首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract—Currently, hot Jupiters have extended gaseous (ionospheric) envelopes extending far beyond the Roche lobe. The envelopes are loosely bound to the planet and are subject to a strong influence by stellar wind fluctuations. Since hot Jupiters are close to the parent star, the magnetic field of the stellar wind is an important factor which defines the structure of their magnetospheres. For a typical hot Jupiter, the velocity of stellar wind plasma flowing around the atmosphere is close to the Alfvén velocity. Thus, fluctuations of the stellar wind parameters (density, velocity, magnetic field) can affect conditions for the formation of the bow shock around a hot Jupiter, such as transforming the flow from sub-Alfvén to super-Alfvén regime and back. The study results of three-dimensional numerical MHD simulations confirm that, in a hot Jupiter’s envelope located near the Alfvén point of the stellar wind, both the disappearance and appearance of a detached shock can occur under the influence of a coronal mass ejection. The study also shows that this process can affect the observational manifestations of a hot Jupiter, including the radiation flux in the spectrum’s hard region.  相似文献   

2.
As a rule, the orbital velocities of “hot Jupiters,” i.e., exoplanets with masses comparable to the mass of Jupiter and orbital semi-major axes less than 0.1 AU, are supersonic relative to the stellar wind, resulting in the formation of a bow shock. Gas-dynamical modeling shows that the gaseous envelopes around hot Jupiters can belong to two classes, depending on the position of the collision point. if the collision point is inside the Roche lobe of the planet, the envelopes have the almost spherical shapes of classical atmospheres, slightly distorted by the influence of the star and interactions with the stellar-wind gas; if the collision point is located outside the Roche lobe, outflows from the vicinity of the Lagrangian points L1 and L2 arise, and the envelope becomes substantially asymmetrical. The latter class of objects can also be divided into two types. If the dynamical pressure of the stellar-wind gas is high enough to stop the most powerful outflow from the vicinity of the inner Lagrangian point L1, a closed quasi-spherical envelope with a complex shape forms in the system. If the wind is unable to stop the outflow from L1, an open aspherical envelope forms. The possible existence of atmospheres of these three types is confirmed by 3D numerical modeling. Using the typical hot Jupiter HD 209458b as an example, it is shown that all three types of atmospheres could exist within the range of estimated parameters of this planet. Since different types of envelopes have different observational manifestations, determining the type of envelope in HD 209458b could apply additional constrains on the parameters of this exoplanet.  相似文献   

3.
The discovery of the possible existence of huge quasi-stationary envelopes around a number of hot Jupiters (i.e., with sizes appreciably exceeding their Roche lobes) and the need to correctly take into account their properties when interpreting observational data require a careful analysis of the main physical processes influencing their atmospheres. One important factor is the possibility that the planet has a magnetic field. It was shown earlier that the presence of even a modest dipolar magnetic field of a hot Jupiter (with a magnetic moment approximately 1/10 the magnetic moment of Jupiter) influences the properties of the planetary atmosphere, in particular, leading to expansion of the range of parameters for which a giant, quasi-closed envelope can form around the planet. It was also established that the presence of a planetary magnetic field reduced the mass-loss rate from the envelope, since matter flowing out from the inner Lagrange point moves perpendicular to the field lines. Three-dimensional magnetohydrodynamical (MHD) modeling on time scales appreciably exceeding the time for the formation of the envelope show that pulsations arise in the atmospheres of hot Jupiters possessing dipolar magnetic fields, with characteristic periods ~0.27Porb. This behavior is easy to understand physically, since even in the case of a spherical atmosphere, the continuous expansion of the ionized atmsphere of a hot Jupiter can lead to the accumulation of matter in regions bounded by closed field lines, and to the periodic rupture of the atmosphere beyond the magnetic field. In the case considered, when the system contains a giant envelope fed by a stream of matter from the inner Lagrange point, the presence of such pulsations gives rise to appreciable variations in the gas-dynamical structure of the flow. In particular, pulsations of the atmosphere lead to tearing off of part of the flow and sharp fluctuations in the size of the envelope, leading to variations in the envelope’s observational properties.  相似文献   

4.
Zhilkin  A. G.  Bisikalo  D. V. 《Astronomy Reports》2020,64(7):563-577
Astronomy Reports - Abstract—For the case of the sub-Alfvén regime of the stellar wind flyby around the planet, the flow structure in the vicinity of a hot Jupiter have been studied by...  相似文献   

5.
According to the compuations results obtained by Bisikalo et al. (2013) for the gas-dynamical effect of stellar winds on exoplanet atmospheres, three types of gaseous envelopes can form around hot Jupiters: closed, quasi-closed, and open. The type of envelope that forms depends on the position of the frontal collision point (where the dynamical pressure of the wind is equal to the pressure of the surrounding atmosphere) relative to the Roche-lobe boundaries. Closed envelopes are formed around planets whose atmospheres lie completely within their Roche lobes. If the frontal collision point is located outside the Roche lobe, the atmospheric material begins to flow out through the Lagrangian points L1 and L2, which can result in the formation of quasi-closed (if the dynamical pressure of the stellar wind stops the outflow through L1) or open gaseous envelopes. The example of the typical hot Jupiter HD 209458b is considered for four sets of atmospheric parameters, to determine the mass-loss rates for the different types of envelopes arising with these parameters. The mass-loss rates based on the modeling results were estimated to be ? ≤ 109 g/s for a closed atmosphere, ? ? 3 × 109 g/s for a quasi-closed atmosphere, and ? ? 3 × 1010 g/s for an open atmosphere. The matter in the closed and quasi-closed atmospheres flows out mainly through L2, and the matter in open envelopes primarily through L1.  相似文献   

6.
We have computed the dynamical evolution of homogeneous, spherical gaseous condensations in the atmosphere of a Wolf-Rayet star. The physical conditions in the condensations vary substantially in the course of their motion in the stellar wind, which should result in variations in the observed spectrum of the star. The condensations also move at velocities of up to 1000 km/s relative to the surrounding stellar wind. Variations of the physical conditions in these condensations should be taken into account in models of the stellar winds of Wolf-Rayet stars.  相似文献   

7.
The influence of the dipolar magnetic field of a “hot Jupiter” with the parameters of the object WASP-12b on the mass-loss rate from its atmosphere is investigated. The results of three-dimensional gas-dynamical and magnetohydrodynamical computations show that the presence of a magnetic moment with a strength of ~0.1 the magnetic moment of Jupiter leads to appreciable variations of the matter flow structure. For example, in the case of the exoplanet WASP-12b with its specified set of atmospheric parameters, the stream from the vicinity of the Lagrange point L1 is not stopped by the dynamical pressure of the stellar wind, and the envelope remains open. Including the effect of the magnetic field leads to a variation in this picture—the atmosphere becomes quasi-closed, with a characteristic size of order 14 planetary radii, which, in turn, substantially decreases the mass-loss rate by the exoplanet atmosphere (by~70%). This reduction of the mass-loss rate due to the influence of the magnetic fieldmakes it possible for exoplanets to form closed and quasi-closed envelopes in the presence of more strongly overflowing Roche lobes than is possible without a magnetic field.  相似文献   

8.
We use a two-phase model for the structure of the circumstellar nebulae of hot stars to analyze the radiative cooling of a dense, compact cloud behind the shock produced by the compression of the cloud by hot gas from the stellar wind, taking into account ionization and heating by radiation from the central star. We can distinguish three stages of the evolution of the cloud during its compression. In the first stage, relevant for the entire cloud before compression and the gas ahead of the shock front, the state of the gas is determined purely by ionization by the stellar radiation. The next stage is characterized by the simultaneous action of two gas excitation mechanisms—photoionization by the stellar radiation and shock heating. In this stage, the gas intensively radiates thermal energy received at the shock front. After radiative cooling, in the final stage, ionization and heating of the gas are again determined mainly by the star. To compute the spectrum of the cloud radiation, we solved for the propagation of a plane-parallel, homogeneous flux through the shock front in the radiation field of the hot star. The computations show that a combination of two excitation mechanisms considerably enriches the theoretical spectrum. The relative intensities of emission lines of a single cloud may resemble either those for an HII region or of a supernova remnant.  相似文献   

9.
The evolution of close binary systems containing Wolf-Rayet (WR) stars and black holes (BHs) is analyzed numerically. Both the stellar wind from the donor star itself and the induced stellar wind due to irradiation of the donor with hard radiation arising during accretion onto the relativistic component are considered. The mass and angular momentum losses due to the stellar wind are also taken into account at phases when the WR star fills its Roche lobe. It is shown that, if a WR star with a mass higher than ~10M fills its Roche lobe in an initial evolutionary phase, the donor star will eventually lose contact with the Roche lobe as the binary loses mass and angular momentum via the stellar wind, suggesting that the semi-detached binary will become detached. The star will remain a bright X-ray source, since the stellar wind that is captured by the black hole ensures a near-Eddington accretion rate. If the initial mass of the helium donor is below ~5M , the donor may only temporarily detach from its Roche lobe. Induced stellar wind plays a significant role in the evolution of binaries containing helium donors with initial masses of ~2M . We compute the evolution of three observed WR-BH binaries: Cyg X-3, IC 10 X-1, and NGC 300 X-1, as well as the evolution of the SS 433 binary system, which is a progenitor of such systems, under the assumption that this binary will avoid a common-envelope stage in its further evolution, as it does in its current evolutionary phase.  相似文献   

10.
Several scenarios for the formation of accretion and decretion disks in single and binary Ae and Be stars are proposed. It is shown that, in order for a rapidly rotating main-sequence Be star to lose mass via a disk, the star’s rotation must be quasi-rigid-body. Estimates show that such rotation can be maintained by the star’s magnetic field, which is probably a relict field. The evolution of single Be main-sequence stars is numerically simulated allowing for mass loss via the stellar wind and rotational mass loss assuming rigid-body rotation. The stellar wind is the factor that determines the maximum mass of Be stars, which is close to 30M . The evolution of Be stars in close binaries is analyzed in the approximation adopted in our scenario. Long gamma-ray bursts can be obtained as a result of the collapse of rapidly rotating oxygen—neon degenerate dwarfs—the accreting companions of Be stars—into neutron stars.  相似文献   

11.

Results of a study of the influence of solar-type host stars superflares on the gas dynamics of the extended envelopes of giant exoplanets are presented. During flare events, the radiation intensity of the host star in the extreme ultraviolet and soft X-ray can increase by several orders of magnitude for a short time, leading to strong local heating of the exoplanet atmosphere on the side facing the star, with the formation of shocks in the atmosphere. Computations of the gas-dynamical response of the atmosphere of the hot Jupiter HD 209458b to characteristic superflares of solar-like stars were carried out earlier in [1] using a one-dimensional aeronomical model correctly taking into account heating and chemical processes in the atmosphere. To investigate the outflow of atmospheric gas, the results obtained with this onedimensional model were used as simple boundary conditions for computations of the three-dimensional flow structure after a flare. The results of these three-dimensional gas-dynamical computations show that the mass ejection of the flare increases the size of the envelope over several hours, which could be detected with existing observing facilities. It is shown that the mass-loss rates for the most powerful superflare considered could be enhanced by an order of magnitude over several tens of hours after the flare.

  相似文献   

12.
A scenario for hard impulsive flares due to magnetic reconnection and particle acceleration in cosmic plasma is proposed. The properties of fast reconnection in an appreciably non-equilibrium nagnetosphere of a compact relativistic object, such as a neutron star, magnetar, or white dwarf, are discussed. Such a magnetosphere could form as the result of the action of a relativistic shock on the strong magnetic field of the star. An analytical solution is presented for the generalized, two-dimensional structure, shape, and boundaries of the magnetosphere, together with the magnitudes of the direct and reverse currents in the reconnecting current layer. The uncompensated magnetic force acting on the reverse current is determined. The characteristic parameters of the non-equilibrium magnetospheres of compact stellar objects are estimated. The excess magnetic energy of the magnetosphere is comparable to the mechanical energy carried by the shock at the time of impact. The possible acceleration of particles to gigantic energies is discussed.  相似文献   

13.
Lin-Sen Li 《Astronomy Reports》2008,52(10):806-810
We examine the influence of mass-loss due to stellar wind using the celestial mechanics of variable mass, and derive first-and second-order solutions, taking into account the decreasing mass due to the stellar wind. The theoretical results show that the semi-major axis exhibits secular and periodic variations in the first-and second-order theory. The orbital eccentricity exhibits periodic, but no secular variation or changes. The longitude of periastron exhibits only periodic variations in the first-order solution, but also secular variations in the second-order solution. The theoretical results are applied to the binary star HD 698, and variability of the orbital elements of this star due to stellar-wind mass loss calculated. Published in Russian in Astronomicheskiĭ Zhurnal, 2008, Vol. 85, No. 10, pp. 896–900. The article was translated by the authors.  相似文献   

14.
An exact solution is found for the interaction of a rotating magnetic field that is frozen into a star with a thin, highly conducting accretion disk. The disk pushes the magnetic-field lines towards the star, compressing the stellar dipole magnetic field. At the corotation radius, where the Keplerian and stellar rotational frequencies are equal, a current loop appears. Electric currents flow in the magnetosphere only along two particular magnetic surfaces, which connect the corotation region and the inner edge of the disk with the stellar surface. It is shown that a closed current surface encloses the magnetosphere. The disk rotation is stopped at some distance from the stellar surface, equal to 0.55 of the corotation radius. The accretion from the disk spins up the stellar rotation. The angular momentum transferred to the star is determined.  相似文献   

15.
Soft X-ray data for prolonged flares in subgiants in RS CVn binary systems and some other active late-type stars (AB Dor, Algol) are analyzed. During these nonstationary events, a large amount of hot plasma with temperatures exceeding 108 K exists for many hours. Numerical simulations of gas-dynamical processes in the X-ray source—giant loops—can yield reliable estimates of the plasma parameters and flare-source size. This confirms that such phenomena exist while considerable energy is supplied to the top part of a giant loop or system of loops. Refined estimates of the flare energy (up to 1037 erg) and scales contradict the widely accepted idea that prolonged X-ray flares are associated with the evolution of local magnetic fields. The energy of the current component of the large-scale magnetic field arising during the ejection of magnetic field by plasma jets or stellar wind is estimated. Two cases are considered: a global stellar field and fields connecting regions with oppositely directed unipolar magnetic fields. The inferred energy of the current component of the magnetic field associated with distortion of the initial MHD configuration is close to the total flare energy, suggesting that large-scale magnetic fields play an important role in prolonged flares. The flare process encompasses some portion of a streamer belt and may propagate along the entire magnetic equator of the star during the most powerful prolonged events.  相似文献   

16.
This paper continues a series of studies on three-dimensional hydrodynamical modeling of mass transfer in the binary system β Lyr. The model takes into account the stellar wind from the donor star, which outflows at a rate of , as demonstrated by radio observations. This stellar wind should appreciably influence the formation of the envelope in the binary. Computations have shown that the interaction of the matter flow from the Lagrangian point L1 and the accretor wind leads to the formation of an optically and geometrically thick gaseous envelope around the accretor. The matter flow meets the accretor wind, spreads out, accumulates over the outer edge of the wind, and forms a geometrically thick envelope (disk). The wind flows freely at the center of the disk, over the accretor poles. Jet-like structures arise beyond the wind-propagation region, above the thick accretion disk. The matter flowing from the outer edge of the disk interacts with the donor wind, leading to the formation of a standing shock between L1 and the outer edge of the disk, in the direction corresponding to orbital phase 0.25. This shock is able to explain the origin of the X-ray radiation from the binary β Lyr.  相似文献   

17.
The results of three-dimensional numerical simulations of the gas dynamics of the atmosphere of a “hot Jupiter” exoplanet during the passage of a coronal mass ejection (CME) from the central star are presented. These computations assumed the parameters for the stellar wind and the CME to be typical of the solar values. The characteristic variations of the flow pattern are considered for quasi-closed and closed (but appreciably distorted by the gravitational influence of the star) gaseous envelopes of the exoplanet. It is shown that a typical CME is sufficient to tear off the outer part of an asymmetric envelope that is located beyond the Roche lobe and carry it away from the exoplanet. This leads to a substantial increase in the mass-loss rate from the exoplanet envelope during the passage of CMEs. The mass-loss rate grows by about a factor of 11 for a closed envelope, and by about a factor of 14 for a quasi-closed envelope. Possible evolutionary consequences of the loss of part of the atmosphere during the passage of CMEs are discussed.  相似文献   

18.
We have calculated the degree and position angle of the polarization of radiation scattered in a magnetized, optically thin or optically thick envelope around a central source, taking into account Faraday rotation of the plane of polarization during the propagation of the scattered radiation and the finite size of the radiation source. The wavelength dependence of the degree of polarization can be used to estimate the magnetic field of the source (a star, the region around a neutron star, or a black hole), and we have used our calculations to estimate the magnetic fields in a number of individual objects: several hot O and Wolf-Rayet stars, compact objects in X-ray close binaries with black holes (SS 433, Cyg X-1), and supernovae. The spectrum of the linear polarization can be used to determine the magnetic field in the vicinity of a central supermassive black hole, where the polarized optical radiation is generated. In a real physical model, this value can be extrapolated to the region of the last stable orbit. In the future, the proposed technique will make it possible to directly estimate the magnetic field in the region of the last stable orbit of a supermassive black hole using X-ray polarimetry.  相似文献   

19.
The accretion of neutral gas (hydrogen and helium) onto a neutron star is studied. The gas is gravitationally captured into the magnetosphere of the star, where it is ionized by thermal radiation from the stellar surface and accelerated by the electric field at the light cylinder and in a tube of open magnetic lines. Particles accelerated at light cylinder generate gamma-ray, some particles move to the star and heat its polar regions, resulting in the emission of X-rays. Our calculations of the model parameters of the X-ray and gamma-ray radiation indicate that the radiation intensities should be sufficient to be observed.  相似文献   

20.
A technique for determining a star’s radius from its atmospheric characteristics (effective temperature, surface gravity, and metallicity) is realized based on modernmodel computations of the stellar internal structure and evolution. The atmospheric characteristics can also be used to find the mass and luminosity of the star. The star’s rate of evolution and the initial mass function are taken into account when determining the stellar characteristics, increasing the correctness of the results. Computations of stellar evolution of with and without the stellar rotation taken into account make it possible to remove ambiguity due to missing data on the star’s rotational velocity. The results are checked and uncertainties estimated using stars occupying two heavily populated regions in the Hertzsprung–Russell diagram that have been well studied using various methods: the main sequence and red giant branch. Good agreement with the observations is achieved; there are almost no systematic deviations of the derived point estimates of the fundamental characteristics. The metallicities of the individual components of eclipsing variable stars are estimated using observational data on for such stars displaying lines of both components in their spectra. These metallicities were determined as a function of the stellar masses in a way that eliminates systematic deviations in the derived fundamental characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号