首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
The angular correlation function ο(θ) of faint galaxies is affected both by non-linear gravitational evolution and by magnification bias resulting from gravitational lensing. We compute the resulting ο(θ) for different cosmological models and show how its shape and redshift evolution depend on Ω and Λ. For galaxies at redshift greater than 1 ( R magnitude fainter than about 24), magnification bias can significantly enhance or suppress ο(θ), depending on the slope of the number–magnitude relation. We show, for example, how it changes the ratio of ο(θ) for two galaxy samples with different number count slopes.  相似文献   

3.
4.
5.
The angular cross-correlation between two galaxy samples separated in redshift is shown to be a useful measure of weak lensing by large-scale structure. Angular correlations in faint galaxies arise as a result of spatial clustering of the galaxies as well as gravitational lensing by dark matter along the line of sight. The lensing contribution to the two-point autocorrelation function is typically small compared with the gravitational clustering. However, the cross-correlation between two galaxy samples is almost unaffected by gravitational clustering provided that their redshift distributions do not overlap. The cross-correlation is then induced by magnification bias resulting from lensing by large-scale structure. We compute the expected amplitude of the cross-correlation for popular theoretical models of structure formation. For two populations with mean redshifts of ≃0.3 and 1, we find a cross-correlation signal of ≃1 per cent on arcmin scales and ≃3 per cent on scales of a few arcsec. The dependence on the cosmological parameters Ω and Λ, the dark matter power spectrum and the bias factor of the foreground galaxy population is explored.  相似文献   

6.
We have developed a new three-dimensional algorithm, based on the standard P3M method, for computing deflections resulting from weak gravitational lensing. We compare the results of this method with those of the two-dimensional planar approach, and rigorously outline the conditions under which the two approaches are equivalent. Our new algorithm uses a Fast Fourier Transform convolution method for speed, and has a variable softening feature to provide a realistic interpretation of the large-scale structure in a simulation. The output values of the code are compared with those from the Ewald summation method, which we describe and develop in detail. With an optimal choice of the high-frequency filtering in the Fourier convolution, the maximum errors, when using only a single particle, are about 7 per cent, with an rms error less than 2 per cent. For ensembles of particles, used in typical N -body simulations, the rms errors are typically 0.3 per cent. We describe how the output from the algorithm can be used to generate distributions of magnification, source ellipticity, shear and convergence for large-scale structure.  相似文献   

7.
8.
We investigate how strong gravitational lensing in the concordance ΛCDM cosmology is affected by the stellar mass in galaxies. We extend our previous studies, based on ray tracing through the Millennium Simulation, by including the stellar components predicted by galaxy formation models. We find that the inclusion of these components greatly enhances the probability for strong lensing compared to a 'dark matter only' universe. The identification of the 'lenses' associated with strong-lensing events reveals that the stellar mass of galaxies (i) significantly enhances the strong-lensing cross-sections of group and cluster haloes and (ii) gives rise to strong lensing in smaller haloes, which would not produce noticeable effects in the absence of the stars. Even if we consider only image splittings ≳10 arcsec, the luminous matter can enhance the strong-lensing optical depths by up to a factor of 2.  相似文献   

9.
The recent detection by Limousin et al. of five new strong lensing events dominated by galaxy cluster members in Abell 1689, and outside the critical regime of the cluster itself, offers a way to obtain constraints on the cluster mass distribution in a region inaccessible to standard lensing analysis. In addition, modelling such systems will provide another window on the dark matter haloes of galaxies in very dense environments. Here, it is shown that the boost in image separation due to the external shear and convergence from a smooth cluster component means that more numerous, less massive galaxies have the potential to create multiple images with detectable separations, relative to isolated field galaxies. This comes in addition to a potential increase in their lensing (source plane) cross-section. To gain insight into the factors involved and as a precursor to a numerical study using N -body simulations, a simple analytic model of a cluster at   z = 0.3  lensing background galaxies at   z = 2  is considered here. The fiducial model has cluster members with isothermal density profiles and luminosities L , distributed in a Schechter function (faint-end slope  ν=−1.25  ), related to their velocity dispersions σ via the Faber–Jackson scaling L ∝σ4. Just outside the critical regime of the cluster, the scale of galaxy-dominated image separations is significantly increased. Folding in the fact that less massive galaxies present a lower lensing cross-section, and that the cross-section can itself be enhanced in an external field leads to a factor of a few times more detected events relative to field galaxies. These values will be higher closer to the critical curve. Given that the events in Abell 1689 were detected over a very small region of the cluster where ACS data were available, this motivates the search for such events in other clusters.  相似文献   

10.
We investigate the effect of weak gravitational lensing in the limit of small angular scales where projected galaxy clustering is strongly non-linear. This is the regime likely to be probed by future weak lensing surveys. We use well-motivated hierarchical scaling arguments and the plane-parallel approximation to study multi-point statistical properties of the convergence field. These statistics can be used to compute the vertex amplitudes in tree models of hierarchical clustering; these can be compared with similar measurements from galaxy surveys, leading to a powerful probe of galaxy bias.  相似文献   

11.
We investigate strong gravitational lensing in the concordance ΛCDM cosmology by carrying out ray tracing along past light cones through the Millennium Simulation, the largest simulation of cosmic structure formation ever carried out. We extend previous ray-tracing methods in order to take full advantage of the large volume and the excellent spatial and mass resolution of the simulation. As a function of source redshift we evaluate the probability that an image will be highly magnified, will be highly elongated or will be one of a set of multiple images. We show that such strong lensing events can almost always be traced to a single dominant lensing object and we study the mass and redshift distribution of these primary lenses. We fit analytic models to the simulated dark haloes in order to study how our optical depth measurements are affected by the limited resolution of the simulation and of the lensing planes that we construct from it. We conclude that such effects lead us to underestimate total strong lensing cross-sections by about 15 per cent. This is smaller than the effects expected from our neglect of the baryonic components of galaxies. Finally we investigate whether strong lensing is enhanced by material in front of or behind the primary lens. Although strong lensing lines of sight are indeed biased towards higher than average mean densities, this additional matter typically contributes only a few per cent of the total surface density.  相似文献   

12.
13.
14.
Gravitational lensing provides an efficient tool for the investigation of matter structures, independent of the dynamical or the hydrostatic equilibrium properties of the deflecting system. However, it depends on the kinematic status. In fact, either a translational motion or a coherent rotation of the mass distribution can affect the lensing properties. Here, light deflection by galaxy clusters in motion is considered. Even if gravitational lensing mass measurements of galaxy clusters are regarded as very reliable estimates, the kinematic effect should be considered. A typical peculiar motion with respect to the Hubble flow brings about a systematic error ≲0.3 per cent, independent of the mass of the cluster. On the other hand, the effect of the spin increases with the total mass. For cluster masses  ∼1015 M  , the effect of the gravitomagnetic term is ≲0.04 per cent on strong lensing estimates and ≲0.5 per cent in the weak-lensing analyses. The total kinematic effect on the mass estimate is then ≲1 per cent, which is negligible in current statistical studies. In the weak-lensing regime, the rotation imprints a typical angular modulation in the tangential shear distortion. This would allow, in principle, a detection of the gravitomagnetic field and a direct measurement of the angular velocity of the cluster but the required background source densities are well beyond current technological capabilities.  相似文献   

15.
We present ray tracing simulations combined with sets of large N -body simulations. Experiments were performed to explore, for the first time, the statistical properties of fluctuations in angular separation of nearby light-ray pairs (the so-called lensing excursion angle) induced by weak lensing by large-scale structures. We found that the probability distribution function (PDF) of the lensing excursion angles is not simply Gaussian, but has an exponential tail. It is found, however, that the tail, or more generally the non-Gaussian nature of the PDF has no significant impact on the weak lensing of the cosmic microwave background (CMB). Moreover, we found that the variance in the lensing excursion angles predicted by the power spectrum approach is in good agreement with our numerical results. These results demonstrate the validity of using the power spectrum approach to compute lensing effects on the CMB.  相似文献   

16.
17.
The correlation between source galaxies and lensing potentials causes a systematic effect on measurements of cosmic shear statistics, known as the source–lens clustering (SLC) effect. The SLC effect on the skewness of lensing convergence, S 3, is examined using a non-linear semi-analytic approach and is checked against numerical simulations. The semi-analytic calculations have been performed in a wide variety of generic models for the redshift distribution of source galaxies and power-law models for the bias parameter between the galaxy and dark matter distributions. The semi-analytic predictions are tested successfully against numerical simulations. We find the relative amplitude of the SLC effect on S 3 to be of the order of  5–40  per cent. It depends significantly on the redshift distribution of sources and on the way in which the bias parameter evolves. We discuss possible measurement strategies to minimize the SLC effects.  相似文献   

18.
We present the results of weak gravitational lensing statistics in four different cosmological N -body simulations. The data have been generated using an algorithm for the three-dimensional shear, which makes use of a variable softening facility for the N -body particle masses, and enables a physical interpretation for the large-scale structure to be made. Working in three dimensions also allows the correct use of the appropriate angular diameter distances.
Our results are presented on the basis of the filled-beam approximation in view of the variable particle softening scheme in our algorithm. The importance of the smoothness of matter in the Universe for the weak lensing results is discussed in some detail.
The low-density cosmology with a cosmological constant appears to give the broadest distributions for all the statistics computed for sources at high redshifts. In particular, the range in magnification values for this cosmology has implications for the determination of the cosmological parameters from high-redshift type Ia supernovae. The possibility of determining the density parameter from the non-Gaussianity in the probability distribution for the convergence is discussed.  相似文献   

19.
We investigate the effects of weak gravitational lensing in the standard cold dark matter cosmology, using an algorithm that evaluates the shear in three dimensions. The algorithm has the advantage of variable softening for the particles, and our method allows the appropriate angular diameter distances to be applied to every evaluation location within each three-dimensional simulation box. We investigate the importance of shear in the distance–redshift relation, and find it to be very small. We also establish clearly defined values for the smoothness parameter in the relation, finding its value to be at least 0.83 at all redshifts in our simulations. From our results, obtained by linking the simulation boxes back to source redshifts of 4, we are able to observe the formation of structure in terms of the computed shear, and also note that the major contributions to the shear come from a very broad range of redshifts. We show the probability distributions for the magnification, source ellipticity and convergence, and also describe the relationships amongst these quantities for a range of source redshifts. We find a broad range of magnifications and ellipticities; for sources at a redshift of 4, 97.5 per cent of all lines of sight show magnifications up to 1.39 and ellipticities up to 0.23. There is clear evidence that the magnification is not linear in the convergence, as might be expected for weak lensing, but contains contributions from higher order terms in both the convergence and the shear. Our results for the one-point distribution functions are generally different from those obtained by other authors using two-dimensional (planar) approaches, and we suggest reasons for the differences. Our magnification distributions for sources at redshifts of 1 and 0.5 are also very different from the results used by other authors to assess the effect on the perceived value of the deceleration parameter, and we briefly address this question.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号