首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phonon density of states (DOS) in iron has been measured in situ by nuclear resonance inelastic X-ray scattering (NRIXS) at high pressures and high temperatures in a resistively heated diamond anvil cell. The DOS data provide a variety of thermodynamic and elastic parameters essential for characterizing iron at depth in the Earth interior, such as average sound velocity, Debye temperature, atomic mean square displacement, average kinetic energy, vibrational entropy and specific heat. The NRIXS data were collected at 6, 20, and 29 GPa and at temperatures up to 920 K. Temperatures were directly determined from the measured spectra by the ratio of intensities of the phonon creation/annihilation side bands that are determined only by the Boltzmann factor. The change of the DOS caused by the structural transition from -Fe to -Fe is small and not resolvable within the experimental precision. However, the phonon energies in -Fe are clearly shifted to lower values with respect to - and -Fe. The temperature dependence of derived thermodynamic parameters is presented and compared with those obtained by Debyes model. The Debye temperatures that best describe the data decrease slightly with increasing temperature.  相似文献   

2.
We observed a direct reaction of metallic iron with water to form iron hydride and iron oxide, 3Fe + H2O–>2FeHx + FeO, at pressures from 6 GPa to 84 GPa and temperatures above 1,000 K in diamond anvil cell (DAC). Iron hydride is dhcpFeHx or -FeHx, and iron oxide has the rhombohedral or B1 structure at pressures at least up to 37 GPa. The formation of an assembly composed of dhcpFeHx and FeO with the B8 structure was observed at 84 GPa. In primordial Earth, water formed by dehydration of the low temperature primitive materials reacts with metallic iron in the high temperature component to form iron hydride FeHx and iron oxide FeO. The former would be incorporated in the iron forming the core. Thus hydrogen could be an important element of the Earths core. This reaction would be essential for transport of hydrogen into the core in the accretion stage of the Earth.  相似文献   

3.
 The crystal structure of MgFe2O4 was investigated by in situ X-ray diffraction at high pressure, using YAG laser annealing in a diamond anvil cell. Magnesioferrite undergoes a phase transformation at about 25 GPa, which leads to a CaMn2O4-type polymorph about 8% denser, as determined using Rietveld analysis. The consequences of the occurrence of this dense MgFe2O4 form on the high-pressure phase transformations in the (MgSi)0.75(FeIII)0.5O3 system were investigated. After laser annealing at about 20 GPa, we observe decomposition to two phases: stishovite and a spinel-derived structure with orthorhombic symmetry and probably intermediate composition between MgFe2O4 and Mg2SiO4. At pressures above 35 GPa, we observe recombination of these products to a single phase with Pbnm perovskite structure. We thus conclude for the formation of Mg3Fe2Si3O12 perovskite. Received: 27 March 2000 / Accepted: 1 October 2000  相似文献   

4.
We measured the electrical resistivity of face-centered-cubic (fcc) structured iron hydrides at high pressures up to 65 GPa and high temperatures in a laser-heated diamond anvil cell. The results indicate that the resistivity of stoichiometric fcc FeHx (x ~ 1.0) is smaller than that of fcc Fe at the same pressure and temperature conditions. The same behavior was also observed in fcc FeNiHx (x ~ 1.0). On the other hand, hydrogen-poor fcc FeHx (x < 0.77) showed a resistivity comparable to that of the fcc phase of pure iron. Therefore, we conclude that the stoichiometric fcc Fe (–Ni) hydride is more conductive than Fe (–Ni) with the same crystal symmetry, and the impurity resistivity of hydrogen in Fe is vanishingly small. Even if hydrogen is the major light element in the Earth's core, it would have little influence on the electrical and thermal conductivity of Fe–Ni alloys, and hence the thermal evolution of the core.  相似文献   

5.
Iron pressurized to 60 gigapascal (GPa) was heated with laser up to temperatures of over 2200 K. The structural changes were determined in-situ using third generation synchrotron X-ray source; the changes were recorded on an imaging plate with a monochromatic beam. The results strongly support the existence of a phase transformation of the hexagonal close-packed (hcp) structure to the new polymorph (β-phase of iron) at high pressure and temperature. We interpret the X-ray data as belonging to the double hexagonal close-packed (dhcp) structure distorted by stress due to laser heating. Received: 2 February 1998 / Accepted: 23 August 1998  相似文献   

6.
The phase boundary between wadsleyite and ringwoodite in Mg2SiO4 has been determined in situ using a multi-anvil apparatus and synchrotron X-rays radiation at SPring-8. In spite of the similar X-ray diffraction profiles of these high-pressure phases with closely related structures, we were able to identify the occurrence of the mutual phase transformations based on the change in the difference profile by utilizing a newly introduced press-oscillation system. The boundary was located at ~18.9 GPa and 1,400°C when we used Shim’s gold pressure scale (Shim et al. in Earth Planet Sci Lett 203:729–739, 2002), which was slightly (~0.8 GPa) lower than the pressure as determined from the quench experiments of Katsura and Ito (J Geophys Res 94:15663–15670, 1989). Although it was difficult to constrain the Clapeyron slope based solely on the present data due to the kinetic problem, the phase boundary [P (GPa)=13.1+4.11×10−3×T (K)] calculated by a combination of a PT position well constrained by the present experiment and the calorimetric data of Akaogi et al. (J Geophys Res 94:15671–15685, 1989) reasonably explains all the present data within the experimental error. When we used Anderson’s gold pressure scale (Anderson et al. in J Appl Phys 65:1535–1543, 1989), our phase boundary was located in ~18.1 GPa and 1,400°C, and the extrapolation boundary was consistent with that of Kuroda et al. (Phys Chem Miner 27:523–532, 2000), which was determined at high temperature (1,800–2,000°C) using a calibration based on the same pressure scale. Our new phase boundary is marginally consistent with that of Suzuki et al. (Geophys Res Lett 27:803–806, 2000) based on in situ X-ray experiments at lower temperatures (<1,000°C) using Brown’s and Decker’s NaCl pressure scales.  相似文献   

7.
The high-pressure stability limit of calcium aluminosilicate (CAS) phase has been examined in its end-member CaAl4Si2O11 composition at 18–39 GPa and 1,670–2,300 K in a laser-heated diamond-anvil cell (LHDAC). The in-situ synchrotron X-ray diffraction measurements revealed that the CAS phase decomposes into three-phase assemblage of cubic Al-bearing CaSiO3 perovskite, Al2O3 corundum, and SiO2 stishovite above 30 GPa and 2,000 K with a positive pressure–temperature slope. Present results have important implications for the subsolidus mineral assemblage of subducted sediment and the melting phase relation of basalt in the lower mantle.  相似文献   

8.
高温高压下石膏脱水相变的原位拉曼光谱研究   总被引:1,自引:0,他引:1  
周兴志  郑海飞孙樯 《岩石学报》2006,22(12):3047-3051
本文运用激光拉曼光谱仪,利用水热金刚石压腔装置对高温高压条件下石膏-水体系中的石膏脱水相变进行拉曼光谱研究.在压力0.1 MPa~837.9 MPa和温度16~200 ℃条件下通过系列实验对相变的过程进行了原位光谱分析.与人们已知的无水条件下石膏分两步脱水的过程不同,高压下石膏在饱和水环境下倾向于一次性的脱去所有结晶水而形成无水石膏,实验中没有观察到半水石膏的出现.通过实验数据得到石膏和无水石膏的转折温度和平衡压力间的关系式为P(MPa)=19.56·T(℃)-2926.5.  相似文献   

9.
叶蜡石高温相转变的实验研究   总被引:1,自引:0,他引:1  
通过差热分析、X射线衍射分析、红外光谱分析和魔角旋转核磁共振等测试手段,研究了日本广岛胜光山叶蜡石在20~1 300 ℃下煅烧的相转变过程。结果表明,叶蜡石的高温相转变经历了4 个阶段:叶蜡石阶段(室温~662 ℃),偏叶蜡石阶段(662~1 100 ℃),不定形SiO2 与莫来石形成阶段(1 100~1 200 ℃)和莫来石与方石英共存阶段(1 300 ℃~)。叶蜡石在662 ℃时失去结构水转变为偏叶蜡石。偏叶蜡石从1 100 ℃开始转变为莫来石,同时伴随有不定形SiO2 生成。1 300 ℃时,不定形SiO2 进一步结晶形成方石英。  相似文献   

10.
Determination of the phase boundary between ilmenite and perovskite structures in MgSiO3 has been made at pressures between 18 and 24 GPa and temperatures up to 2000 °C by in situ X-ray diffraction measurements using synchrotron radiation and quench experiments. It was difficult to precisely define the phase boundary by the present in situ X-ray observations, because the grain growth of ilmenite hindered the estimation of relative abundances of these phases. Moreover, the slow reaction kinetics between these two phases made it difficult to determine the phase boundary by changing pressure and temperature conditions during in situ X-ray diffraction measurements. Nevertheless, the phase boundary was well constrained by quench method with a pressure calibration based on the spinel-postspinel boundary of Mg2SiO4 determined by in situ X-ray experiments. This yielded the ilmenite-perovskite phase boundary of P (GPa) = 25.0 (±0.2) – 0.003 T (°C) for a temperature range of 1200–1800 °C, which is generally consistent with the results of the present in situ X-ray diffraction measurements within the uncertainty of ∼±0.5 GPa. The phase boundary thus determined between ilmenite and perovskite phases in MgSiO3 is slightly (∼0.5 GPa) lower than that of the spinel-postspinel transformation in Mg2SiO4. Received: 19 May 1999 / Accepted: 21 March 2000  相似文献   

11.
In pelitic rocks, under conditions of low f O 2 and low f H 2 O, the stability of the mineral pair cordierite-garnet is limited by five univariant reactions. In sequence from high pressure and low temperature to high temperature and low pressure these are: cordierite+garnet hypersthene+sillimanite+quartz, cordierite+garnet hypersthene+sapphirine+quartz, cordierite+garnet hypersthene+spinel+quartz and cordierite+garnet olivine+spinel +quartz. In this sequence of reactions the Mg/Mg+Fe2+ ratio of all ferro-magnesian minerals involved decreases continuously from the first reaction to the fifth. The five univariant boundaries delimit a wide P-T range over which cordierite and garnet may coexist.Two divariant equilibria in which the Mg/Mg+ Fe2+ ratio of the coexisting phases are uniquely determined by pressure and temperature have been studied in detail. P-T-X grids for the reactions cordierite garnet+sillimanite+quartz and cordierite+hypersthene garnet+quartz are used to obtain pressure-temperature estimates for several high grade metamorphic areas. The results suggest temperatures of formation of 700–850° C and load pressures of 5–10 kb. In rare occasions temperatures of 950–1000° C appear to have been reached during granulite metamorphism.On the basis of melting experiments in pelitic compositions it is suggested that Ca-poor garnet xenocrysts found in calc-alkaline magmas derive from admixed pelitic rocks and did not equilibrate with the calc-alkaline magma.  相似文献   

12.
The stability of cordierite and garnet has been studied experimentally in complex, silica oversaturated compositions (in the systems MgO-FeO-Al2O-CaO3-Na2O-K2OSiO2) in which the molecular ratio Al2O3/FeO+MgO<1. Compositions with 100 Mg/Mg+Fe2+ ratios (X) of 0, 30, 50, 70 and 100 have been used to investigate the role of this ratio in determining phase assemblages and P, T coordinates of reactions. The minimum pressure for appearance of garnet at a given temperature is strongly dependent on X total rock.The X-values of co-existing phases (chiefly garnet, cordierite, hypersthene) in divariant equilibrium are a function of temperature and pressure and have been experimentally determined at 900° C, 1000° C and 1100° C. At high temperature (>1050° C) the phases sapphirine and spinel are stable with quartz in Mg-rich and Fe-rich compositions respectively. Experiments in the system MgO-FeO-Al2O3-SiO2 show that for a given X-value and temperature the pressure required to produce Ca-free garnet from hypersthene-cordierite assemblages is 1–2 kb greater than that required to produce garnet containing 6±2 mol percent grossular solid solution in the more complex Ca-bearing system.  相似文献   

13.
The stability of cordierite and garnet relative to their anhydrous breakdown products, i.e. hypersthene, sapphirine, olivine, spinel, sillimanite and quartz, has been studied experimentally in model pelitic compositions (system MgO-FeO-Al2O3-CaO-K2O-SiO2). Below 1000° C cordierite breaks down according to the divariant reaction cordierite garnet+sillimanite+quartz (1) for most values of the MgO/MgO + FeO ratio (X). At very high values of X (ca. X0.9) garnet in reaction (1) is replaced by hypersthene. The position and width of the divariant field (in terms of pressure and temperature) in which cordierite and garnet coexist, is a function of the MgO/MgO + FeO ratio. If this ratio is increased then the stability field of garnet is reduced and that of cordierite extended towards higher pressure. Compositions of coexisting cordierite and garnet in divariant equilibrium have been analysed by electron probe micro-analyser. These compositions are unique functions of pressure and temperature. Above ca. 1000° C the breakdown of cordierite involves the phases sapphirine and hercynite-rich spinel in Mg-rich and Fe-rich compositions respectively.  相似文献   

14.
 The structure of the cristobalite-like polymorph of phosphorus oxynitride PON has been refined using neutron powder diffraction data. It is tetragonal, space group I&4macr;2d, Z=4. The four P–(O,N) distances are equal but the tetrahedron is compressed along c. In AX2 or ABX4 compounds, the tetragonal I&4macr;2d or I&4macr; structure is obtained when the average ratio of the cation to anion radius is below 1.186, whereas the tetragonal P41212 or orthorhombic C2221 structure is obtained at low temperatures for larger ratios. The cell parameters of this PON polymorph have been determined as a function of hydrostatic pressure by in situ angle dispersive X-ray powder diffraction in a diamond-anvil cell. Under truly hydrostatic pressure, a strong anisotropic behavior is observed with the c parameter being nearly incompressible. Very slight anisotropic stress strongly modifies the high-pressure behavior. According to the pressure-temperature conditions of treatment, three phases, cristobalite-, moganite-, and quartz-like, have been obtained by quenching experiments, and the PT phase diagram of PON was derived. The high-pressure behavior of the α-quartz, moganite, and cristobalite-like polymorphs of PON and SiO2 is discussed. Received: 7 August 2000 / Accepted: 21 January 2001  相似文献   

15.
 The structural behavior of stuffed derivatives of quartz within the Li1− x Al1− x Si1+ x O4 system (0 ≤ x ≤ 1) has been studied in the temperature range 20 to 873 K using high-resolution powder synchrotron X-ray diffraction (XRD). Rietveld analysis reveals three distinct regimes whose boundaries are defined by an Al/Si order-disorder transition at x=∼0.3 and a β–α displacive transformation at x=∼0.65. Compounds that are topologically identical to β-quartz (0 ≤ x < ∼0.65) expand within the (0 0 1) plane and contract along c with increasing temperature; however, this thermal anisotropy is significantly higher for structures within the regime 0 ≤ x < ∼0.3 than for those with compositions ∼0.3 ≤ x < ∼0.65. We attribute this disparity to a tetrahedral tilting mechanism that occurs only in the ordered structures (0 ≤ x < ∼0.3). The phases with ∼0.65 ≤ x ≤ 1 adopt the α-quartz structure at room temperature, and they display positive thermal expansion along both a and c from 20 K to their α–β transition temperatures. This behavior arises mainly from a rotation of rigid Si(Al)-tetrahedra about the <100> axes. Landau analysis provides quantitative evidence that the charge-coupled substitution of Li+Al for Si in quartz dampens the α–β transition. With increasing Li+Al content, the low-temperature modifications exhibit a marked decrease in spontaneous strain; this behavior reflects a weakening of the first-order character of the transition. In addition, we observe a linear decrease in the α–β critical temperature from 846 K to near 0 K as the Li+Al content increases from x=0 to x=∼0.5. Received: 26 June 2000 / Accepted: 1 December 2000  相似文献   

16.
 The crystal structure of a synthetic Rb analog of tetra-ferri-annite (Rb–TFA) 1M with the composition Rb0.99Fe2+ 3.03(Fe3+ 1.04 Si2.96)O10.0(OH)2.0 was determined by the single-crystal X-ray diffraction method. The structure is homooctahedral (space group C2/m) with M1 and M2 occupied by divalent iron. Its unit cell is larger than that of the common potassium trioctahedral mica, and similar lateral dimensions of the tetrahedral and octahedral sheets allow a small tetrahedral rotation angle α=2.23(6)°. Structure refinements at 0.0001, 1.76, 2.81, 4.75, and 7.2 GPa indicate that in some respects the Rb–TFA behaves like all other micas when pressure increases: the octahedra are more compressible than the tetrahedra and the interlayer is four times more compressible than the 2:1 layer. However, there is a peculiar behavior of the tetrahedral rotation angle α: at lower pressures (0.0001, 1.76, 2.81 GPa), it has positive values that increase with pressure [from 2.23(6)° to 6.3(4)°] as in other micas, but negative values −7.5(5)° and −8.5(9)° appear at higher pressures, 4.75 and 7.2 GPa, respectively. This structural evidence, together with electrostatic energy calculations, shows that Rb–TFA has a Franzini A-type 2:1 layer up to at least 2.81 GPa that at higher pressure yields to a Franzini B-type layer, as shown by the refinements at 4.75 and 7.2 GPa. The inversion of the α angle is interpreted as a consequence of an isosymmetric displacive phase transition from A-type to B-type structure between 2.81 and 4.75 GPa. The compressibility of the Rb–TFA was also investigated by single-crystal X-ray diffraction up to a maximum pressure of 10 GPa. The lattice parameters reveal a sharp discontinuity between 3.36 and 3.84 GPa, which was associated with the phase transition from Franzini-A to Franzini-B structure. Received: 21 October 2002 / Accepted: 25 February 2003  相似文献   

17.
The stability of nonstoichiometric clinopyroxenes in the Di-CaEsk join was experimentally studied, and phase diagrams were constructed for this join at pressures of 2.0 and 3.0 GPa. It was found that melting in the diopside part of the join occurs at anomalously low temperatures, and nonstoichiometric clinopyroxene coexists with a phase approaching diopside in composition. Phase relations along the Di-CaEsk join can be described and consistently interpreted only assuming that the diopside phase (α-diopside) is thermodynamically stable. The following phase volumes were observed along the solidus of the join at a pressure of 3.0 GPa: Cpx, αDi+Cpx, αDi+Cpx+Qtz, αDi+Cpx+Grt+Qtz, Cpx+Grt+Qtz, Cpx+Grt+Ky+Qtz, Grt+Ky+Qtz. Melting occurs via the eutectic reaction αDi+Cpx+Grt+Qtz=L at a temperature of about 1200°C in the diopside part of the system and via the eutectic reaction Cpx+Grt+Ky+Qtz=L at a temperature of 1400°C in the calcium-rich part of the system. At a pressure of 2.0 GPa, melting occurs at temperatures of 1200–1300°C via the eutectic reaction αDi+Cpx+ An + Qtz=L. The invariant equilibrium (L, An, Cpx, Grt, αDi, Qtz) lies within the pressure range 2.0–3.0 GPa. Nonstoichiometric clinopyroxenes form complex solid solutions, the compositions of which are not strictly confined to the Di-CaEsk join and depend on temperature, pressure, and phase association. Grossular garnets coexist with nonstoichiometric clinopyroxenes and α-diopside.  相似文献   

18.
19.
We report a comparative study on the high pressure (HP) structural behaviour of a fibrous zeolite (with EDI topology) on the basis of rigid unit modes (RUM) modelling and previously published single-crystal X-ray diffraction. HP single-crystal diffraction data lead to a more precise determination of the elastic parameters (axial and volume compressibilities) useful to define the equation-of-state under isothermal conditions, and the structural refinements are useful to describe the main deformation mechanisms of the Si/Al framework and extra-framework content at high pressure. The RUM modelling is applied to simulate the compressive behaviour of the framework, under hydrostatic and non-hydrostatic conditions, using a minimum number of parameters, and to describe the deformation mechanism intuitively in terms of the rotations of the SiO4 polyhedra. The local and global P-induced deformation mechanisms of the Si/Al framework observed in experiment (channel ellipticity, SBU rotation) are well reproduced by RUM modelling. The simulation of uniaxial compression (non-hydrostatic conditions) shows an interesting result on the structural behaviour. This comparative study tests the reliability of the RUM modelling in open-framework silicates with a complicated crystal structure.Electronic Supplementary Material: Supplementary material to this paper is available in electronic form at  相似文献   

20.
石英高压相变研究进展   总被引:2,自引:0,他引:2  
罗扬  施旭  贺红亮  赵永红 《地学前缘》2007,14(3):149-157
文中总结了前人有关石英高温高压相变的实验结果。根据以前的实验,在静水压条件下,石英-柯石英-斯石英-CaCl2结构超斯石英相-α-PbO2结构超斯石英相之间的相变方程分别是:p(GPa)=(2.11±0.03)+(9.8×10-4±1.2×10-4)×T(℃),p(GPa)=(8.0±0.2)+(1.1×10-3±3×10-4)×T(℃),p(GPa)=(51±2)+(0.012±0.005)×T(K),p(GPa)=98+(0.0095±0.0016)×T(K)。文中还初步探讨了非静水压状态对石英相变的影响。实验结果表明,差应力的出现降低了石英相变所需要的围压,即相变边界向低压方向偏移,在周永胜等人实验数据的基础上,笔者尝试将二维的相图扩展到三维相图以考虑差应力的影响。最后讨论了石英相变在地学研究中的作用,对比不同的观点分析了前人对超高压变质作用过程的解释,希望可以为以后解释地质资料提供较为广泛的可能性,促进我们对地球内部动力学过程的了解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号