首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fracture Density Distributions and Well Yields in Coastal Maine   总被引:1,自引:0,他引:1  
Understanding the distribution of water-bearing fractures in crystalline rock is an important component in evaluating the availability and vulnerability of water resources throughout the northeastern U.S. The State of Maine requests well drillers to report estimates of fracture depths and fracture yields for all bedrock wells drilled in the state. Using these data we analyze fracture-depth and fracture-yield data from 227 bedrock wells in coastal Maine in order to understand how fracture locations and yields are distributed with depth. Numerical simulations and statistical tests show that it is not possible to infer how fractures are distributed with depth: fracture depths are consistent with several distributions, including uniform fracture density with depth. In order to understand how fracture yield varies with depth, we group yield data into 50 foot depth intervals and compare distributions in each interval using nonparametric statistical tests. These tests show that the distribution of fracture yield in different depth intervals are statistically equivalent. These results imply that there is no empirical justification for limiting well depth when drilling for water resources in fractured bedrock in coastal Maine.  相似文献   

2.
Bedrock groundwater dynamics in headwater catchments are poorly understood and poorly characterized. Here, we present an inexpensive and portable bedrock drilling system designed for use in remote locations. Our system is capable of drilling bedrock wells up to 11 m deep and 38 mm in diameter in a wide range of bedrock types. The drill consists of a lawn mower engine adapted to rotate a diamond tipped coring bit, a small water pump to cool and flush the drill bit and a scaffolding platform for stable footing on steep slopes. The complete drilling assembly costs under $ 2000 USD. Here, we show proof‐of‐concept of our approach with 40 successful wells drilled in different geological substrates, including a conglomerate at the Maimai experimental catchment in New Zealand, volcanic breccias at the HJ Andrews experimental watershed in Oregon, USA, sandstone and siltstone at the Alsea watershed in Oregon, USA, and basalt at the Los Gavilanes experimental watershed in Veracruz, Mexico. We also present a transparent comparison between our design and other portable bedrock drilling systems and outline the strengths and weaknesses of each system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The impact of lost circulation during rotary drilling near an existing monitoring well cluster was evaluated by periodic measurements of water levels and contaminant concentrations at the well cluster. Due to regulatory concerns, changes in water levels or VOC concentration in the well cluster during drilling would trigger monitoring well redevelopment. The borehole was drilled approximately 30 feet northeast of four nested monitoring wells that screen Devonian and Silurian carbonate bedrock at depths of 15, 60, 130, and 190 feet. Following complete circulation loss at depths of 177 and 1 S3 feet in the borehole, a rapid decrease in water levels was observed in the upper three monitoring wells. The water level in the well that was screened through the lost circulation zones increased slightly.
Decreasing water levels in formations located above the point of circulation loss appear to occur in response to a sudden decrease in borehole fluid pressure caused by the flow of drilling fluid into the formation. The relative contribution of contaminated formation water lo the borehole can be estimated by using the time-drawdown relationship and estimates of transmissivity. At the point of circulation loss, significant dilution of contaminant concentrations occurs from the loss of drilling fluid into the contaminated zone. Contaminated formation water entering the borehole during periods of complete lost circulation may mobilize contaminants from upper lo lower formations. Lost circulation into a formation would be signaled by a water level increase in monitoring wells. The wells would subsequently require development to remove the volume of fluid lost to the formation, including both drilling fluid and contaminated formation water. Monitoring wells exhibiting declining water levels following lost circulation would not require development since drilling water has not entered the zones screened by these wells.  相似文献   

4.
The progressive packer/zone sampling method was used to identify the bottom of a plume of volatile organic compounds (VOCs) in the parts-per-million (ppm) range using one well in each of three separate locations. The method involves progressively drilling a 20-foot length of borehole through casing, setting an inflatable packer at the top of the drilled zone, purging the zone of three volumes of water using the airlift method, sampling the zone in situ through the packer string using a bailer, then repeating the procedure.
A plume consisting of chlorinated VOCs, alcohols, and vinyl chloride occurs in a low-yielding fractured bedrock aquifer located in the Passaic Formation at a site in central New Jersey. The thickness of the plume in total VOC concentrations exceeding 1 ppm was determined using the progressive packer/zone sampling method to a depth of 200 feet. The first borehole was completed as a monitoring well in the "hottest" zone encountered during testing. Additional wells were then clustered with this exploratory well to delineate the plume in the parts-per-billion (ppb) range. Cross contamination from previously sampled zones was not a problem as long as total VOCs in the ppm range were targeted and the sample interval was properly purged.
Instead of using a multiple well cluster consisting of an indefinite number of wells to determine the bulk thickness of a plume at a specific location, information from one borehole may suffice during the exploratory phase. Costs to the client and cross contamination potential to the aquifer can be minimized by limiting the number of boreholes needed for vertical delineation.  相似文献   

5.
Remote sensing and geoelectrical methods were used to find water-bearing fractures in the Scituate granite under the Central Landfill of Rhode Island. These studies were necessary to evaluate the integrity of the sanitary landfill and for planning safe landfill extensions. The most useful results were obtained with fracture trace analysis using Landsat and SLAR imagery in combination with ground-based resistivity measurements using Schlumberger vertical electrical soundings based on the assumption of horizontally layered strata. Test borings and packer tests confirmed, in the presence of a lineament and low bedrock resistivity, the probable existence of high bedrock fracture density and high average hydraulic conductivity. However, not every lineament was found to be associated with high fracture density and high hydraulic conductivity. Lineaments alone are not a reliable basis for characterising a landfill site as being affected by fractured bedrock. Horizontal fractures were found in borings located away from lineaments. High values of hydraulic conductivity were correlated with low bedrock resistivities. Bedrock resistivities between 60 and 700 Ω m were associated with average hydraulic conductivities between 4 and 60 cm/day. In some cases very low resistivities were confined to the upper part of the bedrock where the hydraulic conductivity was very large. These types of fractures apparently become narrower in aperture with depth. Bedrock zones having resistivities greater than 1000 Ω m showed, without exception, no flow to the test wells. Plots of bedrock resistivity versus the average hydraulic conductivity indicate that the resistivity decreases with increasing hydraulic conductivity. This relationship is inverse to that found in most unconsolidated sediments and is useful for estimating the hydraulic conductivity in groundwater surveys in fractured bedrock. In appropriate settings such as the Central Landfill site in New England, this electric-hydraulic correlation relationship, supplemented by lineament trace analysis, can be used effectively to estimate the hydraulic conductivity in bedrock from only a limited number of resistivity depth soundings and test wells.  相似文献   

6.
ERT and SP investigations were conducted in carbonate rocks of the Dinant Synclinorium (Walloon Region of Belgium) to find suitable locations for new water wells in zones with little hydrogeological data. Since boreholes information needed to be representative of the area, large fractured zones were searched for the drillings. Large ERT profiles (320 to 640 m) allowed us to image the resistivity distribution of the first 60 m of the subsurface and to detect and characterize (in terms of direction, width and depth) fractured zones expected to be less resistive. Data errors, depth of investigation (DOI) indexes and sensitivity models were analyzed in order to avoid a misinterpretation of the resulting images. Self-potential measurements were performed along electrical profiles to complement our electrical results. Some negative anomalies possibly related to preferential flow pathways were detected. A drilling campaign was conducted according to geophysical results. ‘Ground truth’ geological data as well as pumping tests information gave us a way to assess the contribution of geophysics to a drilling program. We noticed that all the wells placed in low resistivity zones associated with SP anomalies provide very high yields and inversely, wells drilled in resistive zones or outside SP anomalies are limited in terms of capacity. An apparent coupling coefficient between SP signals and differences in hydraulic heads was also estimated in order to image the water table.  相似文献   

7.
For health, economic, and aesthetic reasons, allowable concentrations (as suggested by the United States Environmental Protection Agency) of the secondary contaminants iron (Fe) and manganese (Mn) found present in drinking water are 0.3 and 0.05 mg/L, respectively. Water samples taken from private drinking wells in rural communities within Buncombe County, North Carolina contain concentrations of these metals that exceed secondary water quality criteria. This study predicted the spatial distribution of Fe and Mn in the county, and evaluated the effect of site environmental factors (bedrock geology, ground elevation, saprolite thickness, and drinking water well depth) in controlling the variability of Fe and Mn in groundwater. A statistically significant correlation between Fe and Mn concentrations, attributable to bedrock geology, was identified. Prediction models were created using ordinary kriging and cokriging interpolation techniques to estimate the presence of Fe and Mn in groundwater where direct measurements are not possible. This same procedure can be used to estimate the trend of other contaminants in the groundwater in different areas with similar hydrogeological settings.  相似文献   

8.
The New Jersey Department of Environmental Protection's Technical Regulations require the horizontal and vertical delineation of contamination. Monitor wells screened at increasingly deeper intervals are used to delineate vertical contamination. In New Jersey, the open interval in a bedrock well cannot exceed 7.6 m. Since contamination has been found at depths as great as 91.4 m in a production well in the study area, it would be prohibitively expensive to install monitor wells with 7.6 m open holes at ever-increasing depths until no contamination was found. Isolation of discrete zones in boreholes using pneumatic packers was implemented at a site in north central New Jersey. Ground water samples were collected from selected 6.1 m sections of boreholes drilled into fractured bedrock at three locations on the property and one offsite location. The ground water samples were analyzed in a field laboratory. The analytical results were used to determine the vertical extent of gasoline-related compounds dissolved in the ground water on the property and offsite. These compounds include benzene, ethylbenzene, methyl tertiary butyl ether, toluene, and xylenes. The four boreholes were converted into bedrock monitor wells. The intake interval for each of the wells was selected through evaluation of the vertical distribution of contaminants as determined from analytical results obtained from a field laboratory located onsite. Three wells are used for the recovery of contaminated ground water. The recovered water will be treated at the onsite air-stripping unit. The fourth well is used to chemically and hydraulically monitor the progress of the ground water recovery program.  相似文献   

9.
崖南区是琼东南盆地已证实的富生烃区,几口已钻井都已证实主要目的层段为高压地层,利用常规的压力预测方法预测新钻井的压力会出现较大的误差.若是从区域应力角度入手预测新钻井的压力误差会减小,其预测基础为岩性模型.对于已开发的油气田,利通常规的岩性建模方法可以建立较好的岩性模型;但是对于崖南区而言,由于地震资料品质不是很好,同时本区钻井较少,很难通过常规的建模方法建立岩性模型,所以本区研究重点是如何利用少井建立岩性模型.通过研究认为若完成崖南区的岩性建模必须改进建模流程,改进的岩性建模流程克服了常规岩性建模在崖南区存在的问题,主要有三方面的优点:1)不采用相模型约束岩性建模,解决了由于研究区相模型划相较粗很难约束岩性模型建立的问题;2)属性模型控制岩性模型的横向变化趋势,解决了几种常规属性与岩性间没有较好关系的问题;3)利用泥质含量结合岩性资料建立岩性体,得到的岩性模型比较接近实际情况.C井钻前完成岩性模型建立,利用C井井点位置提取岩性数据与本井钻后录井岩性数据对比,发现预测岩性与录井岩性的吻合程度很高,证明改进的岩性建模思路在崖南少井区可用.  相似文献   

10.
Arsenic in private drinking water wells is a significant problem across much of eastern Wisconsin, USA. The release mechanism and stratigraphic distribution of sulfide and iron (hydr)oxide sources of arsenic in bedrock aquifers are well understood for northeastern Wisconsin. However, recent geologic mapping has identified numerous small bedrock folds to the south, and the impact of these geologic structures on local groundwater flow and well contamination has been little studied. This paper examines the hydrologic and structural effects of the Beaver Dam anticline, southeast Wisconsin, on arsenic in groundwater in the region. Multivariate logistic regression shows wells near the Beaver Dam anticline are statistically more likely to detect arsenic in groundwater compared to wells farther away. Structural and hydrologic changes related to folding are interpreted to be the cause. Core drilled near the fold axis is heavily fractured, and many fractures are filled with sulfides. Elevated hydraulic conductivity estimates are also recorded near the fold axis, which may reflect a higher concentration of vertical fractures. These structural and hydrologic changes may have led to systematic changes in the distribution and concentration of arsenic-bearing mineral hosts, resulting in the observed detection pattern. For areas with similar underlying geology, this approach may improve prediction of arsenic risk down to the local level.  相似文献   

11.
The possible mine will remove a gently, less than 50 feet per mile, westerly dipping Springfield coal from an area covered by glacial till and some channel sands and gravel. The area is flat, with less than 20 feet of relief in a square mile. The channel sands and gravels, the till and the bedrock are capable of yielding ground water at 5 to 75,3 to 10, and 1 to 10 gallons per minute (gpm), respectively. The ground water in the drift and the shallow bedrock is calcium-bicarbonate type, contrasting with the sodium-bicarbonate type in the deep bedrock. The surface mine will feature selective handling of overburden. The probable hydrologic consequences of the mine will be 1) a short-term, areally limited dewatering, 2) an increase in dissolved solids, 3) a change in ground water chemistry in some areas to a calcium-bicarbonate sulfate water, 4) an increase in ground water storage, and 5) a new integrated surface water system. The proposed ground water monitoring system will include seven monitoring wells in the glacial material and one in the bedrock. The primary effort in ground water monitoring to the west of the mine will be to detect changes in the quality of the ground water, whereas to the east, changes in both quality and quantity will need to be monitored intensively.  相似文献   

12.
Boreholes drilled through contaminated zones in fractured rock create the potential for vertical movement of contaminated ground water between fractures. The usual assumption is that purging eliminates cross contamination; however, the results of a field study conducted in a trichloroethylene (TCE) plume in fractured sandstone with a mean matrix porosity of 13% demonstrates that matrix-diffusion effects can be strong and persistent. A deep borehole was drilled to 110 m below ground surface (mbgs) near a shallow bedrock well containing high TCE concentrations. The borehole was cored continuously to collect closely spaced samples of rock for analysis of TCE concentrations. Geophysical logging and flowmetering were conducted in the open borehole, and a removable multilevel monitoring system was installed to provide hydraulic-head and ground water samples from discrete fracture zones. The borehole was later reamed to complete a well screened from 89 to 100 mbgs; persistent TCE concentrations at this depth ranged from 2100 to 33,000 microg/L. Rock-core analyses, combined with the other types of borehole information, show that nearly all of this deep contamination was due to the lingering effects of the downward flow of dissolved TCE from shallower depths during the few days of open-hole conditions that existed prior to installation of the multilevel system. This study demonstrates that transfer of contaminant mass to the matrix by diffusion can cause severe cross contamination effects in sedimentary rocks, but these effects generally are not identified from information normally obtained in fractured-rock investigations, resulting in potential misinterpretation of site conditions.  相似文献   

13.
A. Mills 《Ground water》2020,58(5):813-821
A comparison is presented of two computational methods, PICKINGmodel and PPC-Recovery, to estimate transmissivities based on the Picking equation using water-level recovery data from brief pumping tests of relatively low-yielding domestic wells. The tests were performed by the United States Geological Survey (USGS) in 50 domestic bedrock wells in south-central New York State, and USGS staff performed the analysis using PICKINGmodel based on the Picking equation. The results indicated that the estimated transmissivities ranged from 0.86 to 2900 ft2/d (0.080 to 270 m2/d) with a median of 41 ft2/d (3.8 m2/d). The same data were later analyzed using PPC-Recovery also based on the Picking equation. The two sets of estimated transmissivities were compared and statistically had the same median value at a probability of 95%. In another analysis, the PPC-Recovery method was applied to the same data that had been truncated at the point when the slope of the recovery data curve began to deviate from a straight line aligned with the middle portion of the recovery data. Comparing these resulting estimates of transmissivity with values originally obtained using the PICKINGmodel, the two had statistically the same median value for transmissivity at a probability of 95%. It was concluded that using PPC-Recovery in this manner to estimate transmissivity in low-yielding domestic wells will yield transmissivity values sufficiently close to the results had PICKINGmodel been used, and with less time and effort.  相似文献   

14.
To investigate the effects of drilling discharges on the seabed fauna, surveys were carried out in the Beatrice oilfield after drilling 13 wells with water-based muds, and then after one and five further wells had been drilled using low toxicity oil-based muds. Localized benthic effects were found after the water-based mud drilling. After the use of oil-based muds, the nature of the effects was different, although there was little increase in the area involved. Possible reasons for this are discussed and burial and organic enrichment are suggested as the major influences. It is concluded that the use of low toxicity oil-based mud at Beatrice has resulted in only limited benthic effects, suggesting that the use of these muds is environmentally acceptable.  相似文献   

15.
Water levels and water quality of open borehole wells in fractured bedrock are flow-weighted averages that are a function of the hydraulic heads and transmissivities of water contributing fractures, properties that are rarely known. Without such knowledge using water levels and water quality data from fractured bedrock wells to assess groundwater flow and contaminant conditions can be highly misleading. This study demonstrates a cost-effective single packer method to determine the hydraulic heads and transmissivities of water contributing fracture zones in crystalline bedrock wells. The method entails inflating a pipe plug to isolate sections of an open borehole at different depths and monitoring changes in the water level with time. At each depth, the change in water level with time was used to determine the sum of fracture transmissivities above the packer and then to solve for individual fracture transmissivity. Steady-state wellbore heads along with the transmissivities were used to determine individual fracture heads using the weighted average head equation. The method was tested in five wells in crystalline bedrock located at the University of Connecticut in Storrs. The single packer head and transmissivity results were found to agree closely with those determined using conventional logging methods and the dissolved oxygen alteration method. The method appears to be a simple and cost-effective alternative in obtaining important information on flow conditions in fractured crystalline bedrock wells.  相似文献   

16.
The Ljubljana Moor basin is characterized by moderate bedrock topography and thicknesses of Quaternary lacustrine and fluvial sediments ranging from 0 to 200 m. More than 65 boreholes which reached the bedrock were drilled in the area, but their distribution in the basin is very uneven and some data from the boreholes uncertain. There are also no data on S-velocity distribution within the basin, but seismic refraction measurements pointed out a rather uniform increase of P-velocity with depth, great impedance contrast with the bedrock and relatively small lateral velocity variations. The microtremor horizontal-to-vertical spectral ratio (HVSR) method was therefore applied as a complementary tool to seismic refraction survey to map the thickness of sediments. First, microtremors were measured at the locations of boreholes which reached the bedrock and the resonance frequencies determined. The inverse power relationship between the resonance frequency and the thickness of sediments was then determined from 53 data pairs. The quality of the correlation is moderate due to possible heterogeneities in sediments and possible 3D effects in some minor areas, but the obtained parameters correspond well to the values obtained in six other European basins. Secondly, a 16 km-long discontinuous seismic refraction profile was measured across the whole basin, leaving uncovered some larger segments where active seismic measurements were not possible. Microtremors were then measured at 64 locations along the same profile, using 250 m point spacing, without leaving any gaps. The frequency–thickness relationship was used to invert resonance frequencies to depths. These were first validated using the results of the seismic refraction survey, which showed good agreement, and finally used for interpolation in the segments of missing refraction data to obtain a continuous depth profile of the bedrock. The study has shown that the microtremor method can be used as a complementary tool for mapping the thickness of unconsolidated sediments also in areas characterized by moderate bedrock topography. As the input data are always to some extent uncertain, it is important to have a sufficiently large number of borehole data to establish a frequency–thickness relationship, as well as some additional independent geophysical information for its validation.  相似文献   

17.
我国油气勘探向海外进军已成为全球油气勘探的趋势,深水区更是当今油气勘探的热点,然而海外深水区块经常会遇到井少,水深变化大,海底水道发育,重力滑塌,盐底辟活动等问题,采用传统时深转换方法精度低且容易出现“假构造”现象,给时深转换带来新的挑战.本文提出了海底水道填平解释模式及引入“虚拟井”方法,有效提高了时深转换的精度,避...  相似文献   

18.
Cryogenic drilling is a technique developed at the University of California (UC), Berkeley, for drilling in unstable sediments of environmental monitoring, for characterizing, and for remediation wells, The method uses standard air rotary drilling techniques, but with cold nitrogen rather than ambient air as the circulating fluid in order to freeze and stabilize the borehole wall. Several laboratory and full-scale field tests have been performed. A.52-foot-deep (16 m) soil boring and 24 foot (7 m) monitoring well have been drilled as part of the Lawrence Berkeley Laboratory Site Characterization Project. Continued testing and refinement of the equipment and operational method are in progress. The method has been proposed for use as part of the Department of Energy (DOE) weapons site cleanup at locations with unstable sediments such as Hanford, Sandia, and Idaho National Engineering Laboratory (INEL).  相似文献   

19.
The reliability of filter pack and annular seal emplacements, and the degree of integrity of installed seals, are two of the most important factors to be considered when both installing and later utilizing ground water monitoring wells.
Numerous, and often costly, problems of using existing methods of installing filter packs and annular seals during the construction of ground water monitoring wells have led to the development of a technique of installing these monitoring well components using a dry injection system.
The dry injection system has been used to construct monitoring wells in extremely complex overburden/bedrock environments with a variety of drilling techniques. The system has shown that a high degree of reliability in the, construction of monitoring wells and greater confidence in obtaining representative ground water samples can be achieved over existing methods of filter pack and annular seal emplacement. The system has also been more cost effective than existing methods, especially for deep boreholes and multilevel monitoring system installations.  相似文献   

20.
Correlation of geophysical data collected using the NMR method in the Negev Desert, Israel, with hydrogeological data from nearby observation wells is presented. The experiment was conducted near Kibbutz Revivim in the Besor drainage system (Fig. 1). The objective of the survey was to detect groundwater layers in the Quaternary cover filling and Eocene fractured aquifers down to a depth of 100 m. The experiment was performed using a combination of two different geophysical techniques, namely the NMR and time domain electromagnetic (TDEM) methods. The geophysical results were verified by measuring the water level in three observation wells, two of which were drilled several months after the geophysical survey was carried out.The water level measured in these follow-up observation wells shortly after drilling did not coincide with the geophysical data. However, it settled over a period of time and finally stabilized at a depth very similar to that obtained from the NMR measurements. This phenomenon is caused by the fractured nature of the phreatic aquifer. Since the flow of water in such aquifers is confined by the fractures, the appearance of water in the well during or shortly after drilling is determined solely by the intersection of the well and the fracture. Our experiments showed that geophysical measurements in fractured phreatic aquifers may have a distinct advantage over direct borehole measurements, since the former average the depth to the water table over large areas (several thousand square meters) while the latter are limited by the area of the borehole cross-section (several tens of square centimeters).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号