首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
为了能更好地研究地层温压条件下原油-水-岩石相互作用发生的化学变化及其对成藏条件特别是储层物性等的影响,结合渤南洼陷深层的成藏条件及流体动力系统等特征,进行物理实验模拟。结果表明:1)在一定的温压条件下(温度120℃、压力45MPa)岩石及实验后的原油化学成分及生物标志物均发生了变化。油样的饱和烃含量增加,沥青质+非烃含量明显降低;油砂的饱和烃含量沿实验装置从下到上逐渐增加,最高值达62.22%,沥青质+非烃含量由40.55%下降到12.78%。实验样品的生物标志物及族组成显示油沿着实验装置从下向上运移过程中发生了地质色层效应。2)原油-水-岩石相互作用以溶蚀作用为主,并随原油在实验本体内从下向上的运移而逐渐增强。溶蚀作用的结果改善了普遍以低孔低渗为特征的深部储层的物性,为深层油气的运移和保存提供了有效空间。  相似文献   

2.
This work describes the origin, applications and limitations of a specific biomarker: 18α(H)-oleanane, which is a paleoenvironmental, organic matter type and age indicator for the assessment of oil–oil and oil–source rock correlations. Specific cases in which this compound has been detected in oils and source rocks in the two main Venezuelan petroleum basins are presented in this work, along with scenarios for future research.  相似文献   

3.
Geological sequestration of CO2 is one of the options studied to reduce greenhouse gas emissions. Although the feasibility of this concept is proven, apart from literature data on modelling still little is known about the CO2–water–rock interactions induced by CO2-injection.To evaluate the effect of CO2–water–rock interactions on three sandstone aquifers in NE-Belgium an experimental setup was built. Eighteen experiments were performed in which sandstones were exposed to supercritical CO2. CO2–water–rock interactions were deduced from the evolution of aqueous concentrations of 25 species and a thorough characterisation of the sandstones before and after treatment. The results show that dissolution of ankerite/dolomite and Al-silicates could enhance porosity/permeability. The observed precipitation of end-member carbonates could increase storage capacity if it exceeds carbonate dissolution. Precipitation of the latter and of K-rich clays as observed, however, can hamper the injection.  相似文献   

4.
Molecular and isotopic compositions of crude oils in the Beaufort–Mackenzie Basin confirm three genetic end-member oil groups and suggest extensive cross-formational hydrocarbon fluid flows in the Tertiary deltaic system. Inter- and intra-fractional variations in the geochemistry of the Tertiary-reservoired oils indicate that the oil source/maturity signatures were substantially masked by biomarkers that were picked up along migration pathways. Thus, many of the previously recognized “immature non-marine oils” are in fact thermally mature, probably derived from unpenetrated deeper marine source rocks. Although the effective source rock volumes have not been evaluated and their exact stratigraphic levels remain unknown, the relative timing of oil generation versus trap formation, rather than poor source quality, may be the cause of under-filled traps in the offshore area.  相似文献   

5.
Lupanoid hydrocarbons are known to occur in several petroleum systems, and lupane (C30) has recently been confirmed to exist in several crude oils. In contrast, norlupanes (C29) and bisnorlupanes (C28) are rarely observed in oil. All of these compounds are considered to derive from natural products of angiosperms, and numerous examples of their functionalized analogs are known. The occurrence of C28 and C29 lupanoids in biochemical and geochemical systems is reviewed here, and the presence and origin of their hydrocarbon analogs in crude oils are examined in detail. Although direct biochemical precursors for the lupane of crude oil are evident, such precursors for norlupane and bisnorlupane are not obvious. Nor is it clear if the C28 and C29 analogs are diagenetic descendants from the lupane structure. Adding additional confusion is the occurrence of these analogs in oils which show numerous indications of post-source molecular addition during migration and entrapment, making it unclear if they originate from a conventional source rock or from carrier or seal rock. Despite these uncertainties, there is extensive potential – some of which has already been realized – to use these compounds in oil–oil and oil-source rock correlations, particularly in instances where extensive biodegradation has occurred. Deconvolution of the time(s) of introduction of norlupane and bisnorlupane into the fluid – as well as various other hydrocarbons, including olefins – also provides great potential as a tool for mapping the migration history of an oil.  相似文献   

6.
In the process of steam stimulation exploitation of viscous crude oil, the injected water, at high temperature and under high pressure, reacts intensively with the host rock. This kind of water–rock interaction in Liaohe Shuguang Oil Field was studied on the basis of analysis of water composition changes, laboratory experiments, mineral saturation indices analysis, and mass balance calculation. Compared with the injected water, the changes of the composition of discharged water are mainly the distinct decrease of pH, Na+, SiO2 and Cl, as well as the increase of K+, Ca2+, Mg2+, SO 4 2− and HCO 3 . Laboratory experiments under field conditions showed: the dissolution sequence of minerals quantitatively is quartz>potassium feldspar>albite, and the main change of clay minerals is the conversion of kaolinite to analcime. Mass balance calculation indicated during the process of steam stimulation, large quantities of analcime are precipitated with the dissolution of large amounts of quartz, kaolinite, potassium feldspar, and CO2. These results correlated very well with the experimental results. The calculated results of Liaohe Shuguang Oil Field showed that during the steam stimulation for viscous crude oil, the amounts of minerals dissolved (precipitated) are huge. To control the clogging of pore spaces of oil reservoirs, increased study of water–rock interaction is needed.  相似文献   

7.
The Yueshan mineral belt is geotectonically located at the centre of the Changjiang deep fracture zone or depression of the lower Yangtze platform. Two main types of ore deposits occur in the Yueshan orefield: Cu–Au–(Fe) skarn deposits and Cu–Mo–Au–(Pb–Zn) hydrothermal vein-type deposits. Almost all deposits of economic interest are concentrated within and around the eastern and northern branches of the Yueshan dioritic intrusion. In the vicinity of the Zongpu and Wuhen intrusions, there are many Cu–Pb–Zn–Au–(S) vein-type and a few Cu–Fe–(Au) skarn-type occurrences.Fluid inclusion studies show that the ore-forming fluids are characterised by a Cl(S)–Na+–K+ chemical association. Hydrothermal activity associated with the above two deposit types was related to the Yueshan intrusion. The fluid salinity was high during the mineralisation processes and the fluid also underwent boiling and mixed with meteoric water. In comparison, the hydrothermal activity related to the Zongpu and Wuhen intrusions was characterised by low salinity fluids. Chlorine and sulphur species played an important role in the transport of ore-forming components.Hydrogen- and oxygen-isotope data also suggest that the ore-forming fluids in the Yueshan mineral belt consisted of magmatic water, mixed in various proportions with meteoric water. The enrichment of ore-forming components in the magmatic waters resulted from fluid–melt partitioning. The ore fluids of magmatic origin formed large Cu–Au deposits, whereas ore fluids of mixed magmatic-meteoric origin formed small- to medium-sized deposits.The sulphur isotopic composition of the skarn- and vein-type deposits varies from − 11.3‰ to + 19.2‰ and from + 4.2‰ to + 10.0‰, respectively. These variations do not appear to have been resulted from changes of physicochemical conditions, rather due to compositional variation of sulphur at the source(s) and by water–rock interaction. Complex water–rock interaction between the ore-bearing magmatic fluids and sedimentary wall rocks was responsible for sulphur mixing. Lead and silicon isotopic compositions of the two deposit types and host rocks provide similar indications for the sources and evolution of the ore-forming fluids.Hydrodynamic calculations show that magmatic ore-forming fluids were channelled upwards into faults, fractures and porous media with velocities of 1.4 m/s, 9.8 × 10− 1 to 9.8 × 10− 7 m/s and 3.6 × 10− 7 to 4.6 × 10− 7 m/s, respectively. A decrease of fluid migration velocity in porous media or tiny fractures in the contact zones between the intrusive rocks and the Triassic sedimentary rocks led to the deposition of the ore-forming components. The major species responsible for Cu transport are deduced to have been CuCl, CuCl2, CuCl32− and CuClOH, whereas Au was transported as Au2(HS)2S2−, Au(HS)2, AuHS and AuH3SiO4 complexes. Cooling and a decrease in chloride ion concentration caused by fluid boiling and mixing were the principal causes of Cu deposition. Gold deposition was related to decrease of pH, total sulphur concentration and fO2, which resulted from fluid boiling and mixing.Geological and geochemical characteristics of the two deposit types in the Yueshan mineral belt suggest that there is a close genetic relationship with the dioritic magmatism. Geochronological data show that the magmatic activity and the mineralisation took place between 130 and 136 Ma and represent a continuous process during the Yanshanian time. The cooling of the intrusions and the mineralisation event might have lasted about 6 Ma. The cooling rate of the magmatic intrusions was 80 to 120 °C my− 1, which permitted sufficient heat supply by magma to the ore-forming system.  相似文献   

8.
The solubility of a 44° API (0.806 sp. gr.) whole crude oil has been measured in methane with water present at temperatures of 50 to 250°C and pressures of 740 to 14,852 psi, as have the solubilities of two high molecular weight petroleum distillation fractions at temperatures of 50 to 250°C and pressures of 4482 to 25,266 psi. Both increases in pressure and temperature increase the solubility of crude oil and petroleum distillation fractions in methane, the effect of pressure being greater than that of temperature. Unexpectedly high solubility levels (0.5–1.5 grams of oil per liter of methane—at laboratory temperature and pressure) were measured at moderate conditions (50–200°C and 5076–14504 psi). Similar results were found for the petroleum distillation fractions, one of which was the highest molecular weight material of petroleum (material boiling above 266°C at 6 microns pressure). Unexpectedly mild conditions (100°C and 15,200 psi; 200°C and 7513 psi) resulted in cosolubility of crude oil and methane. Under these conditions, samples of the gas-rich phase gave solubility values of 4 to 5 g/l, or greater.Qualitative analyses of the crude-oil solute samples showed that at low pressure and temperature equilibration conditions, the solute condensate would be enriched in C5–C15 range hydrocarbons and in saturated hydrocarbons in the C15+ fraction. With increases in temperature and especially pressure, these tendencies were reversed, and the solute condensate became identical to the starting crude oil.The data of this study, compared to that of previous studies, shows that methane, with water present, has a much greater carrying capacity for crude oil than in dry systems. The presence of water also drastically lowers the temperature and pressure conditions required for cosolubility.The data of this and/or previous studies demonstrate that the addition of carbon dioxide, ethane, propane, or butane to methane also has a strong positive effect on crude oil solubility, as does the presence of fine grained rocks.The n-paraffin distributions (as well as the overall composition) of the solute condensates are controlled by the temperature and pressure of solution and exsolution, as well as by the composition of the original starting material. It appears quite possible that primary migration by gaseous solution could ‘strip’ a source rock of crude-oil like components leaving behind a bitumen totally unlike the migrated crude oil. The data of this study demonstrate previous criticisms of primary petroleum migration by gas solution are invalid; that primary migration by gaseous solution cannot occur because methane cannot dissolve sufficient volumes of crude oil or cannot dissolve the highest molecular weight components of petroleum (tars and asphaltenes).  相似文献   

9.
The Ernest Henry Fe oxide Cu–Au (IOCG) deposit (>ca. 1.51 Ga) is hosted by breccia produced during the waning stages of an evolving hydrothermal system that formed a number of tens of metres to a kilometre scale, pre- and syn-ore alteration halos, although no demonstrable patterns have been attributed to fluids expelled through the outflow zones. However, the recognition of a population of hypersaline fluid inclusions representing the ‘spent’ fluids after Cu–Au deposition at Ernest Henry provides the basis to model the geochemical characteristics of the deposit's outflow zones. Geochemical modeling at 300 °C was undertaken at both high and low fluid/rock ratios via FLUSH models involving three host rock types: (1) granite, (2) calc–silicate rock, and (3) graphitic schist. In models run at high fluid/rock ratios, all rock types are essentially fluid-buffered, and produce an albite–quartz–hematite–barite-rich assemblage, although in low fluid–rock environments, the pH, redox, and geochemical character of the host rock exerts a greater influence on the mineralogy of the alteration assemblages (e.g., andradite, Fe–chlorite, and magnetite). Significant sulphide mineralization was predicted in graphitic schist where sphalerite occurred in both low- and high-porosity models, which indicates the possibility of an association between high-temperature IOCG mineralization and lower temperature base metal mineralization.Cooling experiments (from 300 to 100 °C) using the ‘spent fluids’ predict early high-T (300–200 °C) Na-, Ca-, Fe-, and Mn-rich, magnetite-bearing hydrothermal associations, whereas with cooling to below 200 °C, and with progressive fluid–rock interaction, the system produces rhodochrosite-bearing, hematite–quartz–muscovite–barite-rich assemblages. These results show that the radical geochemical and mineralogical changes associated with cooling and progressive fluid influx are likely to be accompanied by major transformations in the geophysical expression (e.g., spectral and magnetic character) of the alteration in the outflow zone, and highlight the potential link between magnetite- and hematite-bearing IOCG hydrothermal systems.  相似文献   

10.
Gold mineralization at Jonnagiri, Dharwar Craton, southern India, is hosted in laminated quartz veins within sheared granodiorite that occur with other rock units, typical of Archean greenstone–granite ensembles. The proximal alteration assemblage comprises of muscovite, plagioclase, and chlorite with minor biotite (and carbonate), which is distinctive of low- to mid-greenschist facies. The laminated quartz veins that constitute the inner alteration zone, contain muscovite, chlorite, albite and calcite. Using various calibrations, chlorite compositions in the inner and proximal zones yielded comparable temperature ranges of 263 to 323 °C and 268 to 324 °C, respectively. Gold occurs in the laminated quartz veins both as free-milling native metal and enclosed within sulfides. Fluid inclusion microthermometry and Raman spectroscopy in quartz veins within the sheared granodiorite in the proximal zone and laminated auriferous quartz veins in inner zone reveal the existence of a metamorphogenic aqueous–gaseous (H2O–CO2–CH4 + salt) fluid that underwent phase separation and gave rise to gaseous (CO2–CH4), low saline (~ 5 wt.% NaCl equiv.) aqueous fluids. Quartz veins within the mylonitized granodiorites and the laminated veins show broad similarity in fluid compositions and P–T regime. Although the estimated P–T range (1.39 to 2.57 kbar at 263 to 323 °C) compare well with the published P–T values of other orogenic gold deposits in general, considerable pressure fluctuation characterize gold mineralization at Jonnagiri. Factors such as fluid phase separation and fluid–rock interaction, along with a decrease in f(O2), were collectively responsible for gold precipitation, from an initial low-saline metamorphogenic fluid. Comparison of the Jonnagiri ore fluid with other lode gold deposits in the Dharwar Craton and major granitoid-hosted gold deposits in Australia and Canada confirms that fluids of low saline aqueous–carbonic composition with metamorphic parentage played the most dominant role in the formation of the Archean lode gold systems.  相似文献   

11.
The development of three Tertiary deltaic complexes has resulted in the deposition of up to 10 km of sandstones and shales comprising the sources and reservoirs for crude oils that occur onshore, near-offshore and, with future exploration efforts, those likely to be encountered in deepwater reservoirs north of the Brunei coastline. We examined a series of offshore oils and onshore rock samples in Brunei Darussalam (a) to delineate oil family groups and their source rock characteristics, and (b) to assess the source potential of the sedimentary sequence with respect to lithology and depositional setting. Twelve offshore oils and 53 shales, coaly shales and coals were examined. The oils contain indicators of allochthonous (e.g. bicadinanes, oleananes) and autochthonous (e.g. cholestanes and methylcholestanes) components in the source organic matter. Predictable geographic variations of this mixed input are clearly evident in the sample set (e.g. allochthonous input appears to increase in offshore Brunei to the northeast). Although this molecular source signature is relatively clear, migration of these oils from deep (and unidentified) source rocks has resulted in extensive migration-contamination with respect to the tetracyclic and pentacyclic hydrocarbons. This contamination has resulted in strong correlations between certain molecular maturity indicators and the present-day temperature of the reservoirs. Liquid hydrocarbon source rock potential is present in the tidal and coastal embayment facies, and is greatest in the Miocene coals. Neither the shales nor coaly shales contain significant oil generative potential. The thermal immaturity of the sample set precludes valid oil–source rock correlations without conducting artificial maturation experiments on the coals.  相似文献   

12.
Hydrochemical conditions up to depths of 1000 m below ground level around the Mizunami Underground Research Laboratory were investigated to construct a “baseline condition model” describing the undisturbed hydrochemical environment prior to excavation of the underground facilities at Mizunami, Gifu, Japan. Groundwater chemistry in this area was classified into a Na–Ca–HCO3 type of groundwater in the upper part of sedimentary rock sequence and a Na–(Ca)–Cl type of groundwater in the deeper part of the sedimentary rock sequence and basement granite. The residence time of the groundwaters was estimated from their 14C contents to be approximately 9.3 ka in the middle part of the sedimentary rock and older than 50 ka in the deep part of the granite. The evolution processes of these groundwaters were inferred to be water–rock interactions such as weathering of plagioclase, dissolution of marine sulphate/sulphide minerals and carbonate minerals in the Na–Ca–HCO3 type of groundwater, and mixing between “low-salinity water” in the shallow part and “higher-salinity water” in the deeper part of the granite in the Na–(Ca)–Cl type of groundwater. The source of salinity in the deeper part of the granite was possibly a palaeo-hydrothermal water or a fossil seawater that recharged in the Miocene, subsequently being modified by long-term water–rock interaction. The Cl-depth trend in granitic groundwater changes at a depth of −400 m below sea level. The hydrogeological properties controlling the groundwater flow and/or mixing processes such as advection and diffusion were inferred to be different at this depth in the granite. This hydrochemical conceptual model is indispensable not only when constructing the numerical model for evaluating the hydrochemical disturbance during construction and operation of the MIU facility, but also when confirming a hydrogeological model.  相似文献   

13.
The aim of this paper was to explore new factors that might be reasons for the occurrence of fluoride-rich groundwater in the area around a construction site. During the construction of two deep shafts of the Mizunami Underground Research Laboratory (MIU) in Mizunami city, central Japan, a large quantity of groundwater with high fluoride concentration was charged into the shafts. Chemical investigation carried out during the excavation revealed that fluoride concentrations in the area around the MIU site greatly exceeded those prescribed by Japanese standards. Therefore, the origin of fluoride ion was experimentally investigated. Samples were collected from the core of a deep borehole drilled in the study area. The weathering - and alteration levels of the collected granites varied greatly. Granitic powders were used to measure fluoride content in the granitic rock mass. The fluoride content ranged between 200 and 1300 mg/kg. The powders were reacted with purified water for 80 days. The results of water–rock interaction showed granitic rock to be one of the main sources of fluoride-rich groundwater in Mizunami area. Fluoride concentrations in these solutions that were shaken for 80 days varied between 2 and 7 mg/l. This change may have occurred as a result of the spatial distribution of fluoride ions in the granite mass as evidenced by mineralogical analysis of fluoride content in several specimens. X-ray powder diffraction analysis of the rock before- and after the water–rock interaction tests manifested that the presence of fluorite mineral was relatively small compared to other minerals. The degree of weathering and alteration might be an additional factor causing dissolution of fluoride-rich minerals. However, it was difficult to interpret the change in fluorite composition by X-ray diffraction analysis.  相似文献   

14.
Jan-Marten Huizenga 《Lithos》2001,55(1-4):101-114
H2O, CO2, CH4, CO, H2 and O2 are the most important species in crustal fluids. The composition of these C–O–H fluids can be calculated if the pressure, temperature, carbon activity, and either the oxygen fugacity or the atomic H/O ratio of the fluid is known. The calculation methods are discussed and calculation results are illustrated with isobaric TXi, PT, and isobaric–isothermal ternary C–O–H diagrams. Fluid inclusion compositions, in particular, the XCO2/(XCO2+XCH4) ratio, can be used for C–O–H model calculations. However, care should be taken about possible post-entrapment changes, which may have modified the chemical composition of the fluid inclusion.  相似文献   

15.
Fluid inclusion microthermometry and structural data are presented for quartz vein systems of a major dextral transcurrent shear zone of Neoproterozoic–Cambrian age in the Ribeira River Valley area, southeastern Brazil. Geometric and microstructural constraints indicate that foliation–parallel and extensional veins were formed during dextral strike–slip faulting. Both vein systems are formed essentially by quartz and lesser contents of sulfides and carbonates, and were crystallized in the presence of CO2–CH4 and H2O–CO2–CH4–NaCl immiscible fluids following unmixing from a homogeneous parental fluid. Contrasting fluid entrapment conditions indicate that the two vein systems were formed in different structural levels. Foliation–parallel veins were precipitated beneath the seismogenic zone under pressure fluctuating from moderately sublithostatic to moderately subhydrostatic values (319–397 °C and 47–215 MPa), which is compatible with predicted fluid pressure cycle curves derived from fault–valve action. Growth of extensional veins occurred in shallower structural levels, under pressure fluctuating from near hydrostatic to moderately subhydrostatic values (207–218 °C and 18–74 MPa), which indicate that precipitation occurred within the near surface hydrostatically pressured seismogenic zone. Fluid immiscibility and precipitation of quartz in foliation–parallel veins resulted from fluid pressure drop immediately after earthquake rupture. Fluid immiscibility following a local pressure drop during extensional veining occurred in pre-seismic stages in response to the development of fracture porosity in the dilatant zone. Late stages of fluid circulation within the fault zone are represented dominantly by low to high salinity (0.2 to 44 wt.% equivalent NaCl) H2O–NaCl–CaCl2 fluid inclusions trapped in healed fractures mainly in foliation–parallel veins, which also exhibit subordinate H2O–NaCl–CaCl2, CO2–(CH4) and H2O–CO2–(CH4)–NaCl fluid inclusions trapped under subsolvus conditions in single healed microcracks. Recurrent circulation of aqueous–carbonic fluids and aqueous fluids of highly contrasting salinities during veining and post-veining stages suggests that fluids of different reservoirs were pumped to the ruptured fault zone during faulting episodes. A fluid evolution trending toward CH4 depletion for CO2–CH4–bearing fluids and salinity depletion and dilution (approximation of the system H2O–NaCl) for aqueous–saline fluids occurred concomitantly with decrease in temperature and pressure related to fluid entrapment in progressively shallower structural levels reflecting the shear zone exhumation history.  相似文献   

16.
刘金钟  傅家谟 《地质科学》1993,28(3):246-253
用实验方法研究了含原油水溶液、油田卤水、腐植酸、脂肪酸、氨基酸及无水体系中原油对金的络合及迁移作用。结果表明,原油、腐植酸对金有很强的络合能力,水溶液中含少量的原油即可大大提高水溶液对岩石中金的淋滤活化能力。沉积地层成岩过程中产生的低熟有机质可能是促进沉积改造型金矿床矿源层中金活化迁移的重要因素。  相似文献   

17.
Implications of ion exchange processes for the formation of lithological and hydrogeochemical systems under various thermobaric conditions of the subsurface hydrosphere are discussed on the basis of on-location, experimental, and thermodynamic studies. It is shown for the case of the Volga–Ural sedimentary basin that ion exchange interaction in the water–rock system bears a zonal character and is differentiated with depth. Exchange and adsorption processes are most efficient in the upper 500-m-thick supergene zone composed of terrigenous clayey rocks, where the HCO3–Na- and SO4–Na-waters with a mineralization reaching 20 g/dm3 are formed. In cata- and metagenetic zones at a depth of more than 1000–1500 m, these processes do not strongly affect the brine composition. Metasomatic dolomitization of limestones as an exchange adsorption process plays the crucial role in the formation of Cl–Ca-brines at that depth.  相似文献   

18.
This paper investigates the isotopic composition (O, D, Sr, OSO4, SSO4, Cl, He) of a present saline fluid sample collected at the sediment/basement interface in the Permian continental formation at 634 m depth in the SE margin of the Massif Central shield (Ardèche margin of the Southeast basin of France). The fluid sample shows clear water–rock interaction processes, such as feldspar dissolution and kaolinite precipitation, which have led to high Na concentrations and water stable isotopes above the local meteoric water line. The geological formations of the SE margin of the Massif Central shield show that intensive fluid circulation phases occurred across the margin from the late Triassic to the middle Jurassic. The fluids most probably originated from fluid expulsion during burial of the thick Permo-Carboniferous sedimentary succession. These circulation phases were responsible for cementation of the margin and for the solutes in the matrix microporosity which were extracted by leaching core samples.The chemical and isotopic composition of the saline fluid sample at 634 m in the Permian rock is very similar to that of fluids in the microporosity of the rock matrix. Their SSO4, OSO4 and Sr isotopic compositions are close to those of cements investigated in fracture fillings in the same geological formations. Simple diffusion computations and comparison of the chemical composition of the present free fluid sample with matrix porosity fluids indicate that the solutes in the present free fluid sample are related to solutes originating from fluid circulation events which occurred 160–200 Ma ago through their diffusion from the matrix microporosity.A two-stage fluid flow regime is proposed to interpret the chemistry of present and paleo-fluids. (1) During the extensional context (Permian to Cretaceous), basinal brines migrated along the basement/sediment interface after expulsion from the subsiding basin. This fluid migration would be responsible for the solutes in the rock matrix microporosity and the solutes in the present free fluid sample. (2) Following the Alpine and Pyrenean compressive phases, gravity-driven meteoritic fluids slowly migrated from the surface down to the basement along major faults. This fluid regime would be responsible for the meteoric water collected in the present free fluid sample. Several investigations in Europe have shown that the existence of other saline fluids sampled elsewhere could be explained by these phases of fluid circulation related to specific geodynamic events.  相似文献   

19.
Yuhong Liao  Ansong Geng   《Applied Geochemistry》2009,24(11):2123-2132
The effect of isotopic fractionation during primary migration of hydrocarbons from coals is rarely noticed because it overlaps with the isotopic effects of maturation. In this research, geological chromatography-like effects and possible physical isotopic fractionation effects on n-alkanes during primary migration from four coals and one mudstone were studied through two types of generation–expulsion simulations (generation–expulsion simulations I and II). In order to monitor the kinetic isotopic fractionation effect during primary migration and to differentiate the isotopic effects of primary migration from the isotopic effects of maturation, generation–expulsion simulation was upgraded in two aspects, source rock was separated into at least five layers, and deuterated n-C15D32 was added to the initial layer of the source rock (simulation II). The experimental results suggested that all terrestrial source rocks exhibit significant geological chromatography-like effects in generation–expulsion simulation. Expulsion efficiencies shown by vitrinite-rich coals are much lower than algal cannel, fusinite-rich coal and mudstone. There also exist significant physical isotopic fractionation effects in hydrocarbon primary migration processes from vitrinite-rich coals, but there is no significant isotopic fractionation effect from fusinite-rich brown coal and mudstone. Pore structure and specific surface area of source rock samples were measured by gas adsorption of both N2 and CO2. This indicated that vitrinite-rich coals have a higher proportion of microporosity. The differences in pore structure and adsorptive capacity of source rocks may be responsible for differences in expulsion efficiencies and isotopic fractionation effects in generation–expulsion simulations. The isotopic fractionation effect due to primary migration should be considered in making oil-source correlation when vitrinite-rich coals are concerned.  相似文献   

20.
Chemical and isotope studies of natural CO2 accumulations aid in assessing the chemical effects of CO2 on rock and thus provide a potential for understanding the long-term geochemical processes involved in CO2 geological storage. Several natural CO2 accumulations were discovered during gas and oil exploration in France’s carbogaseous peri-Alpine province (south-eastern France) in the 1960s. One of these, the Montmiral accumulation at a depth of more than 2400 m, is currently being exploited. The chemical composition of the water collected at the wellhead has changed in time and the final salinity exceeds 75 g/L. These changes in time can be explained by assuming that the fraction of the reservoir brine in the recovered brine–CO2–H2O mixture varies, resulting in variable proportions of H2O and brine in the sampled water. The proportions can be estimated in selected samples due to the availability of gas and water flowrate data. These data enabled the reconstruction of the chemical and isotope composition of the brine. The proportions of H2O and brine can also be estimated from isotope (δ2H, δ18O) composition of collected water and δ18O of the sulfates or CO2. The reconstituted brine has a salinity of more than 85 g/L and, according to its Br content and isotope (δ2H, δ18O, δ34S) composition, originates from an evaporated Triassic seawater that underwent dilution by meteoric water. The reconstitution of the brine’s chemical composition enabled an evaluation of the CO2–water–rock interactions based on: (1) mineral saturation indices; and (2) comparison with initial evaporated Triassic seawater. Dissolution of K- and SO4-containing minerals such as K-feldspar and anhydrite, and precipitation of Ca and Mg containing minerals that are able to trap CO2 (carbonates) are highlighted. The changes in concentration of these elements in the brine, which are attributed to CO2 interactions, illustrate the relevance of monitoring the water quality at future industrial CO2 storage sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号