首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
胶州湾底层水营养盐的分布特征及有机污染状况分析   总被引:7,自引:2,他引:7  
根据胶州湾底层水营养盐的调查资料,分析了胶州湾底层水中营养盐的分布规律、营养盐的限制因素、水体富营养化水平和有机污染状况。结果表明胶州湾底层水营养盐含量、底层水富营养化判断值与底层水有机污染指数的平面分布非常相似,均从东北向西南递减,研究区域富营养化程度达45.45%,且胶州湾中浮游植物的生长主要受控于溶解无机磷的限制。  相似文献   

2.
河口沉积物孔隙水营养盐分布特征及扩散通量   总被引:1,自引:0,他引:1  
董慧  郑西来  张健 《水科学进展》2012,23(6):815-821
通过2010年夏季在李村河口潮滩区3个站位的采样分析,研究了孔隙水营养盐的分布特征,并利用Fick第一定律估算了沉积物-水界面间营养盐的扩散通量。结果表明,孔隙水营养盐在不同站位间质量浓度不同,呈现出自河口上游向下游逐渐降低的分布趋势。NH4+-N质量浓度为26.21~53.10 mg/L,是孔隙水中营养盐的主要组分。沉积物中有机物的降解反应主要在还原状态下进行,营养盐质量浓度在垂向上的变化受有机质含量及沉积物氧化还原环境改变的综合影响。除NO3--N外其他营养盐均由沉积物向上覆水体扩散,沉积物是底层水体营养盐的重要来源。  相似文献   

3.
滇池湖滨带叶绿素a与营养盐空间分布特征   总被引:2,自引:0,他引:2  
凌祯 《水文》2020,40(1):76-80
为探讨滇池湖滨带叶绿素a与营养盐空间分布特征及其对滇池水体富营养化的影响,在滇池湖滨带设置21个采样点进行水质调查,采集滇池水样,分析测定总氮(TN)、总磷(TP)、化学需氧量(CODCr)、叶绿素a(Chla)和悬浮固体(SS)。结果表明:滇池湖滨带水体TN、TP、CODCr、Chla、SS浓度均值的空间分布存在差异,叶绿素a空间分布呈现北高南低,西高东低的趋势。滇池湖滨带的北部和东部水体Chla与TN极显著相关,TN具有强变异性。南部和西部TN与CODCr、TP显著相关,南部Chla与营养盐空间变异性较小,污染风险相对较小。按照"一区一策"的原则,滇池北部和东部湖滨带富营养化以控制TN的水平为主,南部、西部的富营养化防控则需要控制整体营养盐元素浓度。  相似文献   

4.
江苏淮安具有丰富的湿地资源。文章基于区内典型湿地底泥调查结果,开展营养盐含量特征及污染评价研究。结果表明:湿地底泥总氮、总磷、有机质含量分别为0.26~6.51 g/kg、0.36~3.98 g/kg、0.52%~10.17%,具有较大变异性;总体来看,公园池塘、湖泊底泥的营养盐含量最高,沟渠、水产养殖场底泥中营养盐含量次之,河流水系沉积物中营养盐含量最低。湿地底泥有机碳、总氮、总磷含量之间均呈显著正相关,反映它们的来源、迁移转换过程具有一定的相似性。其中,湖泊底泥C/N平均值(8.6)较小,有机物主要来源于湖泊内水生藻类植物;公园池塘、河流、沟渠、水产养殖场底泥具有较大的C/N平均值(9.9~11.9),有机物来源主要受陆源物质影响。底泥中有机氮、有机指数和污染指数的评价结果显示,研究区底泥受到不同程度的污染,成因与区内畜禽养殖、农田施肥等农业活动密切相关。建议推进研究区畜禽养殖污染和粪污资源化利用,实施科学施肥,减少化肥使用量。  相似文献   

5.
对长71.2m的南黄海北部DLC70-3孔沉积物粒度、磁化率和总有机碳(TOC)进行了实验分析。结果显示,DLC70-3孔沉积物的磁化率值与平均粒径呈正相关关系,与w(TOC)呈负相关关系,表明以陆源碎屑输入为主的陆架海区沉积物中的磁性矿物以粗颗粒为主;由于w(TOC)均值非常低,因此不能将磁化率低值全部归结为有机质稀释作用的结果,主要可能是沉积速率大所致。此外,磁化率值受到沉积物所处氧化还原环境的控制,氧化环境下磁化率值高,还原条件下磁化率值低。冷水团沉积层位的沉积物是在较强的还原条件下形成的,因此,磁化率指标可以指示古黄海冷水团的形成演化,将磁化率指标与同一钻孔中微体古生物指标指示的古冷水团层位进行对比,得出了完全一致的结果,从而为今后研究区的古冷水团演化研究提供了新的指标。  相似文献   

6.
本文报道了南黄海表层沉积物中不同形态氮的区域分布特征及其在生物地球化学循环中的作用。结果显示 ,在粒径 <31 μm的粒度组分含量 >6 5 %( )、35 %~ 6 5 %( )和 <35 %( )的三个区域中 ,沉积物中不同形态氮的含量比值分别为 :1 .6 5 :1 .2 6 :1 (IEF- N) ,1 .2 3:1 .1 0 :1 (WAEF- N) ,1 .4 1 :1 .0 4 :1 (SAEF- N) ,2 .0 8:1 .4 5 :1 (SOEF- N) ,TN(1 .70 :1 .2 6 :1 ) ,即在细粒度组分 (<31 μm)含量较高的区域 ,不同形态氮的含量也相对较高 ;在三个分区内 ,不同形态氮的埋藏通量非常相近 ,而埋藏效率自 至 区逐渐递增 ,在细粒度组分 (<31 μm)含量最低的 区内 ,埋藏效率最高 ,TN的埋藏效率可达 30 .2 1 %,即南黄海表层沉积物中 70 %以上的氮在适当的条件下可释放进入水体参与其生物地球化学循环 ,能提供海洋新生产力所需氮的 6 .5 4 %,对海洋生产力具有一定的补充和调控作用。  相似文献   

7.
西北印度洋的洋脊系统目前以"中印度洋脊"和"卡尔斯伯格脊"分别指示南北两段,两者的分界点被认为是澳大利亚板块与印度板块的板块边界与洋脊的交点,但具体分布位置不明确.基于已有的地质、地球物理和地球化学等多方面特征,认为卡尔斯伯格脊和中印度洋脊可以统一称为"西北印度洋脊",从罗德里格斯三联点一直延伸到欧文断裂带.新的洋脊厘定将有助于更全面地了解整个西北印度洋的洋脊演化和地球动力学过程.西北印度洋脊地形上南北两端断裂较少,中间断层密集,形似吸管的弯折部位,调节洋脊的转向.重力异常显示沿脊轴方向两端高中间低的特征,表明两端岩浆供给相对充足,而中间断层密集区岩浆量少.磁异常特征显示清晰的分带性,指示多阶段的洋脊扩张历史.岩石地球化学特征显示南北两个同位素相对富集洋脊段,可能与热点作用相关,或与残留岩石圈或地壳物质对亏损软流圈地幔的富集改造有关.  相似文献   

8.
海洋中氮营养盐循环及其模型研究   总被引:17,自引:1,他引:17  
对某一海区营养盐的去向、不同形态间的相互转化及其与生物相关的过程的研究是研究整个海洋生态系统的基础和关键。氮是海洋环境中主要的营养元素之一,并被认为是大部分海区的限制营养元素。人们对于氮在海洋环境中的循环过程的研究随着分析方法及对化学和生物知识的掌握和理解而不断加深。模型研究是研究海洋生态系统的一个有效方法,营养盐循环模型是其中重要的环节,随着理论和观测数据的补充而不断发展。综述了海洋环境中氮营养盐循环主要过程的实验研究,主要包括:浮游植物的吸收、氮的再生、微生物在其循环中的作用、不同形态氮的化学转化、水体-沉积物界面等,及其相关过程近十年来模型化研究的进展。  相似文献   

9.
对中印度洋海盆14个站位的表层沉积物进行了稀土元素(REE+Y,简称REY)分布特征和富集规律研究.结果表明,样品中REY主要富集于沸石黏土和远洋黏土中(稀土元素总量最高为1239×10?6),且明显富集钇(Y)等重稀土元素(Y富集系数高达14.1,重稀土元素和Y富集系数最高为11.6);富稀土沉积物呈明显Ce亏损,发...  相似文献   

10.
徐松华 《中国岩溶》2018,37(3):440-449
在收集各类资料和实地调查的基础上,运用ArcGIS软件定量分析了鄂西南溶洞旅游资源的空间分布特征,总结出鄂西南溶洞旅游资源在鄂西南10个县(区)都有分布,平面上集中分布在清江、溇水、酉水和唐崖河等主要河道干流近岸地带2 500 m的范围内和其支流近岸地带1 800 m的范围内,在垂向上形成低海拔溶洞、中低海拔溶洞、中海拔溶洞、中高海拔溶洞和高海拔溶洞5级的阶梯状分布特征。  相似文献   

11.
Three satellite-tracked drifting buoys released in the south equatorial current in the Indian Ocean followed the path of the current moving westward approximately zonally in the vicinity of 10 S latitude. On nearing the east coast of Africa two buoys moved north and the third moved south. Over the open sea regime the buoys moved with a speed of approximately 30 cm/s at an angle of about 35° to the left of the wind. The overall tendencies seen in the buoy drift are similar to those observed elsewhere in the world oceans.  相似文献   

12.
The warm pool in the Indian Ocean   总被引:2,自引:0,他引:2  
The structure of the warm pool (region with temperature greater than 28°C) in the equatorial Indian Ocean is examined and compared with its counterpart in the Pacific Ocean using the climatology of Levitus. Though the Pacific warm pool is larger and warmer, a peculiarity of the pool in the Indian Ocean is its seasonal variation. The surface area of the pool changes from 24 × 106 km2 in April to 8 × 106 km2 in September due to interaction with the southwest monsoon. The annual cycles of sea surface temperature at locations covered by the pool during at least a part of the year show the following modes: (i) a cycle with no significant variation (observed in the western equatorial Pacific and central and eastern equatorial Indian Ocean), (ii) a single maximum/minimum (northern and southern part of the Pacific warm pool and the south Indian Ocean), (iii) two maxima/minima (Arabian Sea, western equatorial Indian Ocean and southern Bay of Bengal), and (iv) a rapid rise, a steady phase and a rapid fall (northern Bay of Bengal).  相似文献   

13.
The study of seamount parameters in the tectonically most-complicated and least-understood Indian Ocean assumes importance since their properties vary as a function of tectonic setting, physics of lithosphere, conduit geometry and chemical composition of magma. More than 100 such seamounts ranging in summit height (h) from 300 to 2870 m, are indentified in the oceanic crust between Indian continent and Mid-Indian Ridge (MIR) and South-East Indian Ridge (SEIR). Most of the minor seamounts (h > 1000) are found in the southern part of the study area. Major seamounts (h < 1000 m) are roughly distributed in two groups—the northern group on Cretaceous Oceanic Crust and southern group on Pliocene-Miocene Oceanic Crust. On an average northern group seamounts (SM 1 to 6) are taller, wider and flatter than those from the southern group. These seamounts appear to be the result of continuous growth from tapped, moving magma chamber while stress depleted magma and inconsistent Indian Plate movement during Mid-Tertiary are attributed to the origin of southern group of smaller seamounts. Distribution and morphology of seamounts as a whole indicate their formation either from Reunion hotspot or from two separate hotspots in the geological past.  相似文献   

14.
The relative impacts of the ENSO and Indian Ocean dipole (IOD) events on Indian summer (June–September) monsoon rainfall at sub-regional scales have been examined in this study. GISST datasets from 1958 to 1998, along with Willmott and Matsuura gridded rainfall data, all India summer monsoon rainfall data, and homogeneous and sub-regional Indian rainfall datasets were used. The spatial distribution of partial correlations between the IOD and summer rainfall over India indicates a significant impact on rainfall along the monsoon trough regions, parts of the southwest coastal regions of India, and also over Pakistan, Afghanistan, and Iran. ENSO events have a wider impact, although opposite in nature over the monsoon trough region to that of IOD events. The ENSO (IOD) index is negatively (positively) correlated (significant at the 95% confidence level from a two-tailed Student t-test) with summer monsoon rainfall over seven (four) of the eight homogeneous rainfall zones of India. During summer, ENSO events also cause drought over northern Sri Lanka, whereas the IOD events cause surplus rainfall in its south. On monthly scales, the ENSO and IOD events have significant impacts on many parts of India. In general, the magnitude of ENSO-related correlations is greater than those related to the IOD. The monthly-stratified IOD variability during each of the months from July to September has a significant impact on Indian summer monsoon rainfall variability over different parts of India, confirming that strong IOD events indeed affect the Indian summer monsoon.
Karumuri AshokEmail:
  相似文献   

15.
The net influx of the circumpolar water on the western (approximately along 10°E) and eastern (approximately 115°E) boundaries of the Indian Ocean, adopting the method of Montgomery and Stroup is computed on bivariate distribution of potential thermosteric anomaly and salinity to identify the characteristics of the flux. The zonal flux at both the boundaries indicates an alternate strong easterly and westerly flow between 36°S and 45°S, south of which the flow is mainly easterly but weak up to 56°S. At the western boundary the easterly flow is 146 Sv and westerly is 98.07 Sv, while at the eastern boundary (115°E) the corresponding fluxes are 123.46 Sv and 27.20 Sv respectively, indicating a net outflux of 48.33 Sv. This water should have been accounted by the melting of ice and influx of the Equatorial Pacific Ocean Water.  相似文献   

16.
The Central Indian Ocean Basin (CIOB) basalts are plagioclase-rich, while olivine and pyroxene are very few. The analyses of 41 samples reveal high FeOT (~10–18 wt%) and TiO2 (~1.4–2.7 wt%) indicating a ferrobasaltic composition. The basalts have high incompatible elements (Zr 63–228 ppm; Nb ~1–5 ppm; Ba ~15–78 ppm; La ~3–16 ppm), a similar U/Pb (0.02–0.4) ratio as the normal mid-oceanic basalt (0.16±0.07) but the Ba/Nb (12.5–53) ratio is much larger than that of the normal mid-oceanic ridge basalt (~5.7) and Primitive Mantle (9.56). Interestingly almost all of the basalts have a significant negative Eu anomaly (Eu/Eu*=0.78–1.00) that may have been a result of the removal of feldspar and pyroxene during crystal fractionation. These compositional variations suggest that the basalts were derived through fractional crystallization together with low partial melting of a shallow seated magma.  相似文献   

17.
The present review deals with the distributions of dissolved trace metals in the Indian Ocean in relation with biological, chemical and hydrographic processes. The literature data-base is extremely limited and almost no information is available on particle processes and input and output processes of trace metals in the Indian Ocean basin and therefore much research is needed to expand our understanding of the marine chemistries of most trace metals. An area of special interest for future research is the Arabian Sea. The local conditions (upwelling induced productivity, restricted bottom water circulation and suboxic intermediate waters) create a natural laboratory for studying trace metal chemistry.  相似文献   

18.
Deep-sea sediments in parts of the Pacific Ocean were recently found to contain remarkably high concentrations of rare-earth elements and yttrium (REY) of possible economic significance. Here we report similar REY-rich mud in a core section from Deep Sea Drilling Project Site 213 in the eastern Indian Ocean. The sediments consist mainly of siliceous ooze, with subordinate zeolitic clay that contains relatively high REY concentrations. The maximum and average total REY (ΣREY) contents of this material are 1113 and 629 ppm, respectively, which are comparable to those reported from the Pacific Ocean. The REY-rich mud at Site 213 shows enrichment in heavy rare-earth elements, negative Ce anomalies, and relatively low Fe2O3/ΣREY ratios, similar to those in the Pacific Ocean. In addition, the major-element composition of the Indian Ocean REY-rich mud indicates slight enrichment in lithogenic components, which probably reflects a contribution from southern African eolian dust. A volcaniclastic component from neighboring mid-ocean ridges or intraplate volcanoes is also apparent. Elemental compositions and X-ray diffraction patterns for bulk sediment, and microscopic observation and elemental mapping of a polished thin section, demonstrate the presence of phillipsite and biogenic apatite, such as fish debris, in the REY-rich mud. The strong correlation between total REY content and apatite abundance implies that apatite plays an important role as a host phase of REY in the present deep-sea sediment column. However, positive correlations between ΣREY and elements not present in apatite (e.g., Fe2O3, MnO, and TiO2) imply that the REY-rich mud is not formed by a simple mixture of REY-enriched apatite and other components.  相似文献   

19.
A coupled physical-biological-chemical model has been developed at C-MMACS. for studying the time-variation of primary productivity and air-sea carbon-dioxide exchange in the Indian Ocean. The physical model is based on the Modular Ocean Model, Version 2 (MOM2) and the biological model describes the nonlinear dynamics of a 7-component marine ecosystem. The chemical model includes dynamical equation for the evolution of dissolved inorganic carbon and total alkalinity. The interaction between the biological and chemical model is through the Redfield ratio. The partial pressure of carbon dioxide (pCO2) of the surface layer is obtained from the chemical equilibrium equations of Penget al 1987. Transfer coefficients for air-sea exchange of CO2 are computed dynamically based on the wind speeds. The coupled model reproduces the high productivity observed in the Arabian Sea off the Somali and Omani coasts during the Southwest (SW) monsoon. The entire Arabian Sea is an outgassing region for CO2 in spite of high productivity with transfer rates as high as 80 m-mol C/m2 /day during SW monsoon near the Somali Coast on account of strong winds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号