首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnesium isotopic compositions are reported for twenty‐four international geological reference materials including igneous, metamorphic and sedimentary rocks, as well as phlogopite and serpentine minerals. The long‐term reproducibility of Mg isotopic determination, based on 4‐year analyses of olivine and seawater samples, was ≤ 0.07‰ (2s) for δ26Mg and ≤ 0.05‰ (2s) for δ25Mg. Accuracy was tested by analysis of synthetic reference materials down to the quoted long‐term reproducibility. This comprehensive dataset, plus seawater data produced in the same laboratory, serves as a reference for quality assurance and inter‐laboratory comparison of high‐precision Mg isotopic data.  相似文献   

2.

Earthquakes cluster in space and time resulting in nonlinear damage effects. We compute earthquake interactions using the Coulomb stress transfer theory and dynamic vulnerability from the concept of ductility capacity reduction. We combine both processes in the generic multi-risk framework where risk scenarios are simulated using a variant of the Markov chain Monte Carlo method. We apply the proposed approach to the thrust fault system of northern Italy, considering earthquakes with characteristic magnitudes in the range ~[6, 6.5], different levels of tectonic loading \(\dot{\tau }\) = {10−4, 10−3, 10−2} bar/year and a generic stock of fictitious low-rise buildings with different ductility capacities μ Δ = {2, 4, 6}. We describe the process’ stochasticity by non-stationary Poisson earthquake probabilities and by binomial damage state probabilities. We find that earthquake clustering yields a tail fattening of the seismic risk curve, the effect of which is amplified by damage-dependent fragility due to clustering. The impact of clustering alone is in average more important than dynamic vulnerability, the spatial extent of the former phenomenon being greater than of the latter one.

  相似文献   

3.
Song  Yahui  Li  Yonghui  Wang  Wenzhong  Wu  Zhongqing 《中国地球化学学报》2019,38(4):497-507

Previous theoretical studies have found that the concentration variations within a certain range have a prominent effect on inter-mineral equilibrium isotope fractionation (103lnα). Based on the density functional theory, we investigated how the average Ca–O bond length and the reduced partition function ratios (103lnβ) and 103lnα of 44Ca/40Ca in forsterite (Fo) are affected by its Ca concentration. Our results show that Ca–O bond length in forsterite ranges from 2.327 to 2.267 Å with the Ca/(Ca + Mg) varying between a narrow range limited by an upper limit of 1/8 and a lower limit of 1/64. However, outside this narrow range, i.e., Ca/(Ca + Mg) is lower than 1/64 or higher than 1/8, Ca–O bond length becomes insensitive to Ca concentration and maintains to be a constant. Because the 103lnβ is negatively correlated with Ca–O bond length, the 103lnβ significantly increases with decreasing Ca/(Ca + Mg) when 1/64 < Ca/(Ca + Mg) < 2/16. As a consequence, the 103lnα between forsterite and other minerals also strongly depend on the Ca content in forsterite. Combining previous studies with our results, the heavier Ca isotopes enrichment sequence in minerals is: forsterite > orthopyroxene > clinopyroxene > calcite ≈ diopside > dolomite > aragonite. Olivine and pyroxenes are enriched in heavier Ca isotope compared to carbonates. The 103lnα between forsterite with a Ca/(Ca + Mg) of 1/64 and clinopyroxene (Ca/Mg = 1/1, i.e., diopside) is up to ~ 0.64‰ at 1200 K. The large 103lnαFo-diopside relative to the current analytical precision for Ca isotope measurements suggests that the dependence of 103lnαFo-diopside on temperature can be used as a thermometer, similar to the one based on the 103lnα of 44Ca/40Ca between orthopyroxene and diopside. These two Ca isotope thermometers both have a precision approximate to that of elemental thermometers and provide independent constraints on temperature.

  相似文献   

4.
High precision isotope ratio and trace element determination can be achieved with modern quadrupole ICP-MS provided that short and long-term instrument performance is accurately monitored. Here we present results for the isotope ratios 6Li/7Li, 147Sm/149Sm, 160Dy/161Dy, 207Pb/206Pb, 208Pb/206Pb, 206Pb/204Pb and 235U/238U with which we determined long-term isotope ratio stability of relevance to both trace element and isotope determination. With respect to trace element determination, we first present long-term observations regarding oxide formation rates of Ba and Nd on light REE and heavy REE, as well as Zr on Ag. These showed good correlations and could be used to correct effectively the interference. The efficacy of this correction was demonstrated with analyses of the rock reference material BHVO-2 at both low and high oxide formation rates. Next, we studied the long-term reproducibility of a Dy isotope ratio that was measured to correct for the isobaric interference on Gd. It was found that, regardless of tuning condition, the ratio reproduced very well (0.58% RSD, 1s) and that the estimate of the Gd concentration did not suffer from the large correction (> 10%) caused by the Dy isobar. Long-term reproducibilities of Li, Sm and U isotope ratios, required for accurate mass bias correction when isotopically enriched internal standards of these elements are employed, were measured in the rock reference materials AGV-2 and JA-3 over a time period of up to 3 years. As expected, the Li isotope ratio showed the largest variability (RSD = 7%), but the other two ratios had relative external reproducibilities of only 1.01% (1s, U) and 0.67% (Sm). The mass bias-induced scatter in measurements for Sm and U was so small that the internal standard correction was effective, even for samples with high concentrations of these elements. With regard to Pb-isotope ratio determination, we also present long-term reproducibility for NIST SRM 982, run as an unknown and two accuracy tests for Pb separated from granitoids and from meteorites. It is demonstrated that the obtained ratios, including those involving 204Pb, are accurate relative to MC-ICP-MS determinations and of comparable precision to conventional TIMS analysis. The excellent agreement between all data sets shows the potential of modern quadrupole ICP-MS instrumentation for Pb-isotope determination, particularly for samples with very low Pb content.  相似文献   

5.
Tutukov  A. V.  Fedorova  A. V. 《Astronomy Reports》2019,63(6):460-478

Under certain conditions, stars close to intermediate-mass black holes (IMBHs) can form close binary systems with these objects, in which the Roche lobe can be filled by the star and intense accretion of the star’s matter onto the IMBH is possible. Recently, accreting IMBHs have been associated with hyperluminous X-ray sources (HLXs), whose X-ray luminosities can exceed 1041 erg/s. In this paper, the evolution of star—IMBH binary systems is investigated assuming that the IMBH mainly accretes the matter of its companion star, and that the presence of gas in the vicinity of the IMBH does not appreciably affect changes in the orbit of the star. The computations take into account all processes determining the evolution of ordinary binary systems, as well as the irradiation of a star by hard radiation during the accretion of its matter onto the IMBH. The absorption of external radiation in the stellar envelope was calculated applying the same formalism that is used to calculate the opacity of the stellar matter. The computations also assumed that, if the characteristic time for the mass transfer is less than the thermal time scale of the star, there is no exchange betwween the orbital angular momentum of the system and the angular momentum of the matter flowing onto the IMBH.

Numerical simulations have shown that, under these assumptions, three types of evolution are possible for such a binary system, depending on the mass of the IMBH and the star, as well as on the star’s initial distance from the IMBH. The first type ends with the destruction of the star. For low-mass main sequence (MS) stars, only this option is realized, even in the case of large initial distances from IMBH. For massive MS stars, the star is also destroyed if the mass of the IMBH is high and the initial distance of the star from the IMBH is sufficiently small.

The second type of evolution can occur for massive MS stars, which are initially located farther from the IMBH than in the first type of evolution. In this case, the massive star fills its Roche lobe during its evolutionary expansion, after which a stage of intense mass transfer begins. It is in this phase of the evolution that the star- IMBH system can manifest itself as a HLX, when its X-ray luminosity LX exceeds 1041 erg/s for a fairly long time. Numerical simulations show that the initial mass of the donor star in systems with MBH = (103?105)M must be close to ~10 M in this case. The characteristic duration of the HLX stage is 30 000–70 000 years. For smaller initial donor masses close to ~5M, LX does not reach 1041 erg/s in the stage of intense mass transfer, but can exceed 1040 erg/s. The duration of this stage of evolution is 300 000–800 000 years. A characteristic feature of this second type of evolution is an increase in the orbital period of the system over time. As a result, after a period of intense mass loss, the star “retreats” inside the Roche lobe. A remnant of the star in the form of a white dwarf is left behind, and can end up fairly far from the IMBH.

The third type of evolution can occur for massive MS stars that are initially even farther from the IMBH, as well as for massive stars that are already evolved at the initial time. In this case, conservative mass exchange in the presence of intense stellar wind leads to the star moving away from the IMBH, without filling its Roche lobe at all. For massive stars with sufficiently strong stellar winds (for example, stars with masses ~50M), the accretion rate of matter onto the IMBH in this case can reach values that are characteristic of HLXs. As in the case of the second type of evolution, the stellar remnant can remain at a fairly large distance from the IMBH.

  相似文献   

6.
We report high‐precision iron isotopic data for twenty‐two commercially available geological reference materials, including silicates, carbonatite, shale, carbonate and clay. Accuracy was checked by analyses of synthetic solutions with known Fe isotopic compositions but different matrices ranging from felsic to ultramafic igneous rocks, high Ca and low Fe limestone, to samples enriched in transition group elements (e.g., Cu, Co and Ni). Analyses over a 2‐year period of these synthetic samples and pure Fe solutions that were processed through the whole chemistry procedure yielded an average δ56Fe value of ?0.001 ± 0.025‰ (2s, n = 74), identical to the expected true value of 0. This demonstrates a long‐term reproducibility and accuracy of < 0.03‰ for determination of 56Fe/54Fe ratios. Reproducibility and accuracy were further confirmed by replicate measurements of the twenty‐two RMs, which yielded results that perfectly match the mean values of published data within quoted uncertainties. New recommended values and associated uncertainties are presented for interlaboratory calibration in the future.  相似文献   

7.
Wu  Yangyang  Liu  Libin  Guo  Chunzi  Zhang  Zhonghua  Hu  Gang  Ni  Jian 《中国地球化学学报》2019,38(4):576-586

The properties of woody debris (WD) vary across different forests under various soil conditions. Owing to the relatively shallow and low amounts of soils on karst terrains, it is necessary to determine the WD carbon inventory of karst forests. In this study, we recorded WD with a basal diameter for standing snags and the large-end diameter for fallen logs of ≥ 1 cm. The carbon density of WD in a secondary karst mixed evergreen and deciduous broad-leaved forest that had been clear-cut 55 years ago in southwestern China were inventoried in a 2 ha plot. Woody debris carbon density calculated using specific gravity and carbon concentration was 4.07 Mg C ha−1. Woody debris with diameters ≥ 10 cm (coarse WD) constituted 53.8% of total carbon storage whereas WD < 10 cm in diameters (fine WD) accounted for more pieces of WD (89.9%). Lithocarpus confinis contributed the most WD carbon (26.5%). Intermediate decayed WD was relatively more abundant, but WD with final decay contributed the least to the total pieces of WD (6.7%). The contribution of WD to carbon storage of karst forest was low compared to other forests worldwide. Significant positive correlations were found between WD carbon and biodiversity (R2 = 0.035, p < 0.01) and elevation (R2 = 0.047, p < 0.01) and negative correlations was found in outcrop coverage (R2 = 0.034, p < 0.01). Further studies are needed to elucidate the ecological functions of WD to better understand their roles in maintaining biodiversity, enhancing productivity, and controlling vegetation degradation in karst forest ecosystems.

  相似文献   

8.
《Organic Geochemistry》1987,11(3):193-199
An automatic experimental set-up has been developed for the determination of diffusion parameters of hydrocarbon gases through water-saturated rock samples. Diffusive flow of hydrocarbons through rock slices is monitored by gas chromatography. Experiments are carried out according to the time lag method yielding diffusion coefficients, solubility coefficients, and diffusion permeabilities. Diffusion coefficients down to 10−12 m2 s−1 (10−8 cm−2 s−1) may be determined routinely on rock samples of 2–10 mm thickness. Maximum errors in diffusion coefficients are estimated around 20% and reproducibility was found to range between 10 and 20%. Specific features of this set-up are automatic sampling and data acquistion, high sampling frequency, and maintenance of water-saturation of the rock samples throughout the experiment.  相似文献   

9.
Calcium isotopic compositions of sixteen Ca‐bearing USGS geological reference materials including igneous and sedimentary rocks are reported. Calcium isotopic compositions were determined in two laboratories (GPMR, State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan; and CIG, Centre for Isotope Geochemistry, University of California, Berkeley) using the 42Ca‐48Ca double‐spike technique by thermal ionisation mass spectrometry. As opposed to common cation exchange resin, a micro‐column filled with Ca‐selective resin (DGA resin) was used in order to achieve high recovery (> 96%) and efficient separation of Ca from the sample matrix. The intermediate measurement precision was evaluated at 0.14‰ (2s) for δ44/40CaSRM915a at GPMR, based on replicate measurements of pure Ca reference material NIST SRM 915a, NIST SRM 915b and seawater. Overall, the measurement uncertainties in both laboratories were better than 0.15‰ at the 2s level. Result validation was carried out for all available data sets. The Ca isotopic compositions of USGS reference materials are not only in agreement between GPMR and CIG, but also in agreement with previously published data within quoted uncertainties. The comprehensive data set reported in this study serves as a reference for both quality assurance and interlaboratory comparison of high precision Ca isotopic study.  相似文献   

10.
《Applied Geochemistry》1996,11(5):677-695
Colloids are present in all groundwaters. The role they may play in the migration of contaminants in the geosphere must be studied. Colloid sampling and characterisation campaigns have been carried out in Switzerland. On the basis of the results obtained from studies in the Grimsel area (Grimsel Test Site, Transitgas Tunnel), Northern Switzerland (Leuggern, Zurzach) and the Black Forest (Bad Säckingen, Menzenschwand), a consistent picture is emerging.The groundwater colloids in granitic systems are predominantly composed of phyllosilicates and silica originating from the aquifer material. Under constant hydrogeochemical conditions, the colloid concentration does not exceed 100 ng·ml−1 when the calcium concentration is larger than 10−4 M and the sodium concentration is larger than 10−2 M. However, under transient chemical or physical conditions, such as geothermal or tectonic activity, colloid generation may be enhanced and the colloid concentration may reach 10 μg·ml−1 or more if both calcium and sodium concentrations are low (i.e. < 10−4 M and < 10−2 M respectively). The colloid size distribution yields information about their stability. For a representative deep crystalline water ([Ca] = 3.5 × 10−4 M, [Na] = 1.4 × 10−2 M, [TOC] = 3 × 10−6 M), the colloid concentration is < 100 ng · ml−1 and around 10 ng · ml−1 in Zurzach water for sizes ranging from 100 to 1000 nm.  相似文献   

11.
Palaeomagnetic investigation of three sediment cores from the Chukchi and Beaufort Sea margins was performed to better constrain the regional chronostratigraphy and to gain insights into sediment magnetic properties at the North American Arctic margin during the Holocene and the preceding deglaciation. Palaeomagnetic analyses reveal that the sediments under study are characterized by low‐coercivity ferrimagnetic minerals (magnetite), mostly in the pseudo‐single domain grain‐size range, and by a strong, stable, well‐defined remanent magnetization (MAD <5°). Age models for these sediment cores were constrained by comparing their palaeomagnetic secular variations (inclination, declination and relative palaeointensity) with previously published and independently dated sedimentary marine records from the study area. The magnetostratigraphical age models were verified by AMS radiocarbon dating tie points, tephrochronology and 210Pb‐based sedimentation rate estimate. The analysed cores 01JPC, 03PC and 02PC span c. 6000, 10 500 and 13 500 cal. a BP, respectively. The estimated sedimentation rates were stable and relatively high since the deglaciation in cores 01JPC (60 cm ka−1) and 03PC (40–70 cm ka−1). Core 02PC shows much lower Holocene sedimentation rates with a strong decrease after the deglaciation from ~60 to 10–20 cm ka−1. Overall, this study illustrates the usefulness of palaeomagnetism to improve the dating of late Quaternary sedimentary records in the Arctic Ocean.  相似文献   

12.
A Rb-Sr whole-rock isochron study indicates that the entire Donegal granite suite was emplaced into orthotectonic Caledonian (Dalradian) rocks over a short interval during mid-Silurian to earliest-Devonian times. The Thorr pluton, probably the earliest member of the suite, yields an age of 418 ± 26 Myr and initial 87Sr/86Sr ratio of 0·7055 ± 4, while the latest member, the Main Donegal pluton has an age of 407 ± 23 Myr and initial 87Sr/86Sr ratio of 0·7063 ± 5 (Λ87Rb = 1·42 ± 10−11 yr−1). Errors on both the age and initial Sr isotope ratios incorporate both a priori and geological scatter components and are quoted at the 2-sigma level. The low and restricted range of initial Sr isotope ratios suggests small but significant differences in the composition of the parental granitic magmas which were derived from a low Rb/Sr, low 87Sr/86Sr source.  相似文献   

13.
Gao  Shuhui  Jin  Huijun  Wu  Qingbai  Bense  Victor F.  Luo  Dongliang  Wang  Qingfeng  Yang  Yuzhong  Chang  Wenwen 《Hydrogeology Journal》2023,31(3):789-811

Warming climate and thawing permafrost have profound impacts on groundwater flow regimes in cold regions because of the shrinkage or disappearance of the confining unit formed by the permafrost layers and improving hydraulic connections. Numerical simulations of coupled groundwater flow and heat transfer are often used to characterize the changing permafrost hydrogeology. In this study, a number of scenarios for different hydraulic gradients and lake-water depths have been used to simulate the concordant permafrost evolution and groundwater movement using a two-dimensional cylindrical coordinate model at time scales of decades to centuries in response to a warming climate. The model is applied to a representative headwater catchment in the south-central headwater area of the Yellow River on the northeastern Qinghai-Tibet Plateau, China. The results show that the presence and movement of groundwater and the deeper subpermafrost aquifer can substantially accelerate permafrost degradation, and the disappearance of residual permafrost at depth can result in the sudden establishment of deep groundwater flow paths. All hydrological impacts will become evident after the stabilization of the hydrothermal and flow fields at 100–200 years. The stable discharge rate of groundwater flow varies from 8.0 to 12.4 m3 s−1, and the stable velocity of groundwater flow varies from 1.6 × 10−7 to 4.4 × 10−7 m s−1 under different scenarios within the model domain. The modeling results also demonstrate that flow velocity and discharge rate in local groundwater flow systems can be enhanced by an increased hydraulic conductivity, leading to an accelerated degradation of isolated permafrost bodies.

  相似文献   

14.
The paucity of weathering rates for quartz in the natural environment stems both from the slow rate at which quartz dissolves and the difficulty in differentiating solute Si contributed by quartz from that derived from other silicate minerals. This study, a first effort in quantifying natural rates of quartz dissolution, takes advantage of extremely rapid tropical weathering, simple regolith mineralogy, and detailed information on hydrologic and chemical transport. Quartz abundances and grain sizes are relatively constant with depth in a thick saprolite. Limited quartz dissolution is indicated by solution rounding of primary angularity and by the formation of etch pits. A low correlation of surface area (0.14 and 0.42 m2 g−1) with grain size indicates that internal microfractures and pitting are the principal contributors to total surface area.Pore water silica concentration increases linearly with depth. On a molar basis, between one and three quarters of pore water silica is derived from quartz with the remainder contributed from biotite weathering. Average solute Si remains thermodynamically undersaturated with respect to recently revised estimates of quartz solubility (<180 μM) but exceeds estimated critical saturation concentrations controlling the initiation of etch pit formation (>17–81 μM). Etch pitting is more abundant on grains in the upper saprolite and is associated with pore waters lower in dissolved silica. Rate constants describing quartz dissolution increase with decreasing depth (from 10−14.5–10−15.1 mol m−2 s−1), which correlate with both greater thermodynamic undersaturation and increasing etch pit densities. Unlike for many aluminosilicates, the calculated natural weathering rates of quartz fall slightly below the rate constants previously reported for experimental studies (10−12.4–10−14.2 mol m−2 s−1). This agreement reflects the structural simplicity of quartz, dilute solutes, and near-hydrologic saturation.  相似文献   

15.
《Applied Geochemistry》2002,17(4):455-474
In a recent survey of the spring waters of the Genova province, many neutral Mg–HCO3 waters and some high-pH, Ca–OH waters were found in association with serpentinites. All the springs are of meteoric origin as indicated by the stable isotopes of water and dissolved N2 and Ar. Interaction of these meteoric waters with serpentinites determines a progressive evolution in the chemistry of the aqueous phase from an immature Mg-rich, SO4–Cl facies of low salinity to an intermediate Mg–HCO3 facies (pH 7.0–8.5, PCO210−3.5–10−2.5 bar, Eh 150–250 mV), and to a mature Ca–OH facies (pH 10–12, PCO2 10−9.4−10−10.6 bar, Eh-390 to-516 mV). The irreversible water–rock mass transfer leading to these chemical changes in the aqueous phase was simulated through reaction path modeling, assuming bulk dissolution of a local serpentinite, and the precipitation of gibbsite, goethite, calcite, hydromagnesite, kaolinite, a montmorillonite solid mixture, a saponite solid mixture, sepiolite, and serpentine. The simulation was carried out in two steps, under open-system and closed-system conditions with respect to CO2, respectively. The calculated concentrations agree with analytical data, indicating that the computed water-rock mass transfer is a realistic simulation of the natural process. Moreover, the simulation elucidates the role of calcite precipitation during closed-system serpentinite dissolution in depleting the aqueous solution of C species, allowing the concurrent increment in Ca and the acquisition of a Ca–OH composition. Calcium–OH waters, due to their high pH, tend to absorb CO2, precipitating calcite. Therefore, these waters might be used to sequester anthropogenic CO2, locally preventing environmental impact to the atmosphere.  相似文献   

16.
Salamate  F.  Khay  I.  Ferricha-Alami  M.  Chakir  H.  Bennai  M. 《Astronomy Reports》2019,63(12):990-997

The D-term inflation in supergravity, in the braneworld Randall Sundrum II (RSII) context, has been proposed to solve some problems related to the four-dimensional inflation model. That scenario is based on a modification of the Friedmann equation by the addition of the fifth dimension, which corresponds to an energy, called brane tension λ. Therefore, we propose the investigation of the brane effect on the reheating epoch. In this context, we have analyzed the process of reheating and focused on the variation of the temperature value Tre. We found that it depends on all parameters, and the value found is in the range Tre ∼ (7.5 × 108−8 × 1010) GeV, which is consistent with the thermal leptogenesis (Tre ≥ 108 GeV).

  相似文献   

17.
Dremova  G. N.  Dremov  V. V.  Orlov  V. V.  Tutukov  A. V.  Shirokova  K. S. 《Astronomy Reports》2015,59(11):1019-1035

The probability of forming a Galactic hypervelocity star is estimated for the scenario of Hills, which describes the dynamical capture of one component of a binary star by the gravitational field of the supermassive black hole in the Galactic center, leading to the ejection of the other component. Ten thousand initial orientations of the binary orbits were considered, and the semi-major axes of the binary orbits were varied in a wide range from 11.3 R to 425 R . Two series of computations were carried out, in which the mass of the supermassive black hole was taken to be 106 M and 3.4 × 106 M . Numerical simulations of encounters of the binary and black hole in the framework of the three-body and N-body problems are used to localize regions favorable for the formation of hypervelocity stars. The motion of the ejected star in the regular field of the Galaxy is calculated, and the conditions under which the star escapes the Galaxy defined. The probability of escaping the Galaxy is caluclated as a function of various parameters the initial separation of the binary components and the distance of the binary from the black hole. On average, the probability of forming a hypervelocity star is higher for closer encounters and more tightly bound binary pairs.

  相似文献   

18.
《Applied Geochemistry》2002,17(3):259-284
Groundwaters from Quaternary loess aquifers in northern La Pampa Province of central Argentina have significant quality problems due to high concentrations of potentially harmful elements such as As, F, NO3-N, B, Mo, Se and U and high salinity. The extent of the problems is not well-defined, but is believed to cover large parts of the Argentine Chaco-Pampean Plain, over an area of perhaps 106 km2. Groundwaters from La Pampa have a very large range of chemical compositions and spatial variability is considerable over distances of a few km. Dissolved As spans over 4 orders of magnitude (<4–5300 μg l−1) and concentrations of F have a range of 0.03–29 mg l−1, B of 0.5–14 mg l−l, V of 0.02–5.4 mg l−1, NO3–N of <0.2–140 mg l−1, Mo of 2.7–990 μg l−1 and U of 6.2–250 μg l−1. Of the groundwaters investigated, 95% exceed 10 μg As l−1 (the WHO guideline value) and 73% exceed 50 μg As l−1 (the Argentine national standard). In addition, 83% exceed the WHO guideline value for F (1.5 mg l−1), 99% for B (0.5 mg l−1), 47% for NO3-N (11.3 mg l−1), 39% for Mo (70 μg l−1), 32% for Se (10 μg l−1) and 100% for U (2 μg l−1). Total dissolved solids range between 730 and 11400 mg l−1, the high values resulting mainly from evaporation under ambient semi-arid climatic conditions. The groundwaters are universally oxidising with high dissolved-O2 concentrations. Groundwater pHs are neutral to alkaline (7.0–8.7). Arsenic is present in solution predominantly as As(V). Groundwater As correlates positively with pH, alkalinity (HCO3), F and V. Weaker correlations are also observed with B, Mo, U and Be. Desorption of these elements from metal oxides, especially Fe and Mn oxides under the high-pH conditions is considered an important control on their mobilisation. Mutual competition between these elements for sorption sites on oxide minerals may also have enhanced their mobility. Weathering of primary silicate minerals and accessory minerals such as apatite in the loess and incorporated volcanic ash may also have contributed a proportion of the dissolved As and other trace elements. Concentrations of As and other anions and oxyanions appear to be particularly high in groundwaters close to low-lying depressions which act as localised groundwater-discharge zones. Concentrations up to 7500 μg l−1 were found in saturated-zone porewaters extracted from a cored borehole adjacent to one such depression. Concentrations are also relatively high where groundwater is abstracted from close to the water table, presumably because this zone is a location of more active weathering reactions. The development of groundwaters with high pH and alkalinity results from silicate and carbonate reactions, facilitated by the arid climatic conditions. These factors, together with the young age of the loess sediments and slow groundwater flow have enabled the accumulation of the high concentrations of As and other elements in solution without significant opportunity for flushing of the aquifer to enable their removal.  相似文献   

19.
Total dissolvable Cu and Mn have been measured in seawaters collected from the continental shelf of the eastern Bering Sea. Copper concentrations of < 3 nmole kg−1 were measured over the shelf break but concentrations increased to >4 nmole kg−1 inshore of a hydrographie front over the 100 m isobath. Manganese concentrations also were low over the shelf break, <10 nmole kg−1, and increased systematically to concentrations >10 nmole kg−1 inshore of the hydrographic front. Depth distributions of Mn at all continental shelf stations showed gradients into the sediments, with concentrations typically >20 nmole kg−1 in a bottom layer extending about 30 m off the bottom. Benthic Cu and Mn fluxes are indicated by cross-shelf pore water profiles that show interfacial concentrations more than an order of magnitude greater than in bottom water. These data and the results of a model of metal transport across the shelf suggest that Cu and Mn fluxes, estimated at 2 and 18 nmole cm−2y−1, respectively, from continental shelf sediments may be one “source” of these metals to the deep sea.  相似文献   

20.
《Geochimica et cosmochimica acta》1999,63(19-20):3261-3275
Studies on the dissolution kinetics of kaolinite were performed using batch reactors at 25°C and in the pH range from 1 to 13. A rapid initial dissolution step was first observed, followed by a linear kinetic stage reached after approximately 600 hr of reaction during which the kaolinite dissolves congruently at pH < 4 and pH > 11. The apparent incongruency between pH 5 and 10 was due to the precipitation of an Al–hydroxide phase. The true dissolution rates were computed from the amount of Si released into solution. The rate dependence on pH can be described by: r = 10−12.19aH+0.55 + 10−14.36 + 10−10.71aOH0.75Between pH 5 and 10, the rate is approximately constant, although a smooth minimum was observed at pH close to 9. mAn attempt was made to obtain a general rate law based on the coordination theory, which was first applied to the mineral dissolution studies by Stumm and co-workers. The kinetic data were combined with the results obtained for the surface speciation by Huertas et al. (1998). It is possible to express the linear dissolution rate as a simple power function of the concentration of the surface sites active in various pH ranges: r = 10−8.25 [>Al2OH2+] + 10−10.82 [>AlOH2+]0.5 + 10−9.1 [>Al2OH + >AlOH + >SiOH] + 103.78 [>Al2O + >AlO]3This equation assumes that the dissolution mechanism is mainly controlled by the two Al surface sites (external and internal structural hydroxyls, and aluminol at the crystal edges) under both acidic and alkaline conditions. The model reflects well the important contribution of the crystal basal planes to the dissolution of kaolinite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号