首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Green’s function solution of Laplace’s equation for the potential magnetic field in an external spherical region is found using the derivative of the potential along a selected direction as a boundary condition. A set of programs applying this solution to construct the potential magnetic-field lines in solar active regions based on the photospheric line-of-sight field component has been developed. The method is tested using some model fields, and the optimal step size is found for realistic conditions. The developed software is applied to four real solar active regions, adopting HMI/SDO magnetograms as the boundary conditions. The potential magnetic field in the chromosphere and corona have been reconstructed for the selected regions. The calculated field lines are compared with flux tubes observed by AIA/SDO in the EUV. This comparison is used as a basis to discuss the applicability of a potential field approximation to the magnetic fields in solar active regions.  相似文献   

2.
An “impulsive” coronal mass ejection (CME) observed on August 24, 2014 is analyzed using ultraviolet images obtained in the SDO/AIA 193, 304, 1600, and 1700 Å channels and Hα (6562.8 Å) data obtained with the EI Teide and Big Bear telescopes. The formation of this impulsive CME was related to a magnetic tube (rope) moving with a velocity of ≈35 km/s and containing plasma that was cooler than the photospheric material. Moving in the corona, the magnetic tube collides with a quasi-stationary coronal magnetic rope, with its two bases rooted in the photosphere. This interaction results in the formation of the CME, with the surface of the coronal magnetic rope becoming the CME frontal structure. According to SDO/HMI data, no enhancements or changes in magnetic flux were detected in the vicinity of the CME bases during its formation. This may support the hypothesis that the magnetic tube starts its motion from layers in the vicinity of the temperature minimum.  相似文献   

3.
The Doppler motions in a filament and the underlying photosphere over the several days before its eruption are analyzed. A large filament in the northern hemisphere near the central meridian observed from August 31-September 2, 2014 erupted on September 2, 2014. The filament lost the bulk of its mass as a result of its eruption, and the process of its reconstruction had begun a day later. Observations of this filament in a spectral range encompassing the Hβ λ 486.1 nm (chromospheric) and Fe I λ 485.9 nm (photospheric) lines were carried out on the Horizontal Solar Telescope of the Sayan Solar Observatory on August 31-September 2, 2014. Analysis of the Doppler motions in and beneath the filament yielded the following results. Strong rotational motions were present in the filament over a prolonged period (the entire three days of observations). The coincidence of the steady-state motions of the photosphere and filament was disrupted at the moment of destabilization of the filament by the emergence of new magnetic flux. Short-period (about five-minute) photospheric oscillationswith a train-like character arose in filament from time to time several hours before the eruption. Large segments underwent nearly vertical oscillations in the initial phase of the ascent of the filament.  相似文献   

4.
The event of September 12, 1999 is used to analyze large-scale disturbances associated with coronal mass ejections during the eruption of filaments outside active regions. The analysis is based on Hα filtergrams, EUV and soft X-ray images, and coronograph data. The filament eruption occurred in relatively weak magnetic fields, but was accompanied by larger-scale phenomena than flare events. During several hours after the eruption, a large-scale arcade developed, whose bases formed diverging flare-like ribbons. The volume of the event was bounded by an “EIT wave”, which was quasi-stationary at the solar surface and expanded above the limb. The event did not have an impulsive component; therefore the “EIT wave” above the limb was a magnetic structure, identified as the front of a coronal mass ejection by virtue of its shape, structural features, and kinematics. Three types of dimmings were observed within the areal of the event, cause by (a) the evacuation of plasma, (b) heating of plasma with its subsequent evacuation, and (c) the absorption of radiation in a system of filaments activated by the eruption. The fact that a dimming appeared due to plasma heating was revealed by its presence in soft X-rays, whereas the four EIT channels did not demonstrate this. This brings into question the correctness of certain conclusions drawn earlier based purely on EIT data. A transformation of magnetic fields brought about by the eruption also occurred in a stationary coronal hole adjacent to the areal of the event. The expansion of the coronal mass ejection was self-similar and characterized by a rapidly decreasing acceleration, which is not taken into account in the widely used polynomial approximation.  相似文献   

5.
The solar coronal mass ejection observed on November 3, 2010 is analyzed using AIA/SDO data (images in the 193 and 211 Å channels) and white-corona images obtained with the SOHO LASCO C2 and C3 coronographs. We have succeeded in revealing both piston and blast-wave shocks attributed to the formation and propagation of a coronal mass ejection. Both of these types of shocks could be responsible for type II radio bursts propagating in front of each shock.  相似文献   

6.
The relationship between the height of a solar filament observed above the photosphere before the eruption on October 21, 2010, and the critical height of a stable equilibrium of magnetic flux ropes in the coronal magnetic field is analyzed. Data from the SDO, SOHO, and STEREO space observatories observing at different viewing angles makes it possible to deduce these parameters with high accuracy. It is shown that the filament height slowly increased over several days, with the eruption occuring when the height reached the critical value of 80 Mm.  相似文献   

7.
The solar event SOL2012–10–23T03:13, which was associated with a X1.8 flare without an accompanying coronal mass ejection (CME) and with a Type II radio burst, is analyzed. A method for constructing the spatial and temporal profiles of the difference brightness detected in the AIA/SDOUVand EUV channels is used together with the analysis of the Type II radio burst. The formation and propagation of a region of compression preceded by a collisional shock detected at distances R < 1.3R from the center of the Sun is observed in this event (R is the solar radius). Comparison with a similar event studied earlier, SOL2011–02–28T07:34 [1], suggests that the region of compression and shock could be due to a transient (impulsive) action exerted on the surrounding plasma by an eruptive, high-temperature magnetic rope. The initial instability and eruption of this rope could be initiated by emerging magnetic flux, and its heating from magnetic reconnection. The cessation of the eruption of the rope could result from its interaction with surrounding magnetic structures (coronal loops).  相似文献   

8.
Radan Květ 《GeoJournal》1991,25(4):367-370
Conclusion The gas eruption in Lake Nyos allows solely a deep inorganic origin of the CO2, and CO2 ascent along intersecting ruptures to be considered. Enormous gas volumes can be liberated from ascension paths with voids in the deep sections of the Earth's crust rather than from the water-dissolved phase (a lake) on the Earth's surface. In this case, rupture activity rather than volcanic activity should be involved. Similarly to volcanic activity, other events are also associated with open ruptures in the Earth's crust. No interrelations exist between the single phenomena. One of them consists in the ascent of CO2 with no relation to magma. Earthquakes, too, are associated with ruptures. Even a very slight tremor of the Earth's crust can contribute to the liberation of deepseated compressed CO2. However, disturbing the equilibrium of the water-column pressure and the compressed gas can result in an eruption even with no external impetus, e. g. an earthquake.  相似文献   

9.
We have investigated the loss of H2O from olivine-hosted melt inclusions (MIs) by designing an experiment using tephra samples that cooled at different rates owing to their different sizes: ash, lapilli, and bomb samples that were deposited on the same day (10/17/74) of the sub-Plinian eruption of Volcán de Fuego in Guatemala. Ion microprobe, laser ablation-ICPMS, and electron probe analyses show that MIs from ash and lapilli record the highest H2O contents, up to 4.4 wt%. On the other hand, MIs from bombs indicate up to 30 % lower H2O contents (loss of ~1 wt% H2O) and 10 % post-entrapment crystallization of olivine. This evidence is consistent with the longer cooling time available for a bomb-sized clast, up to 10 min for a 3–4-cm radius bomb, assuming conductive cooling and the fastest H diffusivities measured in olivine (D~10?9 to 10?10 m2/s). On the other hand, several lines of evidence point to some water loss prior to eruption, during magma ascent and degassing in the conduit. Thus, results point to both slower post-eruptive cooling and slower magma ascent affecting MIs from bombs, leading to H2O loss over the timescale of minutes to hours. The important implication of this study is that a significant portion of the published data on H2O concentrations in olivine-hosted MIs may reflect unrecognized H2O loss via diffusion. This work highlights the importance of reporting clast and MI sizes in order to assess diffusive effects and the potential benefit of using water loss as a chronometer of magma ascent.  相似文献   

10.
Low-frequency pulsations of 22 and 37 GHz microwave radiation detected during solar flares are analyzed. Several microwave bursts observed at the Metsähovi Radio Observatory are studied with time resolutions of 100 and 50 ms. A fast Fourier transformation with a sliding window and the Wigner-Ville method are used to obtain frequency-time diagrams for the low-frequency pulsations, which are interpreted as natural oscillations of coronal magnetic loops; the dynamical spectra of the pulsations are synthesized for the first time. Three types of low-frequency fluctuations modulating the flare microwave radiation can be distinguished in the observations. First, there are fast and slow magneto-acoustic oscillations with periods of 0.5–0.8 s and 200–280 s, respectively. The fast magneto-acoustic oscillations appear as trains of narrow-band signals with durations of 100–200 s, a positive frequency drift dν/dt=0.25 MHz/min, and frequency splitting δν=0.01–0.05 Hz. Second, there are natural oscillations of the coronal magnetic loops as equivalent electrical circuits. These oscillations have periods of 0.5–10 s and positive or negative frequency drift rates dν/dt=8×10?3 Hz/min or dν/dt=?1.3×10?2 Hz/min, depending on the phase of the radio outburst. Third, there are modulations of the microwave radiation by short periodic pulses with a period of 20 s. The dynamical spectra of the low-frequency pulsations supply important information about the parameters of the magnetic loops: the ratio of the loop radius to its length r/L≈0.1, the plasma parameter β≈10?3, the ratio of the plasma densities outside and inside the loop ρei≈10?2, and the electrical current flowing along the loop I≈1012 A.  相似文献   

11.
The rhyodacitic magma discharged during the 30–80 km3 DRE (dense rock equivalent) Late Bronze Age (LBA; also called ‘Minoan’) eruption of Santorini caldera is known from previous studies to have had a complex history of polybaric ascent and storage prior to eruption. We refine the timescales of these processes by modelling Mg–Fe diffusion profiles in orthopyroxene and clinopyroxene crystals. The data are integrated with previously published information on the LBA eruption (phase equilibria studies, melt inclusion volatile barometry, Mg-in-plagioclase diffusion chronometry), as well as new plagioclase crystal size distributions and the established pre-LBA history of the volcano, to reconstruct the events that led up to the assembly and discharge of the LBA magma chamber. Orthopyroxene, clinopyroxene and plagioclase crystals in the rhyodacite have compositionally distinct rims, overgrowing relict, probably source-derived, more magnesian (or calcic) cores, and record one or more crystallization (plag???opx?>?cpx) events during the few centuries to years prior to eruption. The crystallization event(s) can be explained by the rapid transfer of rhyodacitic melt from a dioritic/gabbroic region of the subcaldera pluton (mostly in the 8–12 km depth range), followed by injection, cooling and mixing in a large melt lens at 4–6 km depth (the pre-eruptive magma chamber). Since crystals from all eruptive phases yield similar timescales, the melt transfer event(s), the last of which took place less than 2 years before the eruption, must have involved most of the magma that subsequently erupted. The data are consistent with a model in which prolonged generation, storage and segregation of silicic melts were followed by gravitational instability in the subcaldera pluton, causing the rapid interconnection and amalgamation of melt-rich domains. The melts then drained to the top of the pluton, at fluxes of up to 0.1–1 km3 year??1, where steep vertical gradients of density and rheology probably caused them to inject laterally, forming a short-lived holding chamber prior to eruption. This interpretation is consistent with growing evidence that some large silicic magma chambers are transient features on geological timescales. A similar process preceded at least one earlier caldera-forming eruption on Santorini, suggesting that it may be a general feature of this rift-hosted magmatic system.  相似文献   

12.
Physical differences in the formation of “gradual” and “impulsive” coronal mass ejections (CMEs) at heights of h < 0.2 R just before and during the initial phase of their motion are studied using AIA/SDO ultraviolet data (h is the altitude above the solar surface and R is the solar radius). The basic structure of a gradual CME is a magnetic rope located in the corona. During an hour or more preceding the initial phase, the magnetic rope demonstrates an increase in brightness and transverse size, first of the low, inner elements of the rope and then of elements in its outer envelope most distant from the Sun. The rope remains motionless during this time. The initial phase of a gradual CME begins from the motion of the magnetic rope’s outer envelope, which further becomes the basis for the CME frontal structure. At this stage, the inner low elements of the rope remain almost motionless. The initial phase of an impulsive CME begins with the appearance near the photosphere of a cavity moving away from the Sun; the dynamics of this cavity probably correspond to a magnetic tube filled with cool plasma rising from beneath the photosphere. This magnetic tube collides with and drags arch structures, which initially block the tube’s motion. These arch structures contribute to the CME formation, although the magnetic tube itself forms the basis of the CME.  相似文献   

13.
Late Quaternary, porphyritic basalts erupted in the Kaikohe-Bay of Islands area, New Zealand, provide an opportunity to explore the crystallization and ascent history of small volume magmas in an intra-continental monogenetic volcano field. The plagioclase phenocrysts represent a diverse crystal cargo. Most of the crystals have a rim growth that is compositionally similar to groundmass plagioclase (~?An65) and is in equilibrium with the host basalt rock. The rims surround a resorbed core that is either less calcic (~?An20–45) or more calcic (>?An70), having crystallized in more differentiated or more primitive melts, respectively. The relic cores, particularly those that are less calcic (<?~?An45), have 87Sr/86Sr ratios that are either mantle-like (~?0.7030) or crustal-like (~?0.7040 to 0.7060), indicating some are antecrysts formed in melts fractionated from plutonic basaltic forerunners, while others are true xenocrysts from greywacke basement and/or Miocene arc volcanics. It is envisaged that intrusive basaltic forerunners produced a zone where various degrees of crustal assimilation and fractional crystallization occurred. The erupted basalts represent mafic recharge of this system, as indicated by the final crystal rim growths around the entrained antecrystic and xenocrystic cargo. The recharge also entrained cognate gabbros that occur as inclusions, and produced mingled groundmasses. Multi-stage magmatic ascent and interaction is indicated, and is consistent with the presence of a partial melt body in the lower crust detected by geophysical methods. This crystallization history contrasts with traditional concepts of low-flux basaltic systems where rapid ascent from the mantle is inferred. From a hazards perspective, the magmatic system inferred here increases the likelihood of detecting eruption precursor phenomena such as seismicity, degassing and surface deformation.  相似文献   

14.
The signature of 11 X-class solar flares that occurred during the ascending half of the present subdued solar cycle 24 from 2009 to 2013 on the ionosphere over the low- and mid-latitude station, Dibrugarh (27.5°N, 95°E; magnetic latitude 17.6°N), are examined. Total electron content (TEC) data derived from Global Positioning System satellite transmissions are used to study the effect of the flares on the ionosphere. A nonlinear significant correlation (R2 = 0.86) has been observed between EUV enhancement (ΔEUV) and corresponding enhancement in TEC (ΔTEC). This nonlinearity is triggered by a rapid increase in ΔTEC beyond the threshold value ~1.5 (×1010 ph cm?2 s?1) in ΔEUV. It is also found that this nonlinear relationship between TEC and EUV flux is driven by a similar nonlinear relationship between flare induced enhancement in X-ray and EUV fluxes. The local time of occurrence of the flares determines the magnitude of enhancement in TEC for flares originating from nearly similar longitudes on the solar disc, and hence proximity to the central meridian alone may not play the dominating role. Further, the X-ray peak flux, when corrected for the earth zenith angle effect, did not improve the correlation between ΔX-ray and ΔTEC.  相似文献   

15.
The main shock of Bingöl earthquake (M W = 6.4) recorded by six accelerometers in the area occurred at 03:27 local time on May 1, 2003. The largest acceleration value of north–south component was recorded as 545.5 cm/s2 at the nearest station which it is 12 km away from the epicenter of earthquake. Especially, 0.15 s short period was observed when high spectral acceleration value occurred. An acceleration value greater than 50 gal was recorded at the BNG (Bingöl) station and structural damage occurred within 6.5 s was very important for the near source and strong ground motion seismology. The recorded peak acceleration values were greater than the estimated empirical acceleration values. However, the structural damage was not as high and widespread as expected. This occurrence was explained by considering the factors of earthquake source, frequency content, effective duration, effective acceleration value, local soil conditions, rupture direction and attenuation.  相似文献   

16.
The size distributions of crystals of olivine, plagioclase and oxides of the 1991/93 eruption at Mt. Etna (Italy) are analyzed. The simultaneous collection of this information for different minerals gives precious insight into the cooling history of lavas. Three distinct episodes are detectable: a storage of the magma in a deep reservoir, characterized by nearly constant and low nucleation and growth rates (near to equilibrium); an ascent phase, with an ever increasing nucleation rate related to volatile exsolution; and finally a quenching phase. In addition to geochemical and geophysical evidence, the similarity of the crystal size distributions of the present eruption with those of previous ones of this century makes it possible to exclude that crystal size distributions of Etnean lavas are due to mixing of different populations. This strongly suggests that the main features of the volcano feeding system have not changed despite observed variations in the magma output rates.  相似文献   

17.
Kinetic and fluid dynamic constraints on deep-seated magma migration rates suggest ascent velocities in the range 10 to 30 m/s, 10–1 to 10 m/s and 10–2 to 5 m/s for kimberlitic, garnet peridotite-bearing and spinel peridotite-bearing alkalic magmas. These rates virtually demand translithospheric magma transport by a fracture as opposed to diapiric mechanism. The hypothesis that volatile exsolution accelerates magma through the deep lithosphere is tested by solution of the appropriate set of conservation, mass balance and volatile component solubility equations governing the steady ascent (decompression) of compressible, two-phase magma (melt+H2O+CO2) in which irreversible phenomena (friction, heat transfer) are accounted for. The results of the numerical experiments were designed to test the importance of melt bulk composition (kimberlite, nephelinite, alkali basalt), initial conditions (mass flux (M), heat transfer coefficient (B), lumped friction factor (C f )), conduit width (D), initial magma volatile content and geothermal gradients. The fractional increase in ascent rate (u/u i ) is rarely greater than approximately 2 during translithospheric migration. The propellant hypothesis is rejected as a first-order mechanism driving magma acceleration during ascent. The most influential parameters governing ascent dynamics are M, C f , D, B and the geotherm. Because of the relatively incompressible nature of the magmatic volatile phase at P>100 MPa, the initial magma volatile content plays a secondary (although demonstrable) role. The main role of volatiles is in controlling the initial magma flux (M) and the magma pressure during ascent. In adiabatic (B=0) simulations, magma ascends nearly isothermally. Generally, however, the assumption of adiabaticity is a poor one especially for flow through narrow (0.5 to 2 m) conduits in old (cold) lithosphere at rates 10–1 m/s. The proposed fluid dynamic model is consistent with and complementary to the magma-driven crack propagation models. The generation of mantle metasomatic fluid is a corollary of the non-adiabatic ascent of volatile-bearing magma through the lithosphere. Magma heat death is an important process for the creation of mantle heterogeneity.  相似文献   

18.
SOHO/EIT data are used to analyze dimmings, or transient coronal holes (regions of reduced soft-X-ray and EUV emission), which are observed on the solar disk after halo-type coronal mass ejections (CMEs). Simultaneous observations in the 171 Å FeIX/X, 195 Å FeXII, and 284 Å FeIX coronal lines, which are sensitive to temperatures of T e ≈1.2, 1.5, and 2.0 MK, respectively, are considered, together with the 304 Å HeII transition-region line (T e ≈(0.02–0.08) MK). Difference images taken at intervals of six and twelve hours and compensated for solar rotation indicate that dimmings are normally strongly pronounced and have similar large-scale structures in the moderate-excitation-temperature 171 Å and 195 Å coronal lines, while the higher-temperature 284 Å line mainly display the deepest portions of the dimmings. In addition, clear dimmings with relatively small areas are visible in the 304 Å transition-region line during many CMEs, in particular, in regions adjacent to the source of the eruption. Moreover, dimmings in the transition region without coronal counterparts are observed during some events. These results suggest that the opening of magnetic-field lines and the resulting density reduction that occur during a CME can also involve cold plasma of the transition region. In addition, the effects of temperature variations cannot be ruled out for some dimming structures.  相似文献   

19.
Summary Volcanic rocks on Ponza Island (Tyrrhenian Sea, central Italy) consist of Pliocene submarine rhyolites and Pleistocene subaerial trachyte and comendite lavas. Chemical variations and the homogeneous Sr and Nd isotopic signatures within the analyzed Pliocene rocks are ascribed to crystal fractionation. The absolute isotopic values, however, indicate the important role of a crustal component in the origin of these magmas. The very high-silica rocks were probably derived from a superimposed mechanism which may have been connected to the ascent of hydrothermal magmatic fluids. Compositional and 87Sr/86Sr variations at constant 143Nd/144Nd values in the Pleistocene rocks are likely due to fractionation of the observed phenocryst assemblage, possibly coupled with minor crustal interaction. These processes, however, cannot account for the extreme enrichment of many incompatible trace elements in the comendites. Some evidence suggests the influence of a halogen- and/or CO2-rich volatile phase. Received February 17, 2000; revised version accepted November 29, 2000  相似文献   

20.
The 2010 eruption of Merapi (VEI 4) was the volcano’s largest since 1872. In contrast to the prolonged and effusive dome-forming eruptions typical of Merapi’s recent activity, the 2010 eruption began explosively, before a new dome was rapidly emplaced. This new dome was subsequently destroyed by explosions, generating pyroclastic density currents (PDCs), predominantly consisting of dark coloured, dense blocks of basaltic andesite dome lava. A shift towards open-vent conditions in the later stages of the eruption culminated in multiple explosions and the generation of PDCs with conspicuous grey scoria and white pumice clasts resulting from sub-plinian convective column collapse. This paper presents geochemical data for melt inclusions and their clinopyroxene hosts extracted from dense dome lava, grey scoria and white pumice generated during the peak of the 2010 eruption. These are compared with clinopyroxene-hosted melt inclusions from scoriaceous dome fragments from the prolonged dome-forming 2006 eruption, to elucidate any relationship between pre-eruptive degassing and crystallisation processes and eruptive style. Secondary ion mass spectrometry analysis of volatiles (H2O, CO2) and light lithophile elements (Li, B, Be) is augmented by electron microprobe analysis of major elements and volatiles (Cl, S, F) in melt inclusions and groundmass glass. Geobarometric analysis shows that the clinopyroxene phenocrysts crystallised at depths of up to 20 km, with the greatest calculated depths associated with phenocrysts from the white pumice. Based on their volatile contents, melt inclusions have re-equilibrated during shallower storage and/or ascent, at depths of ~0.6–9.7 km, where the Merapi magma system is interpreted to be highly interconnected and not formed of discrete magma reservoirs. Melt inclusions enriched in Li show uniform “buffered” Cl concentrations, indicating the presence of an exsolved brine phase. Boron-enriched inclusions also support the presence of a brine phase, which helped to stabilise B in the melt. Calculations based on S concentrations in melt inclusions and groundmass glass require a degassing melt volume of 0.36 km3 in order to produce the mass of SO2 emitted during the 2010 eruption. This volume is approximately an order of magnitude higher than the erupted magma (DRE) volume. The transition between the contrasting eruptive styles in 2010 and 2006 is linked to changes in magmatic flux and changes in degassing style, with the explosive activity in 2010 driven by an influx of deep magma, which overwhelmed the shallower magma system and ascended rapidly, accompanied by closed-system degassing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号