首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We propose that single stars in the mass range 4–6·5M , that explode as Supernovae of Type I, are totally disrupted by the explosion and form shell-type remnants. More massive single stars which explode as Supernovae of Type II also give rise to shell-type remnants, but in this case a neutron star or a black hole is left behind. The first supernova explosion in a close binary also gives rise to a shell-type supernova remnant. The Crab-like filled-centre supernova remnants are formed by the second supernova explosion in a close binary. The hybrid supernova remnants, consisting of a filled centre surrounded by a shell, are formed if there is an active neutron star inside the shell.  相似文献   

2.
A series of numerical models has been constructed for the three-dimensional explosion dynamics of a low-mass neutron star in a binary system that results from the collapse of the rotating iron core of a massive supernova. The numerical solution has been obtained by the particle method with an adaptive time step that allows the computational accuracy to be controlled automatically. The constructed numerical models include the proper motion of the massive component in the binary system of neutron stars, their finite sizes, the graduality of energy release during the explosive disruption of a critical-mass neutron star, and the nonuniform expansion velocity distribution of iron ejecta. The extent to which each of the listed parameters affects the explosion characteristics has been determined. The total explosion energy and the pulsar escape velocity have been estimated. A sizable fraction of the material of the exploded neutron star has been found to remain gravitationally bound to the massive component of the binary system. A further study of its dynamics is of interest in its own right, because the captured material can be considered as an additional source of muon neutrinos.  相似文献   

3.
The further evolution of a massive X-ray binary consisting of a compact object and an OB supergiant is outlined. The supergiant exceeds its critical Roche lobe and a second stage of mass transfer starts. The remnant of the mass losing star — a pure helium star — develops a collapsing iron core and finally undergoes a supernova explosion. If the compact companion is a black hole the system remains bound; if the compact companion is a neutron star the system is disrupted unless an extra kick allowing an asymmetric explosion is given. Computations were performed for the massive binary 22.5M +2M . The possible final evolutionary products are: (1) a black hole and a compact object, in a binary system, (2) two run-away pulsars, (3) a binary pulsar. As final parameters for the described system the eccentricity and period for the recently discovered binary pulsar 1913+16 may be found. An orbital inclination ofi=40° may be derived. The probability for the generation of binary pulsars is very low; in most cases the system is disrupted during the supernova explosion.  相似文献   

4.
We derive approximate analytic relations between the mass-transfer rate in a close binary system described in terms of the Roche potential and its basic parameters, such as the total mass of the binary, the radius of its circular orbit, the mass of the mass-losing component, and the degree of its Roche lobe overfilling. Using simplifying assumptions (conservative mass transfer, a short relaxation time of matter on the mass-gaining component compared to the mass-transfer time scale, adiabaticity and quasi-stationarity of the mass flow through the Lagrangian point L 1) allows the evolution of a binary system of neutron (degenerate) stars to be described in terms of two ordinary differential equations. This makes it possible to qualitatively analyze the evolution process, which is useful in those cases where the evolution of a close binary system must be investigated in general terms, for example, in terms of the scenario for the transformation of the collapse of a rotating presupernova core into a supernova explosion proposed by Imshennik and Nadyozhin (1992) and Imshennik (1992).  相似文献   

5.
The evolution of high-and low-mass X-ray binaries (HMXB and LMXB) into different types of binary radio pulsars, the ‘high-mass binary pulsars’(HMBP) and ‘low-mass binary pulsars’ (LMBP) is discussed. The HMXB evolve either into Thorne-Zytkow objects or into short-period binaries consisting of a helium star plus a neutron star (or a black hole), resembling Cygnus X-3. The latter systems evolve (with or without a second common-envelope phase) into close binary pulsars, in which the companion of the pulsar may be a massive white dwarf, a neutron star or a black hole ( some final systems may also consist of two black holes). A considerable fraction of the systems may also be disrupted in the second supernova explosion. We discuss the possible reasons why the observed numbers of double neutron stars and of systems like Cyg X-3 are several orders of magnitude lower than theoretically predicted. It is argued that the observed systems form the tip of an iceberg of much larger populations of unobserved systems, some of which may become observable in the future. As to the LMBP, we consider in some detail the origins of systems with orbital periods in the range 1–20 days. We show that to explain their existence, losses of orbital angular momentum (e.g., by magnetic braking) and in a number of cases: also of mass, have to be taken into account. The masses of the low-mass white dwarf companions in these systems can be predicted accurately. We notice a clear correlation between spin period and orbital period for these systems, as well as a clear correlation between pulsar magnetic field strength and orbital period. These relations strongly suggest that increased amounts of mass accreted by the neutron stars lead to increased decay of their magnetic fields: we suggest a simple way to understand the observed value of the ‘bottom’ field strengths of a few times 108 G. Furthermore, we find that the LMBP-systems in which the pulsar has a strong magnetic field (> 1011 G) have an about two orders of magnitude larger birth rate (i.e., about 4 × 10-4 yr-1 in the Galaxy) than the systems with millisecond pulsars (which have B < 109 G). Using the observational fact that neutron stars receive a velocity kick of ∼450 km/s at birth, we find that some 90% of the potential progenitor systems of the strong-field LMBP must have been disrupted in the Supernovae in which their neutron stars were formed. Hence, the formation rate of the progenitors of the strong-field LMBP is of the same order as the galactic supernova rate (4 × 10-3 yr-1). This implies that a large fraction of all Supernovae take place in binaries with a close low-mass (< 2.3 M⊙) companion.  相似文献   

6.
Helium star–compact object binaries, and helium star–neutron star binaries in particular, are widely believed to be the progenitors of the observed double-neutron-star systems. In these, the second neutron star is presumed to be the compact remnant of the helium star supernova. In this paper, the observational implications of such a supernova are discussed, and in particular are explored as a candidate γ-ray burst mechanism. In this scenario, the supernova results in a transient period of rapid accretion on to the compact object, extracting via magnetic torques its rotational energy at highly super-Eddington luminosities in the form of a narrowly beamed, strongly electromagnetically dominated jet. Compton scattering of supernova photons advected within the ejecta, and photons originating at shocks driven into the ejecta by the jet, will cool the jet and can produce the observed prompt emission characteristics, including the peak-inferred isotropic energy relation, X-ray flash characteristics, subpulse light curves, energy-dependent time lags and subpulse broadening, and late time spectral softening. The duration of the burst is limited by the rate of Compton cooling of the jet, eventually creating an optically thick, moderately relativistically expanding fireball that can produce the afterglow emission. If the black hole or neutron star stays bound to a compact remnant, late term light curve variability may be observed as in SN 2003dh.  相似文献   

7.
A brief review of the threat posed to Earth’s biosphere via near-by supernova detonations is presented. The expected radiation dosage, cosmic ray flux and expanding blast wave collision effects are considered, and it is argued that a typical supernova must be closer than ∼10-pc before any appreciable and potentially harmful atmosphere/biosphere effects are likely to occur. In contrast, the critical distance for Gamma-ray bursts is of order 1-kpc. In spite of the high energy effects potentially involved, the geological record provides no clear-cut evidence for any historic supernova induced mass extinctions and/or strong climate change episodes. This, however, is mostly a reflection of their being numerous possible (terrestrial and astronomical) forcing mechanisms acting upon the biosphere and the difficulty of distinguishing between competing scenarios. Key to resolving this situation, it is suggested, is the development of supernova specific extinction and climate change linked ecological models. Moving to the future, we estimate that over the remaining lifetime of the biosphere (∼2 Gyr) the Earth might experience 1 GRB and 20 supernova detonations within their respective harmful threat ranges. There are currently at least 12 potential pre-supernova systems within 1-kpc of the Sun. Of these systems IK Pegasi is the closest Type Ia pre-supernova candidate and Betelgeuse is the closest potential Type II supernova candidate. We review in some detail the past, present and future behavior of these two systems. Developing a detailed evolutionary model we find that IK Pegasi will likely not detonate until some 1.9 billion years hence, and that it affords absolutely no threat to Earth’s biosphere. Betelgeuse is the closest, reasonably well understood, pre-supernova candidate to the Sun at the present epoch, and may undergo detonation any time within the next several million years. The stand-off distance of Betelgeuse at the time of its detonation is estimated to fall between 150 and 300-pc—again, affording no possible threat to Earth’s biosphere. Temporally, the next most likely, close, potential Type Ic supernova to the Sun is the Wolf-Rayet star within the γ 2 Velorum binary system located at least 260-pc away. It is suggested that evidence relating to large-scale astroengineering projects might fruitfully be looked for in those regions located within 10 to 30-pc of any pre-supernova candidate system.  相似文献   

8.
Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of  ∼1100 km s−1  , which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of  106– 107 stars pc−3  . Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.  相似文献   

9.
The Hertzsprung-Russell diagram of the Large Magellanic Cloud compiled recently by Fitzpatrick & Garmany (1990) shows that there are a number of supergiant stars immediately redward of the main sequence although theoretical models of massive stars with normal hydrogen abundance predict that the region 4.5 ≤ logT eff ≤ 4.3 should be un-populated (“gap”). Supergiants having surface enrichment of helium acquired for example from a previous phase of accretion from a binary companion, however, evolve in a way so that the evolved models and observed data are consistent — an observation first made by Tuchman & Wheeler (1990). We compare the available optical data on OB supergiants with computed evolutionary tracks of massive stars of metallicity relevant to the LMC with and without helium-enriched envelopes and conclude that a large fraction ( 60 per cent) of supergiant stars may occur in binaries. As these less evolved binaries will later evolve into massive X-ray binaries, the observed number and orbital period distribution of the latter can constrain the evolutionary scenarios of the supergiant binaries. The distributions of post main sequence binaries and closely related systems like WR + O stars are bimodal-consisting of close and wide binaries in which the latter type is numerically dominating. When the primary star explodes as a supernova leaving behind a neutron star, the system receives a kick and in some cases can lead to runaway O-stars. We calculate the expected space velocity distribution for these systems. After the second supernova explosion, the binaries in most cases, will be disrupted leading to two runaway neutron stars. In between the two explosions, the first born neutron star’s spin evolution will be affected by accretion of mass from the companion star. We determine the steady-state spin and radio luminosity distributions of single pulsars born from the massive stars under some simple assumptions. Due to their great distance, only the brightest radio pulsars may be detected in a flux-limited survey of the LMC. A small but significant number of observable single radio pulsars arising out of the disrupted massive binaries may appear in the short spin period range. Most pulsars will have a low velocity of ejection and therefore may cluster around the OB associations in the LMC.  相似文献   

10.
Among the dozen known magnetar candidates, there are no binary objects. Given that the fraction of binary neutron stars is estimated to be about 3–10 per cent, it is reasonable to address the question of solitarity of magnetars, to estimate theoretically the fraction of binary objects among them, and to identify the most probable companions. We present population synthesis calculations of massive binary systems. In this study, we adopt the hypothesis that magnetic field of a magnetar is generated at the protoneutron star stage due to a dynamo mechanism, so rapid rotation of the core of a progenitor star is essential. Our goal is to estimate the number of neutron stars originated from progenitors with enhanced rotation. In our calculations, the fraction of neutron stars originating from such progenitors is about 8–9 per cent. This should be considered as an upper limit to the fraction of magnetars, as some of the progenitors can lose momentum. Most of these objects are isolated due to coalescences of components prior to neutron star formation, or due to system disruption after the second supernova explosion. The fraction of such neutron stars in surviving binaries is about 1 per cent or lower. Their most numerous companions are black holes.  相似文献   

11.
I discuss the nature of the compact X-ray source in the center of the supernova remnant RCW 103. Several models, based on the accretion onto a compact object are briefly discussed. I show that it is more likely that the central X-ray source is an accreting neutron star than an accreting black hole. I also argue that models of a disrupted binary system consisting of an old accreting neutron star and a new one observed as a 69-ms pulsar are most favored. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
A non-LTE study of the Type IIb supernova 1993J in the galaxy M81 taking into account nonthermal ionization and line blocking effects is carried out. Hydrodynamical models and theoretical spectra clearly show that nonthermal ionization and excitation dominate after the second maximum, at day 30, and play a decisive role in reproducing both the smooth tail of the light curve and the emergence of helium lines in the spectrum, similar to those observed. Based on our model of supernova 1993J, we predict that the light curves of Type Ib supernovae should be subject to nonthermal ionization and excitation at earlier times than even those for supernova 1993J. In our model, the outburst of supernova 1993J is interpreted as the explosion of a 4 M red supergiant, which underwent core collapse and left a neutron star in a binary system. The progenitor is supposed to have a helium core mass of 3 M, corresponding to a 13 M main-sequence star. Supernova 1993J adds evidence to the scenario that Type Ib supernovae originate from moderately massive stars on the main sequence that have lost their hydrogen envelopes in interacting binary systems.  相似文献   

13.
The observation of infrared bursts from the globular cluster Liller I has been reported by Kulkarniet al. (1979) and confirmed by Joneset al. (1980). The infrared bursts which resemble Type I X-ray bursts in their characteristics are plausibly attributed to a cyclotron maser instability operating at few tens of neutron star radii above the poles of a magnetized neutron star in a binary system. It is suggested that similar infrared bursts should in general be observable from Type I X-ray burst sources.  相似文献   

14.
We present new spectroscopic and photometric data of the Type Ibn supernovae 2006jc, 2000er and 2002ao. We discuss the general properties of this recently proposed supernova family, which also includes SN 1999cq. The early-time monitoring of SN 2000er traces the evolution of this class of objects during the first few days after the shock breakout. An overall similarity in the photometric and spectroscopic evolution is found among the members of this group, which would be unexpected if the energy in these core-collapse events was dominated by the interaction between supernova ejecta and circumstellar medium. Type Ibn supernovae appear to be rather normal Type Ib/c supernova explosions which occur within a He-rich circumstellar environment. SNe Ibn are therefore likely produced by the explosion of Wolf–Rayet progenitors still embedded in the He-rich material lost by the star in recent mass-loss episodes, which resemble known luminous blue variable eruptions. The evolved Wolf–Rayet star could either result from the evolution of a very massive star or be the more evolved member of a massive binary system. We also suggest that there are a number of arguments in favour of a Type Ibn classification for the historical SN 1885A (S-Andromedae), previously considered as an anomalous Type Ia event with some resemblance to SN 1991bg.  相似文献   

15.
We investigate whether the recently observed population of high-velocity white dwarfs can be derived from a population of binaries residing initially within the thin disc of the Galaxy. In particular, we consider binaries where the primary is sufficiently massive to explode as a Type II supernova. A large fraction of such binaries are broken up when the primary then explodes as a supernova, owing to the combined effects of the mass loss from the primary and the kick received by the neutron star on its formation. For binaries where the primary evolves to fill its Roche lobe, mass transfer from the primary leads to the onset of a common envelope phase during which the secondary and the core of the primary spiral together as the envelope is ejected. Such binaries are the progenitors of X-ray binaries if they are not broken up when the primary explodes. For those systems that are broken up, a large number of the secondaries receive kick velocities ∼100–200 km s−1 and subsequently evolve into white dwarfs. We compute trajectories within the Galactic potential for this population of stars and relate the birth rate of these stars over the entire Galaxy to those seen locally with high velocities relative to the local standard of rest (LSR) . We show that for a reasonable set of assumptions concerning the Galactic supernova rate and the binary population, our model produces a local number density of high-velocity white dwarfs compatible with that inferred from observations. We therefore propose that a population of white dwarfs originating in the thin disc may make a significant contribution to the observed population of high-velocity white dwarfs.  相似文献   

16.
Precise measurements of neutron star(NS) velocities provide critical clues in regard to the supernova physics and evolution of binary systems. Based on Gaia Data Release 2(DR2), we selected a sample of 24 young( 3 Myr) pulsars with precise parallax measurements and measured the velocity of their local standard of rest(LSR) and the velocity dispersion among their respective local stellar groups. The median velocity difference between thus calculated LSRs and the Galactic rotation model is ~ 7.6 km s~(-1),small compared to the typical velocity dispersion of ~ 27.5 km s~(-1). For pulsars off the Galactic plane,such differences grow significantly to as large as ~ 40 km s~(-1). More importantly, the velocity dispersion of stars in the local group of low-velocity pulsars can be comparable to their transverse velocities, suggesting that the intrinsic velocities of NS progenitors should be taken into account when we consider their natal kicks and binary evolution. We also examined the double NS system J0737-3039 A/B, and measured its transverse velocity to be 26_(-13)~(+18) km s~(-1) assuming nearby Gaia sources are representative of their birth environment. This work demonstrated the feasibility and importance of using Gaia data to study the velocity of individual systems and velocity distribution of NSs.  相似文献   

17.
We present models for Type I supernova light curves based on the explosion of partially solid white dwarfs in close binary systems. Studies of such explosions show that they leave bound remnants of different size. Our results reproduce quite well the maximun luminosities, the expansion velocities and the shape of the light curve. As the two basic parameters that govern the light curve, the ejected mass and the mass of56Ni produced, are variable our models reproduce the slow and fast subclasses of classical Type I supernovae.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986.  相似文献   

18.
The impact of a supernova explosion on the magnetosphere of a neutron star in a massive binary system is considered. The supernova shock impact on a plasma-filled neutron star magnetosphere can give rise to a long magnetospheric tail with a considerable store of magnetic energy. Magnetic reconnection in the formed current sheet can transform the magnetic energy stored in the tail into the kinetic energy of charged particles. The plasma instabilities excited by beams of accelerated relativistic particles can lead to the formation of a short pulse of coherent radio emission with parameters similar to those measured for the bright extragalactic millisecond radio burst detected in 2007.  相似文献   

19.
We present an analysis of the Swift Burst Alert Telescope (BAT) and X-ray telescope (XRT) data of GRB060602B, which is most likely an accreting neutron star in a binary system and not a gamma-ray burst. Our analysis shows that the BAT burst spectrum is consistent with a thermonuclear flash (type I X-ray burst) from the surface of an accreting neutron star in a binary system. The X-ray binary nature is further confirmed by the report of a detection of a faint point source at the position of the XRT counterpart of the burst in archival XMM–Newton data approximately six year before the burst and in more recent XMM–Newton data obtained at the end of 2006 September (nearly four months after the burst). Since the source is very likely not a gamma-ray burst, we rename the source Swift J1749.4−2807, based on the Swift /BAT discovery coordinates. Using the BAT data of the type I X-ray burst, we determined that the source is at most at a distance of  6.7 ± 1.3 kpc  . For a transiently accreting X-ray binary, its soft X-ray behaviour is atypical: its 2–10 keV X-ray luminosity (as measured using the Swift /XRT data) decreased by nearly three orders of magnitude in about 1 day, much faster than what is usually seen for X-ray transients. If the earlier phases of the outburst also evolved this rapidly, then many similar systems might remain undiscovered because the X-rays are difficult to detect and the type I X-ray bursts might be missed by all the sky surveying instruments. This source might be part of a class of very fast transient low-mass X-ray binary systems of which there may be a significant population in our Galaxy.  相似文献   

20.
If the accreting white dwarf increases its mass to the Chandrasekhar mass, it will either explode as a Type I supernova or collapse to form a neutron star. In fact, there is a good agreement between the exploding white dwarf model for Type I supernovae and observations. We describe various types of evolution of accreting white dwarfs as a function of binary parameters (i.e, composition, mass, and age of the white dwarf, its companion star, and mass accretion rate), and discuss the conditions for the precursors of exploding or collapsing white dwarfs, and their relevance to cataclysmic variables. Particular attention is given tohelium star cataclysmics which might be the precursors of some Type I supernovae or ultrashort period X-ray binaries. Finally we present new evolutionary calculations using the updated nuclear reaction rates for the formation of O+Ne+Mg white dwarfs, and discuss the composition structure and their relevance to the model forneon novae.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号