradient fixed-head boundary under steady-state conditions. We investigate the influence of leakage when comparing the resulting travel times of our model based on head-dependent leakage with the commonly used model with no leakage and a simplified model with constant leakage. The results show significant differences in the position of the water divide and transit time, suggesting that leakage cannot be ignored.  相似文献   

6.
Weiss M  Gvirtzman H 《Ground water》2007,45(6):761-773
The fraction of rain that is annually recharged to ground water is a function of the transient quantities of precipitation (wet vs. dry years) as well as other meteorological and geologic factors, and thus it is very difficult to estimate. In this study, we have used long records (20 to 30 years) of precipitation and spring discharge to reconstruct the transient character of yearly recharge. These data sets were used to calibrate numerical ground water flow models on the less than 3 km(2) scale for four separate perched karstic aquifers in the Judean and Samarian Mountains of Israel. The stratification and karstic character of the local carbonate rock aquifers cause ground water to flow through discrete dissolution channels and to discharge at isolated springs. An innovative, dual-porosity approach was used where a finite-difference solution simulates flow in the rock matrix, while the karstic channels are simulated using computationally simple drains. Perched conditions are also simulated innovatively using MODFLOW by treating the bottom unsaturated layer as if it is saturated, but by assuming zero pressure head throughout the "unsaturated" layer. Best fitting between measured and computed spring hydrograph data has allowed us to develop a set of empirical functions relating measured precipitation to recharge to the aquifer. The generic methodology presented gives insight into the suspected changes in aquifer recharge rates between particularly wet or dry years.  相似文献   

7.
An exact, closed-form analytical solution is developed for calculating ground water transit times within Dupuit-type flow systems. The solution applies to steady-state, saturated flow through an unconfined, horizontal aquifer recharged by surface infiltration and discharging to a downgradient fixed-head boundary. The upgradient boundary can represent, using the same equation, a no-flow boundary or a fixed head. The approach is unique for calculating travel times because it makes no a priori assumptions regarding the limit of the water table rise with respect to the minimum saturated aquifer thickness. The computed travel times are verified against a numerical model, and examples are provided, which show that the predicted travel times can be on the order of nine times longer relative to existing analytical solutions.  相似文献   

8.
Urban streams in the Northeastern United States have large road salt inputs during the winter, increased nonpoint sources of inorganic nitrogen and decreased short‐term and permanent storage of nutrients. Restoration activities that re‐establish connection between streams and riparian environments may be effective for improving urban stream water quality. Meadowbrook Creek, a first‐order stream in Syracuse, NY, provides a unique setting to explore impacts of stream–floodplain connection because it flows along a negative urbanization gradient, from channelized and armoured headwaters to a broad, vegetated floodplain with a riparian aquifer. In this study, we investigated how reconnection to groundwater and introduction of riparian vegetation impacted urban surface water chemistry by making biweekly longitudinal surveys of stream water chemistry in the creek from May 2012 until June 2013. We used multiple methods to measure groundwater discharge rates along the creek. Chloride concentrations in the upstream, disconnected reach were influenced by discharge of road salt during snow melt events and ranged from 161.2 to 1440 mg/l. Chloride concentrations in the downstream, connected reach had less temporal variation, ranging from 252.0 to 1049 mg/l, because of buffering by groundwater discharge, as groundwater chloride concentrations ranged from 84.0 to 655.4 mg/l. In the summer, there was little to no nitrate in the disconnected reach because of limited sources and high primary productivity, but concentrations reached over 1 mg N/l in the connected reach because of the presence of riparian vegetation. During the winter, when temperatures fell below freezing, nitrate concentrations in the disconnected reach increased to 0.58 mg N/l but were still lower than the connected reach, which averaged 0.88 mg N/l. Urban stream restoration projects that restore floodplain connection may impact water quality by storing high salinity road run‐off during winter overbank events and discharging that water year‐round, thereby attenuating seasonal fluctuations in chloride. Contrary to prior findings, we observed that floodplain connection and riparian vegetation may alter nitrate sources and sinks such that nitrate concentrations increase longitudinally in connected urban streams. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

Parametric studies were carried out to analyse the effect on sea water intrusion of freshwater recharge through a finite width strip parallel to the coast. A vertically integrated one-dimensional finite element model was used for this purpose. The studies included the analysis of the effect of location, width, intensity and the period of recharge on sea water-freshwater interface motion. Relationships were established between the interface motion and the recharge parameters applicable to wide ranging practical cases. From the studies, the ideal location for recharge was identified to achieve the maximum repulsion of intrusion. The width of recharge also affects the interface motion and the widths greater than 2% of the initial intrusion length were effective in controlling the intrusion. The results indicated that the reduction of intrusion up to 30% could be achieved through strip recharge.  相似文献   

10.
Extremely alkaline ground water has been found underneath many shuttered steel mills and slag dumps and has been an impediment to the cleanup and economic redevelopment of these sites because little is known about the geochemistry. A large number of these sites occur in the Lake Calumet region of Chicago, Illinois, where large-scale infilling of the wetlands with steel slag has created an aquifer with pH values as high as 12.8. To understand the geochemistry of the alkaline ground water system, we analyzed samples of ground water and the associated slag and weathering products from four sites. We also considered several potential remediation schemes to lower the pH and toxicity of the water. The principal cause of the alkaline conditions is the weathering of calcium silicates within the slag. The resulting ground water at most of the sites is dominated by Ca2+ and OH- in equilibrium with Ca(OH)2. Where the alkaline ground water discharges in springs, atmospheric CO2 dissolves into the water and thick layers of calcite form. Iron, manganese, and other metals in the metallic portion of the slag have corroded to form more stable low-temperature oxides and sulfides and have not accumulated in large concentrations in the ground water. Calcite precipitated at the springs is rich in a number of heavy metals, suggesting that metals can move through the system as particulate matter. Air sparging appears to be an effective remediation strategy for reducing the toxicity of discharging alkaline water.  相似文献   

11.
The interaction between a gaining stream and a water-table aquifer is studied at an outwash plain. The aquifer is hydraulically well connected to the stream. Pumping tests were carried out in 1997 and 1998 in two wells 60 m from the stream, screening different depths of the aquifer. Drawdown was measured on both sides of the stream. Hydraulic head, drawdown, and stream depletion data were analyzed using numerical flow models. Similar models were fitted to each of two different data sets: Model A was fitted to steady-state hydraulic head and streamflow gain data not influenced by pumping; and model B was fitted to drawdown data measured during the 1998 pumping test. Each calibrated model closely fits its calibration data; however, predictions were biased if model A was used to predict the calibration data of model B, and vice versa. To further test the models, they were used to predict streamflow depletion during the two pumping tests as well as the drawdown during the 1997 test. Neither of these data were used for calibration. Model A predicted the measured depletions fairly accurately during both tests, whereas the predicted drawdowns in 1997 were significantly larger than actually measured. Contrary to this, the 1997 drawdowns predicted by model B were nearly unbiased; the predicted depletions deviate significantly from the measured depletions in 1997, but they compare well with the observations in 1998. Thus, although field work and analyses were extensive and done carefully to develop a ground water flow model that could predict both drawdown and streamflow depletion, the model predictions are biased. Analyses indicate that the deviations between model and data may be because of error in the models' representations of either the release of water from storage or of the hydrology in the riparian zone.  相似文献   

12.
13.
If an aquifer is hydraulically connected to an adjacent stream, a pumping well operating in the aquifer will draw some water from aquifer storage and some water from the stream, causing stream depletion. Several analytical, semi-analytical, and numerical approaches have been developed to estimate stream depletion due to pumping. These approaches are effective if the well location is known. If a new well is to be installed, it may be desirable to install the well at a location where stream depletion is minimal. If several possible locations are considered for the location of a new well, stream depletion would have to be estimated for all possible well locations, which can be computationally inefficient. The adjoint approach for estimating stream depletion is a more efficient alternative because with one simulation of the adjoint model, stream depletion can be estimated for pumping at a well at any location. We derive the adjoint equations for a coupled system with a confined aquifer, an overlying unconfined aquifer, and a river that is hydraulically connected to the unconfined aquifer. We assume that the stage in the river is known, and is independent of the stream depletion, consistent with the assumptions of the MODFLOW river package. We describe how the adjoint equations can be solved using MODFLOW. In an illustrative example, we show that for this scenario, the adjoint approach is as accurate as standard forward numerical simulation methods, and requires substantially less computational effort.  相似文献   

14.
打桩引起的地面振动的研究   总被引:1,自引:0,他引:1  
为了对打桩引起的地面振动进行研究,应用一维应力波理论建立了粘弹性成层土中等截面弹性桩的力学模型,得到了桩中任意一点处位移的半解析解。利用桩与土的相互作用将桩对土的作用力简化到各土层面上。在复阻尼理论和纳维方程的基础上,利用分层法得到了任意荷载作用下土的位移、速度和加速度的解。从而得到了打桩引起的地面振动的衰减特性。通过实测结果和计算结果的比较说明了该方法的可行性。  相似文献   

15.
The attenuation of technically induced surface waves is studied theoretically and experimentally.In this paper, nineteen measurements of ground vibrations induced by eight different technical sources including road and rail traffic, vibratory and impulsive construction work or pile driving, explosions, hammer impulses and mass drops are described, and it is shown that the technically induced ground vibrations exhibit a power-law attenuation v~r-q where the exponents q are in the range of 0.5 to 2.0 and depend on the source types.Comparisons performed demonstrate that the measured exponents are considerably higher than theoretically expected.Some potential effects on ground vibration attenuation are theoretically analyzed.The most important effect is due to the material or scattering damping.Each frequency component is attenuated exponentially as exp(-kr), but for a broad-band excitation, the sum of the exponential laws also yields a power law but with a high exponent.Additional effects are discussed, for example the dispersion of the Rayleigh wave due to soil layering, which yields an additional exponent of 0.5 in cases of impulsive loading.  相似文献   

16.
We analyze the optimal design of a pumping test for estimating hydrogeologic parameters that are subsequently used to predict stream depletion caused by groundwater pumping in a leaky aquifer. A global optimization method is used to identify the test’s optimal duration and the number and locations of observation wells. The objective is to minimize predictive uncertainty (variance) of the estimated stream depletion, which depends on the sensitivities of depletion and drawdown to relevant hydrogeologic parameters. The sensitivities are computed analytically from the solutions of Zlotnik and Tartakovsky [Zlotnik, V.A., Tartakovsky, D.M., 2008. Stream depletion by groundwater pumping in leaky aquifers. ASCE Journal of Hydrologic Engineering 13, 43–50] and the results are presented in a dimensionless form, facilitating their use for planning of pumping test at a variety of sites with similar hydrogeological settings. We show that stream depletion is generally very sensitive to aquitard’s leakage coefficient and stream-bed’s conductance. The optimal number of observation wells is two, their optimal locations are one close to the stream and the other close to the pumping well. We also provide guidelines on the test’s optimal duration and demonstrate that under certain conditions estimation of aquitard’s leakage coefficient and stream-bed’s conductance requires unrealistic test duration and/or signal-to-noise ratio.  相似文献   

17.
 The water level of a seawater gauging station and 18 groundwater wells coupled with atmospheric pressure in southwestern Taiwan are analyzed by using spectral analysis in time and frequency domain. The semidiurnal component is found to be the most significant signal from the measurement of water level and atmospheric pressure, and the diurnal component is less distinctive in part of water level and atmospheric pressure record. Although auto-spectral and cross-spectral density functions are significant in atmospheric pressure and water level, the pressure variations do not significantly affect the seawater and the majority of groundwater level in the study area with amplitude of time series observations. The astronomical tidal components are likely the main factor causing seawater and groundwater level to fluctuate in Pingtung, Taiwan. Time lags are estimated from 20 min to a few hours in aquifers. It concludes that the disturbance on groundwater levels from the effect of oceanic astronomical tide is different from the varying hydrogeological characteristics of aquifer. In this study, the spectral analysis of water level in time and frequency domains gives strong indications of sensitive variations to water level fluctuation. This research is supported by the Institute of Nuclear Energy Research (INER), AEC, Taiwan, Republic of China, under a fund from Executive Yuan. The authors thank Taiwan Central Weather Bureau and Taiwan Provincial Government Water Resources Department for providing useful data.  相似文献   

18.
Spatial and temporal variability in ground water–surface water interactions in the hyporheic zone of a salmonid spawning stream was investigated. Four locations in a 150‐m reach of the stream were studied using hydrometric and hydrochemical tracing techniques. A high degree of hydrological connectivity between the riparian hillslope and the stream channel was indicated at two locations, where hydrochemical changes and hydraulic gradients indicated that the hyporheic zone was dominated by upwelling ground water. The chemistry of ground water reflected relatively long residence times and reducing conditions with high levels of alkalinity and conductivity, low dissolved oxygen (DO) and nitrate. At the other locations, connectivity was less evident and, at most times, the hyporheic zone was dominated by downwelling stream water characterized by high DO, low alkalinity and conductivity. Substantial variability in hyporheic chemistry was evident at fine (<10 m) spatial scales and changed rapidly over the course of hydrological events. The nature of the hydrochemical response varied among locations depending on the strength of local ground water influence. It is suggested that greater emphasis on spatial and temporal heterogeneity in ground water–surface water interactions in the hyporheic zone is necessary for a consideration of hydrochemical effects on many aspects of stream ecology. For example, the survival of salmonid eggs in hyporheic gravels varied considerably among the locations studied and was shown to be associated with variation in interstitial chemistry. River restoration schemes and watershed management strategies based only on the surface expression of catchment characteristics risk excluding consideration of potentially critical subsurface processes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Summer stream water quality was monitored before and following the logging of 50% of the boreal forest within three small watersheds (<50 ha) nested in the ‘Ruisseau des Eaux‐Volées’ Experimental Watershed, Montmorency Forest (Québec, Canada). Logging was conducted in winter, on snow cover according to recommended best management practices (BMPs) to minimize soil disturbance and protect advance growth. A 20‐m forest buffer was maintained along perennial streams. In watershed 7·2, cut‐blocks were located near the stream network and logging was partially allowed within the riparian buffer zone. In watersheds 7·5 and 7·7, logging occurred farther away from the stream network. Observations were also made for watershed 7·3 that collected the runoff from watersheds 7·2 and 7·5, and watershed 7·6, the uproad portion of watershed 7·7. The control watershed 0·2 was contiguous to the impacted watersheds and remained undisturbed. Following clearcutting, changes in summer daily maximum and minimum stream temperatures remained within ± 1 °C while changes in diurnal variation did not decrease by more than 0·5 °C. Concentrations of NO3? greatly increased by up to 6000% and concentrations of K+ increased by up to 300% during the second summer after logging. Smaller increases were observed for Fetotal (up to 71%), specific conductance (up to 26%), and Mg2+ (up to 19%). Post‐logging pH decreased slightly by no more than 7% while PO43? concentration remained relatively constant. Suspended sediment concentrations appeared to increase during post‐logging, but there was not enough pre‐logging data to statistically confirm this result. Logging of moderate intensity and respecting established BMPs may account for the limited changes of water quality parameters and the low exceedances of the criteria for the protection of aquatic life. The proximity of the cutover to the stream network and logging within the riparian zone did not appear to affect water quality. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号