首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We use nearby K dwarf stars to measure the helium-to-metal enrichment ratio  Δ Y /Δ Z   , a diagnostic of the chemical history of the solar neighbourhood. Our sample of K dwarfs has homogeneously determined effective temperatures, bolometric luminosities and metallicities, allowing us to fit each star to the appropriate stellar isochrone and determine its helium content indirectly. We use a newly computed set of Padova isochrones which cover a wide range of helium and metal content.
Our theoretical isochrones have been checked against a congruous set of main-sequence binaries with accurately measured masses, to discuss and validate their range of applicability. We find that the stellar masses deduced from the isochrones are usually in excellent agreement with empirical measurements. Good agreement is also found with empirical mass-luminosity relations.
Despite fitting the masses of the stars very well, we find that anomalously low helium content (lower than primordial helium) is required to fit the luminosities and temperatures of the metal-poor K dwarfs, while more conventional values of the helium content are derived for the stars around solar metallicity.
We have investigated the effect of diffusion in stellar models and the assumption of local thermodynamic equilibrium (LTE) in deriving metallicities. Neither of these is able to resolve the low-helium problem alone and only marginally if the cumulated effects are included, unless we assume a mixing-length which is strongly decreasing with metallicity. Further work in stellar models is urgently needed.
The helium-to-metal enrichment ratio is found to be  Δ Y /Δ Z = 2.1 ± 0.9  around and above solar metallicity, consistent with previous studies, whereas open problems still remain at the lowest metallicities. Finally, we determine the helium content for a set of planetary host stars.  相似文献   

2.
The chemical enrichment law Y ( Z ) is studied by using detached double-lined eclipsing binaries with accurate absolute dimensions and effective temperatures. A sample of 50 suitable systems was collected from the literature, and their effective temperatures were carefully re-determined. The chemical composition of each of the systems was obtained by comparison with stellar evolutionary models, under the assumption that they should fit an isochrone to the observed properties of the components. Evolutionary models covering a wide grid in Z and Y were adopted for our study. An algorithm was developed for searching the best-fitting chemical composition (and the age) for the systems, based on the minimization of a χ 2 function. The errors (and biases) of these parameters were estimated by means of Monte Carlo simulations, with special care put on the correlations existing between the errors of both components. In order to check the physical consistency of the results, we compared our metallicity values with empirical determinations, obtaining excellent coherence. The independently derived Z and Y values yielded a determination of the chemical enrichment law via weighted linear least-squares fit. Our value of the slope, Δ Y /Δ Z =2.2±0.8, is in good agreement with recent results, but it has a smaller formal error and it is free of systematic effects. Linear extrapolation of the enrichment law to zero metals leads to an estimation of the primordial helium abundance of Y p=0.225±0.013, possibly affected by systematics in the effective temperature determination.  相似文献   

3.
Following on from our recent Paper I, we present theoretical models of Wolf–Rayet (WR) stars for non-solar metallicities from   Z = 0.03  to 0.0001 by mass fraction with different mass-loss rate assumptions. We find that some single WR stars may still form even at the lowest metallicities, but whether this occurs or not depends critically on the upper cut-off point of the initial mass function used. As at solar metallicity, a population of binaries is required to fully reproduce WR star observations. For most scenarios, these binaries dominate the low-metallicity WR population but probably not the enrichment. We find comparable carbon enrichment from single WR stars to that from asymptotic giant branch stars at all metallicities for which data are available, but which of them is the dominant source of carbon depends strongly on the set of asymptotic giant branch yields adopted and the assumed initial mass function. We find an increase in carbon enrichment with increasing metallicity but a decrease in oxygen enrichment, as confirmed by observation.  相似文献   

4.
We present our findings based on a detailed analysis of the binaries of the Hyades, in which the masses of the components are well known. We fit the models of the components of a binary system to observations so as to give the observed total V and B − V of that system and the observed slope of the main sequence in the corresponding parts. According to our findings, there is a very definite relationship between the mixing-length parameter and the stellar mass. The fitting formula for this relationship can be given as  α= 9.19( M /M− 0.74)0.053− 6.65  , which is valid for stellar masses greater than  0.77 M  . While no strict information is gathered for the chemical composition of the cluster, as a result of degeneracy in the colour–magnitude diagram, by adopting   Z = 0.033  and using models for the components of 70 Tau and θ2 Tau we find the hydrogen abundance to be   X = 0.676  and the age to be 670 Myr. If we assume that   Z = 0.024  , then   X = 0.718  and the age is 720 Myr. Our findings concerning the mixing-length parameter are valid for both sets of the solution. For both components of the active binary system V818 Tau, the differences between radii of the models with   Z = 0.024  and the observed radii are only about 4 per cent. More generally, the effective temperatures of the models of low-mass stars in the binary systems studied are in good agreement with those determined by spectroscopic methods.  相似文献   

5.
The study of young stellar populations has revealed that most stars are in binary or higher order multiple systems. In this study, the influence on the stellar initial mass function (IMF) of large quantities of unresolved multiple massive stars is investigated by taking into account the stellar evolution and photometrically determined system masses. The models, where initial masses are derived from the luminosity and colour of unresolved multiple systems, show that even under extreme circumstances (100 per cent binaries or higher order multiples), the difference between the power-law index of the mass function (MF) of all stars and the observed MF is small (≲0.1). Thus, if the observed IMF has the Salpeter index  α= 2.35  , then the true stellar IMF has an index not flatter than  α= 2.25  . Additionally, unresolved multiple systems may hide between 15 and 60 per cent of the underlying true mass of a star cluster. While already a known result, it is important to point out that the presence of a large number of unresolved binaries amongst pre-main-sequence stars induces a significant spread in the measured ages of these stars even if there is none. Also, lower mass stars in a single-age binary-rich cluster appear older than the massive stars by about 0.6 Myr.  相似文献   

6.
In general, H  ii regions do not show clear signs of self-enrichment in products from massive stars  ( M ≥ 8 M)  . In order to explore why I modelled the contamination with Wolf–Rayet star ejecta of metal-poor  ( Z = 0.001)  H  ii regions, ionized either by a  106 M  cluster of coeval stars (cluster 1) or by a cluster resulting from continuous star formation at a rate of  1 M yr−1  (cluster 2). The clusters have   Z = 0.001  and a Salpeter initial mass function from 0.1 to  120 M  . Independent one-dimensional constant density simulations of the emission-line spectra of unenriched H  ii regions were computed at the discrete ages 1, 2, 3, 4 and 5 Myr, with the photoionization code cloudy , using as input, radiative and mechanical stellar feedbacks predicted by the evolutionary synthesis code starburst99 . Each H  ii region was placed at the outer radius of the adiabatically expanding superbubble of Mac Low & McCray. For models with thermal and ionization balance time-scales of less than 1 Myr, and with oxygen emission-line ratios in agreement with observations, the volume of the superbubble and the H  ii region was uniformly and instantaneously polluted with stellar ejecta predicted by starburst99 . I obtained a maximum oxygen abundance enhancement of 0.025 dex, with cluster 1, at 4 Myr. It would be unobservable.  相似文献   

7.
Elemental abundances in late-type stars are of interest in several ways: they determine the location of the stars in the HR diagram and therefore their ages, as well as the atmospheric structure in their middle and upper photospheres. Especially in the case of chromospherically active late-type stars the question arises to what degree the upper photosphere is influenced by the nearby chromosphere. Analysing S/N ∼ 200 and Δλ/λ ∼ 20 000 data, we found a mean metallicity index [M/H] = −0.2 for programme K and M field stars based on an analysis of spectra in the region 5500–9000 Å. We also found that the Ca  I 6162-Å transition is a potential surface gravity indicator for K-type stars. For the chromospheric activity interval 4.4 < log  F Mg II  < 6.6 we did not find any chromospheric activity impact on photospheric and upper photospheric transitions. With the derived metallicity, we confirmed the Li abundance from our previous paper and thus its dependence on the Mg  II chromospheric activity index. The nature of the spectrum for the active M-type star Gl 896A is explained by pure rotation of 14 km s−1. As far as the lithium–rotation relation is concerned, the spectrum of Gl 517 is rotationally broadened as well, by 12 km s−1, and the Li abundance is the second highest in our sample of stars. However, there is no link between very high Li abundance, 2.2 dex, in the K dwarf star Gl 5 and stellar rotation.  相似文献   

8.
The α Centauri (α Cen) binary system is a well-known stellar system with very accurate observational constraints on the structure of its component stars. In addition to the classical non-seismic constraints, there are also seismic constraints for the interior models of α Cen A and B. These two types of constraint give very different values for the age of the system. While we obtain 8.9 Gyr for the age of the system from the non-seismic constraints, the seismic constraints imply that the age is about 5.6–5.9 Gyr. There may be observational or theoretical reasons for this discrepancy, which can be found by careful consideration of similar stars. The α Cen binary system, with its solar-type components, is also suitable for testing the stellar mass dependence of the mixing-length parameter for convection derived from the binaries of Hyades. The values of the mixing-length parameter for α Cen A and B are 2.10 and 1.90 for the non-seismic constraints. If we prioritize the seismic constraints, we obtain 1.64 and 1.91 for α Cen A and B, respectively. By taking into account these two contrasting cases for stellar mass dependence of the mixing-length parameter, we derive two expressions for its time dependence, which are also compatible with the mass dependence of the mixing-length parameter derived from the Hyades stars. For assessment, these expressions should be tested in other stellar systems and clusters.  相似文献   

9.
We explore the predictions of the standard hierarchical clustering scenario of galaxy formation, regarding the numbers and metallicities of PopIII stars that are likely to be found within our Galaxy today. By PopIII we refer to stars formed at large redshift ( z >4), with low metallicities ([ Z /Z]<−2.5) and in small systems (total mass ≲ 2×108 M) that are extremely sensitive to stellar feedback, and which through a prescribed merging history end up becoming part of the Milky Way today. An analytic, extended Press–Schechter formalism is used to obtain the mass functions of haloes which will host PopIII stars at a given redshift, and which will end up in Milky Way sized systems today. Each of these is modelled as a mini-galaxy, with a detailed treatment of the dark halo structure, angular momentum distribution, final gas temperature and disc instabilities, all of which determine the fraction of the baryons that are subject to star formation. The use of new primordial metallicity stellar evolutionary models allows us to trace the history of the stars formed, and give accurate estimates of their expected numbers today and their location in L /L versus T /K Hertzsprung–Russell (HR) diagrams. A first comparison with observational data suggests that the initial mass function (IMF) of the first stars was increasingly high-mass weighted towards high redshifts, levelling off at z ≳9 at a characteristic stellar mass scale m s=10–15 M.  相似文献   

10.
We make new non-local thermodynamic equilibrium calculations to deduce the abundances of neon from visible-region echelle spectra of selected Ne  i lines in seven normal stars and 20 HgMn stars. We find that the best strong blend-free Ne line that can be used at the lower end of the effective temperature T eff range is λ 6402, although several other potentially useful Ne  i lines are found in the red region of the spectra of these stars. The mean neon abundance in the normal stars (log  A =8.10) is in excellent agreement with the standard abundance of neon (8.08). However, in HgMn stars neon is almost universally underabundant, ranging from marginal deficits of 0.1–0.3 dex to underabundances of an order of magnitude or more. In many cases, the lines are so weak that only upper limits can be established. The most extreme example found is υ Her with an underabundance of at least 1.5 dex. These underabundances are qualitatively expected from radiative acceleration calculations, which show that Ne has a very small radiative acceleration in the photosphere, and that it is expected to undergo gravitational settling if the mixing processes are sufficiently weak and there is no strong stellar wind. According to theoretical predictions , the low Ne abundances place an important constraint on the intensity of such stellar winds, which must be less than 10−14 M yr−1 if they are non-turbulent.  相似文献   

11.
We report the first survey of chemical abundances in M and K dwarf stars using atomic absorption lines in high-resolution spectra. We have measured Fe and Ti abundances in 35 M and K dwarf stars using equivalent widths measured from  λ/Δλ≈ 33 000  spectra. Our analysis takes advantage of recent improvements in model atmospheres of low-temperature dwarf stars. The stars have temperatures between 3300 and 4700 K, with most cooler than 4100 K. They cover an iron abundance range of  −2.44 < [Fe/H] < +0.16  . Our measurements show [Ti/Fe] decreasing with increasing [Fe/H], a trend similar to that measured for warmer stars, where abundance analysis techniques have been tested more thoroughly. This study is a step towards the observational calibration of procedures to estimate the metallicity of low-mass dwarf stars using photometric and low-resolution spectral indices.  相似文献   

12.
Evolutionary synthesis of stellar populations: a modular tool   总被引:1,自引:0,他引:1  
A new tool for the evolutionary synthesis of stellar populations is presented, which is based on three independent matrices, giving respectively (1) the fuel consumption during each evolutionary phase as a function of stellar mass, (2) the typical temperatures and gravities during such phases, and (3) the colours and bolometric corrections as functions of gravity and temperature. The modular structure of the code allows one easily to assess the impact on the synthetic spectral energy distribution of the various assumptions and model ingredients, such as, for example, uncertainties in stellar evolutionary models, the mixing length, the temperature distribution of horizontal branch stars, asymptotic giant branch mass loss, and colour–temperature transformations. The so-called 'AGB phase transition' in Magellanic Cloud clusters is used to calibrate the contribution of the thermally pulsing asymptotic giant branch phase to the synthetic integrated luminosity. As an illustrative example, solar-metallicity ( Y  = 0.27, Z  = 0.02) models, with ages ranging between 30 Myr and 15 Gyr and various choices for the slope of the initial mass function, are presented. Synthetic broad-band colours and the luminosity contributions of the various evolutionary stages are compared with Large Magellanic Cloud and Galactic globular cluster data. In all these cases, a good agreement is found. Finally, the evolution is presented of stellar mass-to-light ratios in the bolometric and U B V R K passbands, in which the contribution of stellar remnants is accounted for.  相似文献   

13.
In regions of very high dark matter density such as the Galactic Centre, the capture and annihilation of WIMP dark matter by stars has the potential to significantly alter their evolution. We describe the dark stellar evolution code D ark S tars , and present a series of detailed grids of WIMP-influenced stellar models for main-sequence stars. We describe the changes in stellar structure and main-sequence evolution which occur as a function of the rate of energy injection by WIMPs, for masses of  0.3–2.0 M  and metallicities   Z = 0.0003–0.02  . We show what rates of energy injection can be obtained using realistic orbital parameters for stars at the Galactic Centre, including detailed consideration of the velocity and density profiles of dark matter. Capture and annihilation rates are strongly boosted when stars follow elliptical rather than circular orbits. If there is a spike of dark matter induced by the supermassive black hole at the Galactic Centre, single solar mass stars following orbits with periods as long as 50 yr and eccentricities as low as 0.9 could be significantly affected. Binary systems with similar periods about the Galactic Centre could be affected on even less eccentric orbits. The most striking observational effect of this scenario would be the existence of a binary consisting of a low-mass protostar and a higher mass evolved star. The observation of low-mass stars and/or binaries on such orbits would either provide a detection of WIMP dark matter, or place stringent limits on the combination of the WIMP mass, spin-dependent nuclear-scattering cross-section, halo density and velocity distribution near the Galactic Centre. In some cases, the derived limits on the WIMP mass and spin-dependent nuclear-scattering cross-section would be of comparable sensitivity to current direct-detection experiments.  相似文献   

14.
The amount of mass contained in low-mass objects is investigated anew. Instead of using a mass–luminosity relation to convert a luminosity function to a mass function, I predict the mass–luminosity relation from assumed mass functions and the luminosity functions of Jahreiss & Wielen and Gould, Bahcall & Flynn. Comparison of the resulting mass–luminosity relations with data for binary stars constrains the permissible mass functions. If the mass function is assumed to be a power law, the best-fitting slope lies either side of the critical slope, α =−2, below which the mass in low-mass objects is divergent, depending on the luminosity function adopted. If these power-law mass functions are truncated at 0.001 M, the contribution to the local density from stars lies between 0.013 and 0.10 M pc−3 depending on the mass at which the mass function is normalized and the adopted value of α . Recent dynamical estimates of the local mass density rule out stellar mass densities above ∼0.05 M pc−3. Hence, power laws steeper than α =−2 that extend down to 0.001 M are allowed only if one adopts an implausible normalization of the mass function. If the mass function is generalized from a power law to a low-order polynomial in log( M ), the mass in stars with M <0.1 M is either negligible or strongly divergent, depending on the order of the polynomial adopted.  相似文献   

15.
We analyse the periods of theoretical radial pulsators, covering the range of total masses, luminosities, effective temperatures and chemical compositions expected for RR Lyrae variables in both galactic fields and globular clusters.
We show that for fixed values of the structural parameters (mass, luminosity and effective temperature), the period of fundamental and first-overtone pulsators is independent of the helium content ( Y ), whereas it slightly increases as the amount of metals ( Z ) increases. Furthermore, we find that the period along the blue edge for first-overtone pulsation is a function of mass, luminosity and helium content, with a marginal dependence on Z .
On these grounds, new linear relations connecting the periods to stellar parameters are derived. Such new relations should allow a more accurate interpretation of the RR Lyrae observed periods and, in particular, they should help in ascertaining the calibration of the mean absolute magnitude of RR Lyrae stars in terms of metal content.  相似文献   

16.
A comparison between published field galaxy stellar mass functions (GSMFs) shows that the cosmic stellar mass density is in the range 4–8 per cent of the baryon density (assuming  Ωb= 0.045  ). There remain significant sources of uncertainty for the dust correction and underlying stellar mass-to-light ratio even assuming a reasonable universal stellar initial mass function. We determine the   z < 0.05  GSMF using the New York University Value-Added Galaxy Catalog sample of 49 968 galaxies derived from the Sloan Digital Sky Survey and various estimates of stellar mass. The GSMF shows clear evidence for a low-mass upturn and is fitted with a double Schechter function that has  α2≃−1.6  . At masses below  ∼108.5 M  , the GSMF may be significantly incomplete because of missing low-surface-brightness galaxies. One interpretation of the stellar mass–metallicity relation is that it is primarily caused by a lower fraction of available baryons converted to stars in low-mass galaxies. Using this principle, we determine a simple relationship between baryonic mass and stellar mass and present an 'implied baryonic mass function'. This function has a faint-end slope,  α2≃−1.9  . Thus, we find evidence that the slope of the low-mass end of the galaxy mass function could plausibly be as steep as the halo mass function. We illustrate the relationship between halo baryonic mass function → galaxy baryonic mass function → GSMF. This demonstrates the requirement for peak galaxy formation efficiency at baryonic masses  ∼1011 M  corresponding to a minimum in feedback effects. The baryonic-infall efficiency may have levelled off at lower masses.  相似文献   

17.
We report the serendipitous discovery of a population of low-mass, pre-main-sequence (PMS) stars in the direction of the Wolf–Rayet/O-star binary system γ 2  Vel and the Vela OB2 association. We argue that γ 2  Vel and the low-mass stars are truly associated and approximately coeval, and that both are at distances between 360 and 490 pc, disagreeing at the 2 σ level with the recent Hipparcos parallax of γ 2  Vel, but consistent with older distance estimates. Our results clearly have implications for the physical parameters of the γ 2  Vel system, but also offer an exciting opportunity to investigate the influence of high-mass stars on the mass function and circumstellar disc lifetimes of their lower mass PMS siblings.  相似文献   

18.
We present a detailed analysis of seven young stars observed with the spectrograph SOPHIE at the Observatoire de Haute‐Provence for which the chemical composition was incomplete or absent in the literature. For five stars, we derived the stellar parameters and chemical compositions using our automatic pipeline optimized for F, G, and K stars, while for the other two stars with high rotational velocity, we derived the stellar parameters by using other information (parallax), and performed a line‐by‐line analysis. Chromospheric emission‐line fluxes from Caii are obtained for all targets. The stellar parameters we derive are generally in good agreement with what is available in the literature. We provide a chemical analysis of two of the stars for the first time. The star HIP 80124 shows a strong Li feature at 670.8 nm implying a high lithium abundance. Its chemical pattern is not consistent with it being a solar sibling, as has been suggested. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
20.
From high-resolution spectra a non-local thermodynamic equilibrium analysis of the Mg  ii 4481.2-Å  feature is implemented for 52 early and medium local B stars on the main sequence (MS). The influence of the neighbouring line Al  iii 4479.9-Å  is considered. The magnesium abundance is determined; it is found that  log ɛ(Mg) = 7.67 ± 0.21  on average. It is shown that uncertainties in the microturbulent parameter Vt are the main source of errors in  log ɛ(Mg)  . When using 36 stars with the most reliable Vt values derived from O  ii and N  ii lines, we obtain the mean abundance  log ɛ(Mg) = 7.59 ± 0.15  . The latter value is precisely confirmed for several hot B stars from an analysis of the Mg  ii 7877-Å  weak line. The derived abundance  log ɛ(Mg) = 7.59 ± 0.15  is in excellent agreement with the solar magnesium abundance  log ɛ (Mg) = 7.55 ± 0.02  , as well as with the proto-Sun abundance  log ɛ ps (Mg) = 7.62 ± 0.02  . Thus, it is confirmed that the Sun and the B-type MS stars in our neighbourhood have the same metallicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号