首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The marly formations of the city of Iraklion in Crete, Greece, are described and classified according to their mineralogy and physical properties. The residual angle of friction of these marls was determined using ring shear apparatus and the results were correlated with mineral composition and index properties, such as Atterberg limits and grain size distribution. Furthermore, for better understanding of the determined interrelationships between the physical characteristics and the residual strength of these marls, a number of marl-bentonite mixtures were also tested. Thus, the influence of the variation in clay mineral content on the residual strength was studied and correlations with clay-sized fraction and plasticity index were attempted.  相似文献   

2.
A strong earthquake (M J 6.9, M W 6.6–6.7) at about 11 km depth hit the western shore of the Noto Peninsula on Honshu, Japan, at about 00:42 coordinated universal time (9:42 a.m. local time) on 25 March 2007 (the Noto Hanto Earthquake in 2007). The earthquake triggered only 61 landslides, with most traveling short distances. It caused one long run-out landslide in the Nakanoya district of Monzen town, Wajima city, Ishikawa Prefecture, when a portion of a deep-seated landslide transformed into a moderate debris slide down a channel. The rock slide occurred on a south-facing convex-shaped slope on a small spur where earthquake ground shaking likely was strongly amplified by topography. A portion of the rock slide reached a small channel floored by materials containing abundant groundwater. Constant-volume box-shear tests on normally consolidated saturated specimens revealed that the apparent angle of internal friction of the channel-floor material was 33–36° at 10-mm shear displacement and did not show much decrease in effective normal stress during shearing. In situ rock-sliding testing on the exposed channel materials showed a low kinetic-friction angle of about 21°. We suggest that an unsaturated portion of the rock slide slid down the channel, with sliding between the rock-slide mass and the channel floor. Because the slope angle of the travel path nearly equaled the kinetic-friction angle, the unsaturated rock slide mass may have traveled at a moderately slow speed, or it might have decelerated and accelerated. Slow speed is supported by accounts from local residents that suggest movement of debris continued for 3 days after the main shock.  相似文献   

3.
Slip zones of the large landslides in the Three Gorges area are commonly composed of fine-grained soils with substantial amount of coarse-grained particles, particularly gravel-sized particles. In this study, residual strength of the soils from slip zones of these landslides were examined in relation to their index properties based on a survey of 170 landslides. It was found that laboratory-determined residual friction angle using gravel-free fraction of the disturbed soils from the slip zones was closely related to clay content, liquid limit and plasticity index. On the other hand, in-situ residual friction angle of these soils (i.e. including gravel fraction) showed very weak correlations with clay content and Atterberg limits, but was largely dependent on gravel and fines (clays + silts) contents, increasing with gravels and decreasing with fines, and displayed strong linear correlation with the ratio of gravel to fines contents. These observations indicate that among the index properties, clay content and Atterberg limits can be used to estimate residual strength of the soils finer than 2 mm, but they are not appropriate evaluate the residual strength of the soils containing considerable amount of gravel-sized particles. For the latter, particle size distribution (particularly the ratio of gravel to fines contents) appears to be a useful index. Additionally, it was found that there was no identifiable correlation between relative abundance of individual major clay minerals and residual friction angles of both gravel-free fraction of disturbed and in-situ soils, suggesting that influence of clay minerals on residual strength of these soils can not be simply evaluated based on their abundance.  相似文献   

4.
棕榈加筋上海黏土强度特性试验研究   总被引:2,自引:0,他引:2  
采用棕榈作为加筋材料对上海黏土进行直剪慢剪试验,通过改变筋材的加筋率及尺寸研究棕榈对上海黏土强度特性的影响。试验表明,(1)与素土相比,加筋土的抗剪强度和黏聚力明显提高,但内摩擦角的变化较小;(2)加筋土的最优加筋率为0.6%;(3)棕榈尺寸为6 mm×12 mm的抗剪强度优于6 mm×6 mm和6 mm×18 mm的抗剪强度;(4)垂直压力为100 kPa时,应力-应变曲线呈应变软化型,随着垂直压力的增加,应力-应变曲线呈应变硬化型;(5)与素土相比,加筋土残余强度降低幅度减小,土体的抗变形能力提高,同时分析了加筋的抗剪强度作用机制,阐述了棕榈加筋材料在黏土中的作用,棕榈可作为加固上海黏土的一种有效方法。  相似文献   

5.
Summary ?The paper presents an experimental study on the effects of fluid content on the mechanical behaviour of natural fractures in chalk. The aims of the study are to provide better understanding of the mechanisms of chalk-fluid interaction, in general, and to explain the behaviour of petroleum chalk reservoirs during water injection, in particular. The experiments were carried out on L?gerdorf chalk using the direct shear apparatus. Two types of fluids were used in the tests: 1) water, and 2) synthetic oil. L?gerdorf chalk is a water-wet material which will develop capillary pressures upon contact with water. Initially saturating the chalk with oil will enhance the water wettability by inducing additional capillary forces between water and the non-wetting oil. In addition to the tests on fractured chalk samples, unconfined compression and direct shear tests on intact chalk samples were performed. The results showed significant differences in the strength and deformation characteristics of intact chalk initially saturated with different fluids. Intact water-saturated chalk showed lower deformation modulus (about 50%) and lower peak (also about 50%) and residual shear strength than the oil-saturated chalk. Water injection in initially oil-saturated fractures resulted in significant normal deformation under constant effective normal stress and shear stress relaxation under fixed shear displacement. The water-induced deformation occurred almost instantaneously after only a few cm3 of water had been injected into the fracture, and further injection of water did not increase the water-induced deformation. After water injection, fractures in initially oil-saturated chalk showed significantly lower normal and shear stiffnesses and lower shear strength. The weakening in shear is attributed partly to the reduction in the basic friction angle, φb, and this reduction was verified in a series of tilt tests to measure the frictional resistance between smooth edges of core samples of chalk. The reduction in the basic friction angle implies that the interaction of chalk with water is governed not only by capillary forces, as postulated in several previous studies, but also by chemical and/or physio-chemical effects.  相似文献   

6.
全风化花岗岩抗剪强度试验结果对比及影响因素分析   总被引:6,自引:3,他引:3  
对三轴和直剪试验得到的土抗剪强度结果对比及其主要影响因素分析很少。本文通过对采自香港两处边坡顶部 3个探坑中 1 1组全风化花岗岩样三轴固结不排水剪切和慢剪试验 ,得到了它们的有效抗剪强度值。孔隙度小的中细粒kt样品抗剪强度值总体大于孔隙度大的中粗粒skm样品。对同一组样品两种试验得出的有效抗剪强度值对比发现 :三轴试验结果大于直剪试验结果。两者相差有效内聚力c' =- 6 0~ 6 0kPa ,有效内摩擦角 '=- 2~ 1 8;两者的c'呈正线性相关 (相关系数R =0 .84 9) ,两者的 '正对数相关 (R =0 .6 86 )。两种实验的c'差值和 '差值呈弱负线性相关 (R =0 .377)。这些差别主要归因于样品物质成分和结构特征 (如粘粒、石英和粘土矿物含量等 )不同。其中 ,粘粒含量和c'值负相关 ,而与c'值差值呈正对数相关 (R =0 .776 ) ,即随着粘粒含量增加 ,三轴和直剪的有效内聚力c'差别也变大 ;粘粒和粘土矿物含量都和 '值及差值负对数相关。而含量较高的石英与有效内聚力c'值和差值都呈正相关。本文结果表明 ,在分析对比抗剪强度试验结果差别时 ,要特别注意分析粘粒、粘土矿物和石英含量变化 ,其次是天然密度和游离Fe2 O3 含量的影响  相似文献   

7.
为了获得不同初始颗粒粒径分布和含水率对层间错动带颗粒破碎和剪切强度特性的影响,通过对比泥夹碎屑、泥夹粉砂、全泥型3种不同层间错动带类型与现场3种不同含水率(10%、7%和3%)试样在法向压力2~10 MPa作用下的反复直剪试验和剪切面颗粒粒径分析试验结果,可得出以下结论:①粗颗粒越多(d60越大),采用相对颗粒破碎势Br量化的颗粒破碎程度越大;②较干颗粒(低含水率)由于磨损产生了更多的细小颗粒,而较湿颗粒(高含水率)由于破裂和摩擦产生了较大颗粒;③粗颗粒仅对峰值抗剪强度产生一定的影响,且粗颗粒越多,残余强度包线非线性越强;④黏聚力和内摩擦角随含水率线性减小,且低含水率试样残余强度包线非线性最强;⑤残余内摩擦角随颗粒破碎后的黏粒含量(<2 μm)线性减小。提出的残余内摩擦角初步预测公式可供实际工程参考。  相似文献   

8.
金坪子滑坡是一个位于金沙江右岸、上距乌东德水电站约900 m、总体积约6.25×108 m3的具有典型蠕滑特点的滑坡。为了进一步弄清控制该滑坡活动模式的内在机理,通过不同黏粒含量下滑带土的反复剪切试验,研究了滑坡滑带土的残余、峰值强度特性,以期为同类滑坡的防护和治理提供参考依据。研究结果显示,随着黏粒含量的增加,滑带土应变软化现象更加明显;而滑带土残余强度、峰值强度随着黏粒含量的增加,呈现非线性降低规律,但降低幅度随正压力的增大而增大;同时,残余内摩擦角、峰值内摩擦角与黏粒含量存在良好线性负相关关系,而残余黏聚力与峰值黏聚力随黏粒含量增加呈波动性增大,但在黏粒含量40%处出现一定降低幅度。关于黏聚力的波动性降低趋势,究其原因可能在于黏粒周围强结合水的分布对滑带土强度特性,尤其是黏聚力存在临界影响。本文数据和结论对金坪子滑坡的防护和治理以及不同粒径下蠕滑滑坡失稳演化进程有重要的借鉴意义。  相似文献   

9.
为了解决复活蠕滑型黄土滑坡强度参数的取值问题,开展完全软化强度与残余强度的对比试验研究。以山西地区典型黄土为研究对象,采用预压固结法制备饱和重塑试样,并进行反复直剪强度试验获取完全软化强度和残余强度参数。试验结果表明:黄土的完全软化强度以黏聚力为零、颗粒未发生定向排列为主要特征。完全软化强度与二次固结应力和黏粒含量有关。试样在二次固结应力小于300kPa时的应力-应变曲线呈应变软化型,完全软化强度大于残余强度,黏粒含量高的试样应变软化更显著; 试样在二次固结应力大于等于300kPa时的应力应变曲线呈理想塑性型,完全软化强度近似等于残余强度。完全软化内摩擦角与残余内摩擦角的差值和预压固结应力、二次固结应力及黏粒含量有关。完全软化内摩擦角与残余内摩擦角的差值随二次固结应力的增大而减小,最终趋于0。当预压固结应力小于300kPa时,内摩擦角差值及黏粒含量对内摩擦角差值的影响随着预压固结应力的减小呈乘幂性增大; 当预压固结应力大于等于300kPa时,完全软化强度近似等于残余强度,可用完全软化强度近似代替残余强度。研究结论为复活蠕滑型黄土滑坡稳定性分析时强度参数的取值提供了一定的参考。  相似文献   

10.
Sealing layers are often represented by sedimentary sequences characterized by alternating strong and weak lithologies. When involved in faulting processes, these mechanically heterogeneous multilayers develop complex fault geometries. Here we investigate fault initiation and evolution within a mechanical multilayer by integrating field observations and rock deformation experiments. Faults initiate with a staircase trajectory that partially reflects the mechanical properties of the involved lithologies, as suggested by our deformation experiments. However, some faults initiating at low angles in calcite-rich layers (θi = 5°–20°) and at high angles in clay-rich layers (θi = 45°–86°) indicate the important role of structural inheritance at the onset of faulting. With increasing displacement, faults develop well-organized fault cores characterized by a marly, foliated matrix embedding fragments of limestone. The angles of fault reactivation, which concentrate between 30° and 60°, are consistent with the low friction coefficient measured during our experiments on marls (μs = 0.39), indicating that clay minerals exert a main control on fault mechanics. Moreover, our integrated analysis suggests that fracturing and faulting are the main mechanisms allowing fluid circulation within the low-permeability multilayer, and that its sealing integrity can be compromised only by the activity of larger faults cutting across its entire thickness.  相似文献   

11.

Chalk breaks easily when subjected to human action such as mechanical handling, earthworks operations or pile installation. These actions break the cemented structure of chalk, which turns into a degraded material known as putty, with lower strength and stiffness than the intact chalk. The addition of Portland cement can improve the behaviour of chalk putties. Yet, there are no studies determining the tensile strength of chalk putty–cement blends, the initial stiffness evolution during the curing time and other design parameters such as friction angle and cohesion of this material. This paper addresses this knowledge gap and provides an interpretation of new experimental results based on the dimensionless index expressed as the ratio between porosity and volumetric content of cement (η/Civ) or its exponential modification (η/Civa). This index aids the selection of the amount of cement and density for key design parameters of compacted chalk putty–cement blends required in geotechnical engineering projects such as road foundations and pavements, embankments, and also bored concrete pile foundations.

  相似文献   

12.
不同环剪方式下滑带土残余强度试验研究   总被引:9,自引:0,他引:9  
王顺  项伟  崔德山  杨金  黄旋 《岩土力学》2012,33(10):2967-2972
以三峡库区黄土坡滑坡滑带土为研究对象,利用环剪仪研究了黄土坡滑坡滑带土在单级剪、预剪以及多级剪3种环剪方式下的残余强度特征。试验结果表明:不同环剪试验下剪切带的形成与剪切位移相关;残余强度随有效法向应力的增大而增大,对于已经存在剪切带的滑带土,环剪时能很快达到残余强度状态;滑带土环剪轴向压缩分初始剪胀、颗粒运移压密和稳定压密3个阶段,且每个阶段剪应力变化趋势不同;预剪试验和多级剪切试验得到的残余强度偏大,应该首选单级剪切试验测试滑带土残余强度指标。  相似文献   

13.
Loess is an aeolian deposit consisting of predominantly silt-sized quartz particles, and containing variable amounts of clay-sized minerals. Loess is generally classified as a water-softening material, because upon wetting the loess fabric rapidly weakens or collapses. The strain hardening of Malan loess and the brittle failure of Lishi and Wucheng loess are in strong contrast to the failure behaviour of these loess deposits in a remoulded state. From tests carried out on samples with varying moisture contents, using a modified Bromhead ring shear apparatus, it was found that the effective apparent cohesion gradually increases and the effective internal friction angle decreases with an increase in moisture content. When the moisture content reaches a material-specific threshold, the effective cohesion decreases rapidly and the effective internal friction angle stabilises at a residual value.

The frequent failure of loess slopes in the western part of the Chinese Loess Plateau is closely related to progressive weathering along zones in these slopes, which causes a dramatic decrease in strength from the peak strength condition. Progressive weathering is common in the loess slopes in the western part of the Chinese Loess Plateau. During the process shear strength reduction along potential slip surfaces may be achieved by leaching of readily soluble salts, destruction of cementation bonds, and redistribution of particles. Localized collapse of the loess fabric causes internal deformation and consequently peak strength conditions are concentrated on a progressively smaller area of the failure plane. Therefore, the mode of failure of loess slopes is generally determined by brittle failure of the undisturbed, and unweathered, central parts of the slopes. It is important that both the weathered and unweathered strength of the loessmaterials in this area be established in order to analyze the stability of existing loessslopes, many of which are steepand lie directly above domestic and industrial urban areas.  相似文献   


14.
Deformation bands are described in detail for the first time in carbonate rock from the subsurface and in chalk from the North Sea. The samples are from 2200 to 2300 m below sea level, in upper Maastrichtian to Danian chalk in the Oseberg Field. The deformation bands were investigated using thin-section analysis, SEM and computed tomography (CT). There is a reduction in porosity from 30 to 40% in the matrix to ca. 10% or less inside the deformation bands. They have apparent thicknesses ranging from less than 0.05–0.5 mm and have previously often been referred to as hairline fractures. Their narrowness is probably the reason why these features have not previously been recognised as deformation bands. The deformation bands in chalk are very thin compared to deformation bands in sandstone and carbonate grainstones which have mm to cm widths. This is suggested to be due to the fine grain size of the chalk matrix (2–10 μm), and it appears to be a positive correlation between grain-size and width of deformation bands. The deformation bands are suggested to have been formed as compactional shear bands during mechanical compaction, and also related to faulting.  相似文献   

15.
The shear behavior of soils rich in amorphous clay-size materials was not well reported in the literature. This study analyzed the direct shear and ring shear test data of soil samples containing 55–74% amorphous materials in the clay fraction from a slow-moving landslide in eastern Honolulu, HI. The direct shear test results showed that the undisturbed soil samples when not sheared internally had peak cohesion (c) of about 50 kPa and internal friction angle (Ø) of about 10°. This implies that the amorphous clay-size materials provided strong interparticle bonds for the soils. Breaking of the bonds during the softening process and redistribution of the amorphous clay-size materials were primarily responsible for the drop from the peak strength to the residual strength (c=0, Ø=10° from back calculation with SLOPE/W and c=0, Ø=5–7° from the ring shear test). The drained residual failure envelope is stress dependent due to the interaction of the gel-like amorphous clay-size materials with crystalline silt- and sand-sized particles. The amorphous clay-size materials act as the contact between crystalline particles. The contact increases with increasing consolidation stress, resulting in a decrease in the shear strength and the residual friction angle.  相似文献   

16.
Residual strength of slip zone soils   总被引:2,自引:1,他引:1  
X. P. Chen  D. Liu 《Landslides》2014,11(2):305-314
Slip zones of ancient landslides are commonly composed of fine-grained soils with amount of coarse-grained particle. Residual strength of slip zone soil is an important parameter for evaluating reactivation potential and understanding progressive failure mechanism. In this study, the residual strength is examined by in situ direct shear tests, improved laboratory reversal shear box test, precut specimen triaxial shear test and ring shear test. Some residual shear behaviors are recognized. Field residual strength is the average operational resistance along the sliding surface not an ideal drained strength, which is less than peak and greater than residual strength measured in laboratory. Stress–displacement curves obtained from in situ shear and laboratory reversal direct shear demonstrate strain-hardening which have no significant peak, but the shear stress is decreased gradually with increasing displacement. Residual friction coefficient depends on the normal stress, and this dependence is relevant to the interaction of rolling and sliding of particles. Residual friction angle is closely related to coarse fraction and dry density, appearing a linear increase with increasing coarse fraction and a form of polynomial function with increasing dry density. The influence of shearing rate on residual strength can be negligible.  相似文献   

17.
Geotechnical and mineralogical characteristics of marl deposits in Jordan   总被引:1,自引:0,他引:1  
Marls and marly limestone deposits cover most of Northern Jordan, where Amman City and its suburbs are located. These deposits serve as foundations for most buildings and roads as well as fill material for structural back filling, especially road bases and sub-bases. The present study aims at investigating the geotechnical characteristics and mineral composition of the marl units of these deposits through field investigations and laboratory testing. Using X-ray diffraction technique along with chemical analysis, representative samples of marl horizons were tested for mineral composition, and for a set of index and geotechnical properties including: specific gravity, grain size, Atterberg limits, Proctor compaction and shear strength properties. The test results show a positive linear relationship as expected between the clay content and both liquid and plastic limits. The tests results also show an inverse linear relationship between the clay content and the maximum dry density in both standard and modified compaction. This is attributed to the adsorption of water by the clay minerals. The relationship is more prominent in the case of modified compaction test. The results also indicate a similar relationship for the angle of internal friction. No clear correlation between cohesion and clay content was apparent.  相似文献   

18.
利用电动应变控制式直剪仪及直剪/残余剪切试验仪对南水北调磁县段不同黏粒含量的原状膨胀土进行快剪、饱和快剪、饱和固结快剪和反复直剪试验,研究黏粒含量对其抗剪强度的影响。研究表明:饱和后试样的抗剪强度明显降低,固结后强度提高,且饱和作用对黏粒含量较大的中膨胀土强度的削弱作用更为显著,固结作用对黏粒含量较小的弱膨胀土强度的治愈作用更显著; 随黏粒含量的增大,黏聚力逐渐减小,内摩擦角则先减后增,其临界值在32%左右; 峰值强度后的抗剪强度降低幅度随黏粒含量的增加而增大; 土体的峰值强度f随黏粒含量则先减后增,变化趋势比较平缓; 残余强度r随黏粒含量增加逐渐减小,成指数关系; 残余强度内摩擦角r与黏粒含量成对数关系,黏聚力cr则比较离散。  相似文献   

19.
Binary-medium contact interfaces widely exist in rock engineering. They have significant impacts on the safety of rock engineering due to their poor shear behavior. A material of different strength is produced by pouring mortar of a different sand-to-cement ratio on the top of a rock-like mortar material (with the ratio of 1:1), thereby forming a binary-medium structural plane. Then, direct shear test is performed on the structural plane by applying different normal stresses. The shear strength parameters of the structural plane (cohesion \(c\) and friction angle \(\varphi\)) are obtained from the Mohr–Coulomb criterion. Moreover, the mechanical behaviors of the structural plane are compared with the unitary-medium specimen in the shearing process. A similar shear stress–shear displacement rule is observed in the shearing process. However, the peak and residual shear strengths of the binary structural plane are far lower than those of the unitary ones. The difference between the unitary and binary planes at cohesion \(c\) decreases with the increasing sand–cement ratio, whereas a up-down trend is observed in the friction angle \(\varphi\) with the increasing sand-to-cement ratio. When the upper and lower parts of the structural plane are different in sand-to-cement ratio, the cohesion \(c\) of the structural plane slightly increases with the increasing ratio of the upper specimen. However, when the two parts are identical in ratio, the cohesion of the structural plane reaches the peak, and its friction angle \(\varphi\) substantially increases with the increasing ratio of the upper part.  相似文献   

20.
The residual strength of clay is very important to evaluate long term stability of proposed and existing slopes and for remedial measure for failure slopes. Various attempts have been made to correlate the residual friction angle (r) with index properties of soil. This paper presents a neural network model to predict the residual friction angle based on clay fraction and Atterberg's limits. Different sensitivity analysis was made to find out the important parameters affecting the residual friction angle. Emphasis is placed on the construction of neural interpretation diagram, based on the weights of the developed neural network model, to find out direct or inverse effect of soil properties on the residual shear angle. A prediction model equation is established with the weights of the neural network as the model parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号