首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent work on the Panzhihua intrusion has produced two separate models for the crystallisation of the intrusion:(1) low-Ti,high CaO and low H2O(0.5 wt.%) parent magma(equivalent to Emeishan low-Ti basalt) at FMQ;and(2) high-Ti,low CaO and higher H2O(>1.5 wt.%) parent magma(equivalent to Emeishan high-Ti basalt) at FMQ + 1.5.Modelling of these parent magma compositions produces significantly different results. We present here detailed f(O2) and H2O modelling for average compositions of both Emeishan high-Ti and low-Ti ferrobasalts in order to constrain the effects on crystallisation sequences for Emeishan ultra-mafic -mafic layered intrusions.Modelling is consistent with numerous experimental studies on ferro-basaltic magmas from other localities(e.g.Skaergaard intrusion).Modelling is compared with the geology of the Panzhihua intrusion in order to constrain the crystallisation of the gabbroic rocks and the Fe-Ti oxides ore layers.We suggest that the gabbroic rocks at the Panzhihua intrusion can be best explained by crystallisation from a parent magma similar to that of the high-Ti Emeishan basalt at moderate H2O contents(0.5-1 wt.%) but at the lower end of TiO2 content for typical high-Ti basalts(2.5 wt.%TiO2). Distinct silicate disequilibrium textures in the Fe-Ti oxide ore layers suggest that an influx of H2O may be responsible for changing the crystallisation path.An increase in H2O during crystallisation of gabbroic rocks will result in the depression of silicate liquidus temperatures and resultant disequilibrium with the liquid.Continued cooling of the magma with high H2O then results in precipitation of Mt-Uv alone. The H2O content of parent magmas for mafic layered intrusions associated with the ELIP is an important variable.H2O alters the crystallisation sequence of the basaltic magmas so that at high H2O and f(O2) Mt -Uv crystallises earlier than plagioclase and clinopyroxene.Furthermore,the addition of H2O to an anhydrous magma can explain silicate disequilibrium texture observed in the Fe-Ti oxide ore layers.  相似文献   

2.
The Panzhihua gabbroic layered intrusion is associated withthe 260 Ma Emeishan Large Igneous Province in SW China. Thissill-like body hosts a giant Fe–Ti–V oxide depositwith 1333 million ton ore reserves, which makes China a majorproducer of these metals. The intrusion has a Marginal zoneof fine-grained hornblende-bearing gabbro and olivine gabbro,followed upward by Lower, Middle, and Upper zones. The Lowerand Middle zones consist of layered melanogabbro and gabbrocomposed of cumulate clinopyroxene, plagioclase, and olivine.These zones also contain magnetite layers. The Upper zone consistschiefly of leucogabbro composed of plagioclase and clinopyroxenewith minor olivine. Most rocks in the body show variable-scalerhythmic modal layering in which dark minerals, primarily clinopyroxene,dominate in the lower parts of each layer, and lighter minerals,primarily plagioclase, dominate in the upper parts. The oxideores occur as layers and lenses within the gabbros and are concentratedin the lower parts of the intrusion. Ore textures and associatedmineral assemblages indicate that the ore bodies formed by verylate-stage crystallization of V-rich titanomagnetite from animmiscible oxide liquid in a fluid-rich environment. The rocksof the Panzhihua intrusion become more evolved in chemistryupward and follow a tholeiitic differentiation trend with enrichmentin Fe, Ti, and V. They are enriched in light rare earth elementsrelative to heavy rare earth elements, and exhibit positiveNb, Ta, and Ti anomalies and negative Zr and Hf anomalies. Thesilicate rocks and oxide ores of the Panzhihua intrusion formedfrom highly evolved Fe–Ti–V-rich ferrobasaltic orferropicritic magmas. The textures of the ores and the abundanceof minor hydrous phases indicate that addition of fluids fromupper crustal wall-rocks induced the separation of the immiscibleoxide melts from which the Fe–Ti–V oxide ore bodiesin the lower part of the intrusion crystallized. KEY WORDS: magnetite; Fe–Ti-rich gabbro; layered intrusion; Panzhihua; SW China  相似文献   

3.
Ophiolites are widespread along the Bangong-Nujiang suture zone, northern Tibet. However, it is still debated on the formation ages and tectonic evolution process of these ophiolites. The Zhongcang ophiolite is a typical ophiolite in the western part of the Bangong-Nujiang suture zone. It is composed of serpentinized peridotite, cumulate and isotropic gabbros, massive and pillow basalts, basaltic volcanic breccia, and minor red chert. Zircon SHRIMP Ue Pb dating for the isotropic gabbro yielded weighted mean age of 163.4 ± 1.8 Ma. Positive zircon ε Hf(t) values(+15.0 to +20.2) and mantle-like σ~(18)O values(5.29 ±0.21)% indicate that the isotropic gabbros were derived from a long-term depleted mantle source. The isotropic gabbros have normal mid-ocean ridge basalt(N-MORB) like immobile element patterns with high Mg O, low TiO_2 and moderate rare earth element(REE) abundances, and negative Nb,Ti, Zr and Hf anomalies. Basalts show typical oceanic island basalt(OIB) geochemical features, and they are similar to those of OIB-type rocks of the Early Cretaceous Zhongcang oceanic plateau within the Bangong-Nujiang Ocean. Together with these data, we suggest that the Zhongcang ophiolite was probably formed by the subduction of the Bangong-Nujiang Ocean during the Middle Jurassic. The subduction of the Bangong-Nujiang Tethyan Ocean could begin in the Earlye Middle Jurassic and continue to the Early Cretaceous, and finally continental collision between the Lhasa and Qiangtang terranes at the west Bangong-Nujiang suture zone probably has taken place later than the Early Cretaceous(ca. 110 Ma).  相似文献   

4.
The Maobei complex in the southern Sulu ultrahigh‐pressure (UHP) metamorphic belt, eastern China, mainly consists of layered eclogites, garnet peridotites and orthogneisses. Based on the modal mineral and whole‐rock compositions, eclogites from the Maobei complex are divided into quartz eclogite, quartz‐rich eclogite, rutile eclogite, rutile‐rich eclogite and eclogite. The distinct spatial changes in the lithology and related chemical compositions indicate that this complex includes 10 rhythmic layers. The rutile eclogites have high TiO2 (2.4–5.9 wt%), commonly coupled with high P2O5 (up to 4.1 wt%) contents; most show fractionated REE patterns with slight positive Eu anomalies. The rutile‐rich eclogites have very high TiO2 (3.3–5.7 wt%), FeOT (17.5–25.3 wt%), V (126–1163 ppm) and Co (14–132 ppm), and very low SiO2 (38.0–42.3 wt%), Zr (24–85 ppm), Nb (0.3–6.9 ppm), Ta (<0.1–0.6 ppm) and total REE (10.7–334.0 ppm) contents, variable degree of LREE depletion, and positive Eu anomalies (Eu/Eu* = 1.1–2.9), and the Ti is decoupled from other high‐field‐strength elements. These characteristics are consistent with Fe‐Ti gabbros of typical layered intrusions, implying a cumulate of plagioclase, clinopyroxene and abundant accessory magnetite in an evolved basaltic magmatic chamber. Based on a normal stratigraphic sequence, the Maobei complex shows an iron‐enrichment trend, followed by alkaline enrichment with increasing fractionated crystallization and stratigraphic height. These facts, together with SHRIMP U‐Pb zircon ages of 773.7 ± 8.0 Ma, indicate that the protolith of the Maobei complex is a Neoproterozoic layered intrusion consisting of a base of peridogabbro, a main body of gabbro and minor granodiorite. Unusually high Ti, V and P contents in three rutile eclogite layers suggest that they are potential economic ore deposits.  相似文献   

5.
The Khopoli intrusion, exposed at the base of the Thakurvadi Formation of the Deccan Traps in the Western Ghats, India, is composed of olivine gabbro with 50–55 % modal olivine, 20–25 % plagioclase, 10–15 % clinopyroxene, 5–10 % low-Ca pyroxene, and <5 % Fe-Ti oxides. It represents a cumulate rock from which trapped interstitial liquid was almost completely expelled. The Khopoli olivine gabbros have high MgO (23.5–26.9 wt.%), Ni (733–883 ppm) and Cr (1,432–1,048 ppm), and low concentrations of incompatible elements including the rare earth elements (REE). The compositions of the most primitive cumulus olivine and clinopyroxene indicate that the parental magma of the Khopoli intrusion was an evolved basaltic melt (Mg# 49–58). Calculated parental melt compositions in equilibrium with clinopyroxene are moderately enriched in the light REE and show many similarities with Deccan tholeiitic basalts of the Bushe, Khandala and Thakurvadi Formations. Nd-Sr isotopic compositions of Khopoli olivine gabbros (εNdt?=??9.0 to ?12.7; 87Sr/86Sr?=?0.7088–0.7285) indicate crustal contamination. AFC modelling suggests that the Khopoli olivine gabbros were derived from a Thakurvadi or Khandala-like basaltic melt with variable degrees of crustal contamination. Unlike the commonly alkalic, pre- and post-volcanic intrusions known in the Deccan Traps, the Khopoli intrusion provides a window to the shallow subvolcanic architecture and magmatic processes associated with the main tholeiitic flood basalt sequence. Measured true density values of the Khopoli olivine gabbros are as high as 3.06 g/cm3, and such high-level olivine-rich intrusions in flood basalt provinces can also explain geophysical observations such as high gravity anomalies and high seismic velocity crustal horizons.  相似文献   

6.
The Mazaertag layered intrusion is located in the northwestern part of the Tarim large igneous province where several early Permian layered mafic-ultramafic intrusions host important Fe-Ti oxide deposits. The intrusion covers an area of ~0.13 km~2 and has a vertical stratigraphic thickness of at least300 m. It consists chiefly of olivine clinopyroxenite, and is cut through by the nearby mafic-ultramafic dykes. In this paper, we report new mineral chemistry data and whole-rock chemical and isotopic compositions for the Mazaertag intrusion along with whole-rock isotopic compositions for the nearby mafic dykes. The averaged compositions of cumulus olivine, clinopyroxene and intercumulus plagioclase within individual samples range from Fo_(71-73),Mg~# = 76 to 79 and An_(65-75) but they do not define sustained reversals. The observed mineral compositions are consistent with the differentiation of a single batch of magma in a closed system. Rocks of the Mazaertag intrusion are characterized by enrichment in light REE relative to heavy REE, positive Nb and Ta anomalies and a small range of age-corrected ε_(Nd)(t)(-0.1 to +0.9) and initial ~(87)Sr/~(86)Sr values(0.7044 to 0.7068). The slightly lower ε_(Nd)(t), initial ~(206)Pb/~(204)Pb and higher initial ~(87)Sr/~(86)Sr values of the intrusion compared to those of the least contaminated dykes[ε_(Nd)(t) =+2.8 to +3.4;(~(206)Pb/~(204)Pb)_i = 18.516-18.521;(~(87)Sr/~(86)Sr)_i = 0.7038-0.7041] imply that the Mazaertag magma was subjected to small to modest degrees of contamination by the upper crust. The Sr-Nd isotopic compositions of the least contaminated dykes are consistent with derivation from a FOZO-like mantle source. The parental magma of the Mazaertag intrusion, estimated from clinopyroxene compositions using mineral-melt partition coefficients, has trace element compositions similar to some of the most primitive mafic dykes in the same area. This suggests that the Mazaertag intrusion and mafic dykes shared a similar mantle source. Therefore, the parental magma of the Mazaertag intrusion was interpreted to have originated from a mantle plume. Based on the Cr_2 O_3 contents in titanomagnetite and less-evolved characteristics of the Mazaertag intrusion compared to the Wajilitag Fe-Ti oxide deposit in Bachu, it is speculated that there might not be a potential to find economic Fe-Ti oxide mineralization in the intrusion.  相似文献   

7.
New major and trace element data on the Proterozoic Chimalpahad layered anorthositic Complex and associated basaltic amphibolites of the Nellore Schist Belt of South India provide new constraints on their petrogenesis and geodynamic setting. The Complex consists of layered anorthosites, leucogabbros, gabbros, ultramafic rocks and is spatially associated with basaltic amphibolites. Despite deformation and metamorphism, primary cumulate textures and igneous layering are locally well preserved throughout the Complex. Whereas the amphibolites display diverse REE systematics, the Chimalpahad anorthositic–gabbroic rocks are characterized by moderately depleted to strongly enriched LREE patterns and by flat to depleted HREE patterns. The field relations, major and trace element compositions of the basaltic amphibolites suggest that they are petrogenetically related to the anorthositic–gabbroic rocks by fractional crystallization. The anorthositic rocks and the basaltic amphibolites share the depletion of Nb relative to Th and La on primitive mantle-normalized diagrams. They exhibit signatures of arc magmatic rocks, such as high LILE and LREE relative to the HFSE and HREE, as well as high Ba/Nb, Ba/Zr, Sr/Y, La/Yb ratios that mimic chondrite-normalized REE and primitive mantle-normalized trace element patterns of arc magmas. Similarly, on log-transformed tectonic discrimination diagrams, the Chimalpahad rocks plot within the field of Phanerozoic magmatic arcs, consistent with a subduction zone origin. On the basis of field relations and geochemical characteristics, the Chimalpahad Complex is interpreted as a fragment of a magma chamber of an island arc, which is tectonically juxtaposed against its original volcanic cover. A new preliminary Sm–Nd date of anorthosite from the Chimalpahad Complex indicates a model age of 1170 Ma.  相似文献   

8.
《International Geology Review》2012,54(11):1401-1417
The high-pressure (HP) Piaxtla Suite at Tehuitzingo contains peridotites, gabbros, and serpentinized peridotites, as well as granitoids and metasedimentary rocks. The HP mafic rocks are characterized by low SiO2 (38–52 wt.%) and high Mg# (~48–70), Ni (100–470 ppm), and Cr (180–1750 ppm), typical of cumulate compositions. Trace elements and rare earth element (REE) primitive mantle-normalized patterns display generally flat profiles, indicative of derivation from a primitive mantle with two distinct patterns: (1) gabbroic patterns are characterized by a positive Eu anomaly, low REE abundances, and slightly depleted high REE (HREE) relative to low REE (LREE), typical of cumulus olivine, pyroxene, and plagioclase; and (2) mafic-intermediate gabbroic patterns exhibit very flat profiles characteristic of olivine and clinopyroxene as cumulus minerals. Their Nb/Y and Zr/TiO2 ratios suggest a subalkaline character, whereas low Ti/V ratios indicate that the Tehuitzingo cumulates are island arc tholeiitic basalts that resemble modern, immature oceanic, forearc magmas. These cumulates have high values of ? Nd(t) = 5.3–8.5 and 147Sm/144Nd = 0.18–0.23, which renders calculations of model ages meaningless. Our data are consistent with the Tehuitzingo arc rocks being part of a tectonically extruded Devonian–early Carboniferous arc developed along the west margin of Gondwana.  相似文献   

9.
《International Geology Review》2012,54(12):1521-1540
The late Carboniferous Dongwanzi Complex in the northern North China Craton is composed of intrusive pyroxenite, hornblendite, gabbro, and syenite. The mafic-ultramafic rocks of the complex exhibit typical cumulate textures, curved-upward REE patterns, and variable contents of compatible elements, suggesting a cumulate origin. The syenite shows Sr-Nd isotopic ratios similar to the mafic-ultramafic complex and positive Eu anomalies in the chondrite-normalized REE patterns, suggesting that the syenite may represent residual melt after significant fractional crystallization of mafic melt. The mafic-ultramafic cumulates have low HREE abundance and high (Tb/Yb)N (2.5–4.2) and Dy/Yb ratios (>2), indicating that they may have originated from melting of garnet peridotite in the mantle. The Dongwanzi Complex is characterized by a large variation in Sr-Nd isotopic composition, with ISr = 0.7035 to 0.7052 and εNd(t) = ?4.0 to +5.2, which may be accounted for by mixing melts of depleted asthenospheric and enriched lithospheric sources. The radiogenic Os isotopic compositions of the complex ((187Os/188Os)i = 0.1344 to 0.3090) suggest slight contamination by mafic lower crust (≤2.5% based on Os isotopic modelling). The Dongwanzi Complex exhibits arc-related whole-rock and mineral geochemical affinities, such as enrichment in LILE (e.g. Sr, Ba, K) and depletion in HFSE (e.g. Nb, Ta, Ti). The abundance of hornblende and high CaO contents (22–24 wt.%) of clinopyroxene suggest that the source was rich in H2O, probably due to the formation above a subduction zone. We conclude that the Dongwanzi Complex and the related crust–mantle interactions probably reflect formation in a back-arc extensional environment related to the subduction of the Palaeo-Asian Ocean beneath the northern margin of the North China Craton in late Palaeozoic time.  相似文献   

10.
Economic concentrations of Fe–Ti oxides occurring as massive layers in the middle and upper parts of the Hongge intrusion are different from other layered intrusions (Panzhihua and Baima) in the Emeishan large igneous province, SW China. This paper reports on the new mineral compositions of magnetite and ilmenite for selected cumulate rocks and clinopyroxene and plagioclase for basalts. We use these data to estimate the oxidation state of parental magmas and during ore formation to constrain the factors leading to the abundant accumulation of Fe–Ti oxides involved with the Hongge layered intrusion. The results show that the oxygen fugacities of parental magma are in the range of FMQ?1.56 to FMQ+0.14, and the oxygen fugacities during the ore formation of the Fe–Ti oxides located in the lower olivine clinopyroxenite zone (LOZ) and the middle clinopyroxenite zone (MCZ) of the Hongge intrusion are in the range of FMQ?1.29 to FMQ?0.2 and FMQ?0.49 to FMQ+0.82, respectively. The MELTS model demonstrates that, as the oxygen fugacity increases from the FMQ?1 to FMQ+1, the proportion of crystallization magnetite increases from 11 % to 16 % and the crystallization temperature of the Fe–Ti oxides advances from 1134 to 1164 °C. The moderate oxygen fugacities for the Hongge MCZ indicate that the oxygen fugacity was not the only factor affecting the crystallization of Fe–Ti oxides. We speculated that the initial anhydrous magma that arrived at the Hongge shallow magma chamber became hydrous by attracting the H2O of the strata. In combination with increasing oxygen fugacities from the LOZ (FMQ?1.29 to FMQ?0.2) to the MCZ (FMQ?0.49 to FMQ+0.82), these two factors probably account for the large-scale Fe–Ti oxide ore layers in the MCZ of the Hongge intrusion.  相似文献   

11.
ABSTRACT

The Neo-Tethys-related Chaldoran ophiolite peridotites in NW Iran are remnants of mantle lithosphere, exhumed tectonically during the Late Cretaceous. Harzburgite is the predominant peridotite type, associated with oceanic lower crust cumulate gabbros occasionally. The ophiolite rocks are unconformably overlain by Late Cretaceous-Paleocene sediments. New whole-rock geochemistry of the variably serpentinized harzburgites shows a depleted nature, exemplified by low Al2O3, CaO, TiO2, V and Y and high Ni, Cr and Mg and also low rare earth element (REE) contents. The harzburgites present LREE enrichment. Positive correlations between some LREEs and high field strength elements (HFSE) suggest enrichment of LREEs by melt re-fertilization processes. Cr-spinels have Cr number of [Cr# = Cr/(Cr + Al) = 0.53–0.67], showing medium to high degree of partial melting (F = ~17-20%). Both whole-rock and mineral chemistry data show a supra-subduction zone setting and progressive depletion along with increase in spinel Cr# (MOR to fore arc). The cumulate gabbros have high MgO and SiO2, low TiO2 and Ti/V < 10 and also low chondrite normalized Dy (<8.5). The gabbro samples show enriched LREEs and LILEs and depleted HREEs and HFSEs with respect to MORBs.

Subduction initiation (SI) model in a fore-arc/proto-fore-arc environment is suggested for the upper mantle evolution of the Chaldoran ophiolite. The rocks have experienced depletion in a second melting process at the later stages of SI and compositions were probably modified by extraction of island arc tholeiitic (IAT) and possibly boninitic (BON) melts. The chemostratigraphic progression for ‘subduction initiation rule (SIR)’ is likely traceable in Chaldoran mafic-ultramafic sequence, which corresponds to the most Neo-Tethyan ophiolites and is similar to MOR to supra-subduction zone (SSZ) evolution of most Iranian ‘Inner’ and ‘Outer Zagros’ ophiolitic peridotites.  相似文献   

12.
《International Geology Review》2012,54(16):2021-2035
ABSTRACT

The Mamu Da?? ophiolite, ca. 13 km long and 5 km across (Tokat, Sakarya Zone), consists of peridotites, pyroxenites, gabbros, and basalts, which are crosscut by dolerite dykes. These rocks show variable degrees of serpentinization and alteration. Gabbroic rocks consisting of plagioclase + clinopyroxene ± orthopyroxene ± olivine ± amphibole ± sphene ± opaque minerals have commonly the ophitic and the cumulate textures. Similar mineral paragenesis is observed in the basalts and the dolerites, which are commonly characterized by the sub-ophitic and the microlitic porphyric textures.

Primitive mantle-normalized rare earth and trace element diagrams of gabbros and basalts display subduction-related geochemical characteristics such as high Th concentrations, negative Nb, Zr, and Ti anomalies. Some of the gabbros are interpreted to be the cumulate rocks. They have mostly positive europium anomaly (Eu/Eu* 1.77–0.83) and relatively low SiO2 and incompatible element (e.g. Zr, Ti) contents. The initial 87Sr/86Sr and 143Nd/144Nd values of gabbro/dolerite and basalt samples vary between 0.7036 and 0.7049, between 0.51259 and 0.51278, respectively. The isotope data and the whole rock geochemistry suggest that the Mamu Da?? ophiolite was derived from a mantle source that was affected by the subduction component rather than MORB or depleted mantle source.

Hornblendes from a gabbro sample of the Mamu Da?? ophiolite yielded 40Ar/39Ar plateau age of 159 ± 1 Ma. This age data is similar to those of many ophiolites located along the ?zmir-Ankara-Erzincan suture zone but is different from the ages reported for the Tokat Massif.  相似文献   

13.
The Neoproterozoic Korab Kansi mafic-ultramafic intrusion is one of the largest (100 km2) intrusions in the Southern Eastern Desert of Egypt. The intrusion consists of Fe-Ti-bearing dunite layers, amphibole peridotites, pyroxenites, troctolites, olivine gabbros, gabbronorites, pyroxene gabbros and pyroxene-hornblende gabbros, and also hosts significant Fe-Ti deposits, mainly as titanomagnetite-ilmenite. These lithologies show rhythmic layers and intrusive contacts against the surrounding granites and ophiolitic-island arc assemblages. The wide ranges of olivine forsterite contents (Fo67.9-85.7), clinopyroxene Mg# (0.57–0.95), amphibole Mg# (0.47–0.88), and plagioclase compositions (An85.8-40.9) indicate the role of fractional crystallization in the evolution from ultramafic to mafic rock types. Clinopyroxene (Cpx) has high REE contents (2–30 times chondrite) with depleted LREE relative to HREE, like those crystallized from ferropicritic melts generated in an island-arc setting. Melts in equilibrium with Cpx also resemble ferropicrites crystallized from olivine-rich mantle melts. Cpx chemistry and its host rock compositions have affinities to tholeiitic and calc-alkaline magma types. Compositions of mafic-ultramafic rocks are depleted in HFSE (e.g. Nb, Ta, Zr, Th and U) relative to LILE (e.g. Li, Rb, Ba, Pb and Sr) due to the addition of subduction-related hydrous fluids (rich in LILE) to the mantle source, suggesting an island-arc setting. Fine-grained olivine gabbros may represent quenched melts approximating the primary magma compositions because they are typically similar in assemblage and chemistry as well as in whole-rock chemistry to ferropicrites. We suggest that the Korab Kansi intrusion crystallized at temperatures ranging from ~700 to 1100 °C from ferropicritic magma derived from melting of metasomatized mantle at <5 Kbar. These hydrous ferropicritic melts were generated in the deep mantle and evolved by fractional crystallization under high ƒO2 at relatively shallow depth. Fractionation formed calc-alkaline magmas during the maturation of an island arc system, reflecting the role of subduction-related fluids. The interaction of metasomatized lithosphere with upwelling asthenospheric melts produced the Fe and Ti-rich ferropicritic parental melts that are responsible for precipitating large quantities of Fe-Ti oxide layers in the Korab Kansi mafic-ultramafic intrusion. The other factors controlling these economic Fe-Ti deposits beside parental melts are high oxygen fugacity, water content and increasing degrees of mantle partial melting. The generation of Ti-rich melts and formation of Fe-Ti deposits in few layered intrusions in Egypt possibly reflect the Neoproterozoic mantle heterogeneity in the Nubian Shield. We suggest that Cryogenian-Tonian mafic intrusions in SE Egypt can be subdivided into Alaskan-type intrusions that are enriched in PGEs whereas Korab Kansi-type layered intrusions are enriched in Fe-Ti-V deposits.  相似文献   

14.
《Precambrian Research》2007,152(1-2):27-47
Metasomatism above subduction zones is an important process that produces heterogeneous mantle and thus a diversity of igneous rocks. In the Panzhihua district, on the western margin of the Yangtze Block (SW China), two Neoproterozoic mafic intrusions, one olivine gabbro and one hornblende gabbro, have identical ages of 746 ± 10 and 738 ± 23 Ma. Both of the gabbros are tholeiitic in composition and have arc-like geochemical compositions. The hornblende gabbros have K2O concentrations ranging from 0.70 to 1.69 wt.% and show enrichment of Rb, Ba, U, Th and Pb and depletion of Nb,Ta and Ti. They have variable 87Sr/86Sr ratios (0.7045–0.7070) with constant ɛNd(t) values (−0.12 to −0.93). The olivine gabbros have relatively low K2O (0.19–0.43 wt.%), are depleted in Rb and Th relative to Ba and U, and have obvious negative Nb–Ta and Zr–Hf anomalies on primitive mantle-normalized trace element diagrams. Their ɛNd(t) values range from −0.64 to −1.73 and initial 87Sr/86Sr ratios from 0.7070 to 0.7075. Both types of gabbro experienced fractional crystallization of clinopyroxene, plagioclase, amphibole and minor Fe–Ti oxide. The parental magmas of the olivine and hornblende gabbros were formed by about 20% partial melting of garnet–spinel lherzolite and spinel lherzolite, respectively. According to trace elemental ratios, the hornblende gabbros were probably derived from a source strongly modified by subducted slab fluids, whereas the olivine gabbros came from a mantle source modified by subducted slab melts. The close association of the olivine gabbros and hornblende gabbros suggests that a steep subduction zone existed along the western margin of the Yangtze Block during Neoproterozoic time. Thus, the giant Neoproterozoic magmatic event in South China was subduction-related.  相似文献   

15.
Sugarloaf Mountain is a 200-m high volcanic landform in central Arizona, USA, within the transition from the southern Basin and Range to the Colorado Plateau. It is composed of Miocene alkalic basalt (47.2–49.1?wt.% SiO2; 6.7–7.7?wt.% MgO) and overlying andesite and dacite lavas (61.4–63.9?wt.% SiO2; 3.5–4.7?wt.% MgO). Sugarloaf Mountain therefore offers an opportunity to evaluate the origin of andesite magmas with respect to coexisting basalt. Important for evaluating Sugarloaf basalt and andesite (plus dacite) is that the andesites contain basaltic minerals olivine (cores Fo76-86) and clinopyroxene (~Fs9-18Wo35-44) coexisting with Na-plagioclase (An48-28Or1.4–7), quartz, amphibole, and minor orthopyroxene, biotite, and sanidine. Noteworthy is that andesite mineral textures include reaction and spongy zones and embayments in and on Na-plagioclase and quartz phenocrysts, where some reacted Na-plagioclases have higher-An mantles, plus some similarly reacted and embayed olivine, clinopyroxene, and amphibole phenocrysts.Fractional crystallization of Sugarloaf basaltic magmas cannot alone yield the andesites because their ~61 to 64?wt.% SiO2 is attended by incompatible REE and HFSE abundances lower than in the basalts (e.g., Ce 77–105 in andesites vs 114–166?ppm in basalts; Zr 149–173 vs 183–237; Nb 21–25 vs 34–42). On the other hand, andesite mineral assemblages, textures, and compositions are consistent with basaltic magmas having mixed with rhyolitic magmas, provided the rhyolite(s) had relatively low REE and HFSE abundances. Linear binary mixing calculations yield good first approximation results for producing andesitic compositions from Sugarloaf basalt compositions and a central Arizona low-REE, low-HFSE rhyolite. For example, mixing proportions 52:48 of Sugarloaf basalt and low incompatible-element rhyolite yields a hybrid composition that matches Sugarloaf andesite well ? although we do not claim to have exact endmembers, but rather, viable proxies. Additionally, the observed mineral textures are all consistent with hot basalt magma mixing into rhyolite magma. Compositional differences among the phenocrysts of Na-plagioclase, clinopyroxene, and amphibole in the andesites suggest several mixing events, and amphibole thermobarometry calculates depths corresponding to 8–16?km and 850° to 980?°C. The amphibole P-T observed for a rather tight compositional range of andesite compositions is consistent with the gathering of several different basalt-rhyolite hybrids into a homogenizing ‘collection' zone prior to eruptions. We interpret Sugarloaf Mountain to represent basalt-rhyolite mixings on a relatively small scale as part of the large scale Miocene (~20 to 15 Ma) magmatism of central Arizona. A particular qualification for this example of hybridization, however, is that the rhyolite endmember have relatively low REE and HFSE abundances.  相似文献   

16.
The picritic dykes occurring within fine-grained gabbro in the marginal zone and in the surrounding Proterozoic wall-rock marbles of the Panzhihua Fe–Ti oxide deposit closely correspond in bulk composition with the nearby Panzhihua intrusion. These dykes offer important constraints on the nature of the mantle source of the Panzhihua ore-bearing intrusion and its possible link to the Emeishan plume. U–Pb zircon dating of the picritic dyke yields a crystallization age of 261.4 ± 4.6 Ma, coeval with the timing of the main Panzhihua gabbroic intrusion and Late Permian Emeishan flood basalts. The Panzhihua picritic dykes contain 37.63–43.41 wt% SiO2, 1.15–1.56 wt% TiO2, 11.43–13.25 wt% TFe2O3, and 20.96–28.87 wt% MgO. Primitive-mantle-normalized patterns of the rocks are comparable to those of ocean island basalt. The rocks define a relatively small range of Os isotopic compositions and a low Os signature of ?0.13 to +2.76 for γOs (261 Ma). In combination with their Sr–Nd–Os isotopic compositions, we interpret that these rocks were derived from the Emeishan plume sources as well as the interactions of plume melts with the overlying lithosphere which had been extensively affected by eclogite-derived melts from the deep-subducted oceanic slab. Partial melting induced by an upwelling mantle plume that involved an eclogite or pyroxenite component in the lithospheric mantle could have produced the parental Fe-rich magma. Our study suggests that plume-lithosphere interaction might have played a key role in generating many world-class Fe–Ti oxide deposits clustered in the Panxi area.  相似文献   

17.
The ~?2-km-thick Panzhihua gabbroic-layered intrusion in SW China is unusual because it hosts a giant Fe–Ti oxide deposit in its lower zone. The deposit consists of laterally extensive net-textured and massive Fe–Ti oxide ore layers, the thickest of which is ~?60 m. To examine the magmatic processes that resulted in the Fe enrichment of parental high-Ti basaltic magma and the formation of thick, Fe–Ti oxide ore layers, we carried out a detailed study of melt inclusions in apatite from a ~?500-m-thick profile of apatite-bearing leucogabbro in the middle zone of the intrusion. The apatite-hosted melt inclusions are light to dark brown in color and appear as polygonal, rounded, oval and negative crystal shapes, which range from ~?5 to ~?50 µm in width and from ~?5 to ~?100 µm in length. They have highly variable compositions and show a large and continuous range of SiO2 and FeOt with contrasting end-members; one end-member being Fe-rich and Si-poor (40.2 wt% FeOt and 17.7 wt% SiO2) and the other being Si-rich and Fe-poor (74.0 wt% SiO2 and 1.20 wt% FeOt). This range in composition may be attributed to entrapment of the melt inclusions over a range of temperature and may reflect the presence of µm-scale and immiscible Fe-rich and Si-rich components in different proportions. Simulating results for the motion of Si-rich droplets within a crystal mush indicate that Si-rich droplets would be separated from Fe-rich melt and migrate upward due to density differences in the interstitial liquid when the magma unmixed. Migration of the Si-rich, immiscible liquid component from the interstitial liquid caused the remaining Fe-rich melt in the lower part to react with plagioclase primocrysts (An59–60), as evidenced by fine-grained lamellar intergrowth of An-rich plagioclase (An79–84)?+?clinopyroxene in the oxide gabbro of the lower zone. Therefore, magma unmixing within a crystal mush, combined with gravitationally driven loss of the Si-rich component, resulted in the formation of Fe-rich, melagabbro and major Fe–Ti oxide ores in the lower part and Si-rich, leucogabbro in the upper part of the intrusion.  相似文献   

18.
http://www.sciencedirect.com/science/article/pii/S1674987113000315   总被引:2,自引:0,他引:2  
The Panzhihua gabbroic intrusion,part of the plumbing system of the Emeishan large igneous province, intruded late-Proterozoic dolomites and marls about~263 Ma ago.The dolomites in the contact aureole were converted to brucite marbles and a diverse suite of forsterite,diopside and garnet skarns.The variation in mineralogy is explained in part by differences in the composition of the protolith,particularly the proportion of silica minerals and clay,and in part by transfer of elements from intruding magmas.The trace element compositions of most marbles and skarns are very similar to those of unmetamorphosed dolomites and marls,but some contain high Si,Ti,and Fe contents that are interpreted to have come from a magmatic source.Three brucite marbles sampled~10 m from the contact of the intrusion and named "enriched brucite marble" have trace element compositions very different from their dolomitic protolith:their rare earth elements are strongly enriched whereas levels of Nb-Ta,Zr-Hf and Ti are very low.These characteristics resemble those of carbonate liquid in equilibrium with silicate liquid or more probably with silicate minerals in the case of Panzhihua,a similarity we take to indicate that the sample underwent partial melting.Samples taken up to 300 m from the contact contain brucite indicating that high temperatures persisted well into the country rocks.However,other samples collected only tens of metres from the contact are only slightly recrystallized indicating that conditions in the aureole were highly variable.We suggest that temperatures within the aureole were controlled by conduction of heat from the main intrusion and by supply of additional heat from abundant small dykes within the aureole.Circulation of fluids derived from deeper levels in the aureole flushed the carbon dioxide from the dolomite,lowering temperature needed to partially melt carbonate to the temperatures attained near the intrusion.Irregular but extensive heating destabilized the carbonates of the aureole and decarbonation reactions associated with carbonate breakdown and melting emitted a large volume of CO2,with potential impact on global climate.  相似文献   

19.
Mt. St. Hilaire occurs as a small funnel-shaped intrusion in the Monteregian petrographic province of Quebec and consists of alkali gabbros and later nepheline syenites. Based on field relations, petrography, and geochemistry, five types of gabbro are recognized. In order of intrusion these are: leucogabbro, foliated gabbro, kaersutite-biotite gabbro, kaersutite gabbro, and a gabbro-melagabbro series. Based on analyses of the early-forming ilmenite-titanomagnetite, the gabbros crystallized under high fO2 conditions which lead to subsequent crystallization of olivines with high MnO contents. Fractionation of ilmenite and titanomagnetite was a major control on the Ti and A[TV]concentrations in the clinopyroxenes. Plagioclase compositions in the gabbros became richer in Ab contents in the sequence gabbro-melagabbro to leucogabbro. Whole-rock analyses suggest that the parental magma of alkali basaltic composition was fairly evolved prior to emplacement. Lack of olivine in the cumulate gabbro-melagabbros and low Ni and Cr in all gabbros may reflect either extreme olivine fractionation and/or a very low olivine content in the source material for these basalts. Differentiation of the gabbros occurred both pre- and post-emplacement, probably by a process of crystal-liquid fractionation at depths between 3-5 and 8 km. This is in accordance with geophysical measurements for other Monteregian intrusions. A model is presented for the mechanism of emplacement.  相似文献   

20.
The Panzhihua intrusion in southwest China is part of the Emeishan Large Igneous Province and host of a large Fe-Ti-V ore deposit.During emplacement of the main intrusion,multiple generations of mafic dykes invaded carbonate wall rocks,producing a large contact aureole.We measured the oxygen-isotope composition of the intrusions,their constituent minerals,and samples of the country rock.Magnetite and plagioclase from Panzhihua intrusion haveδ18O values that are consistent with magmatic equilibrium, and formed from magmas withδ18O values that were 1-2‰higher than expected in a mantle-derived magma.The unmetamorphosed country rock has highδ18O values,ranging from 13.2‰(sandstone) to 24.6-28.6‰(dolomite).The skarns and marbles from the aureole have lowerδ18O andδ13C values than their protolith suggesting interaction with fluids that were in exchange equilibrium with the adjacent mafic magmas and especially the numerous mafic dykes that intruded the aureole.This would explain the alteration ofδ18O of the dykes which have significantly higher values than expected for a mantle-derived magma.Depending on the exactδ18O values assumed for the magma and contaminant, the amount of assimilation required to produce the elevatedδ18O value of the Panzhihua intrusion was between 8 and 13.7 wt.%,assuming simple mixing.The exact mechanism of contamination is unclear but may involve a combination of assimilation of bulk country rock,mixing with a melt of the country rock and exchange with CO2-rich fluid derived from decarbonation of the marls and dolomites.These mechanisms,particularly the latter,were probably involved in the formation of the Fe-Ti-V ores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号