首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurement of compressional, shear, and Stoneley wave velocities, carried out by dipole sonic imager (DSI) logs, provides invaluable data in geophysical interpretation, geomechanical studies and hydrocarbon reservoir characterization. The presented study proposes an improved methodology for making a quantitative formulation between conventional well logs and sonic wave velocities. First, sonic wave velocities were predicted from conventional well logs using artificial neural network, fuzzy logic, and neuro-fuzzy algorithms. Subsequently, a committee machine with intelligent systems was constructed by virtue of hybrid genetic algorithm-pattern search technique while outputs of artificial neural network, fuzzy logic and neuro-fuzzy models were used as inputs of the committee machine. It is capable of improving the accuracy of final prediction through integrating the outputs of aforementioned intelligent systems. The hybrid genetic algorithm-pattern search tool, embodied in the structure of committee machine, assigns a weight factor to each individual intelligent system, indicating its involvement in overall prediction of DSI parameters. This methodology was implemented in Asmari formation, which is the major carbonate reservoir rock of Iranian oil field. A group of 1,640 data points was used to construct the intelligent model, and a group of 800 data points was employed to assess the reliability of the proposed model. The results showed that the committee machine with intelligent systems performed more effectively compared with individual intelligent systems performing alone.  相似文献   

2.
测井横波速度是测井地震联合反演的重要标定参数.为克服大量老井缺少横波速度资料和现有横波速度估算方法的不足, 基于孔隙介质岩石物理理论, 通过常规测井资料求取多矿物组分, 利用VRH模型求得地层的等效弹性模量; 最后利用纵波速度作为约束条件, 根据Biot-Gassmann方程得到地层横波速度.计算结果与实测结果对比表明, 平均相对误差限在5%左右, 与Xu-White模型相比, 该方法物理意义更为明确, 使用更简便, 计算精度提高一倍左右.   相似文献   

3.
Multichannel analysis of surface waves (MASW) survey was conducted to measure shear wave velocities in order to ascertain the likely causes of road failure along LASU-IBA expressway in Alimosho local government area, Lagos, Nigeria. MASW data were acquired along the express road. The acquired dataset was processed and transformed into two-dimensional structure reflective of depth and surface wave velocity distribution within a depth of investigation using SurfSeis software. The MASW shear wave velocity data were compared to geophysical data that was acquired along the same profile. The comparison was also done with geotechnical data that had been acquired prior to the study some meters away from the study area. The correlation between N values to measured shear wave velocity using MASW was generated. The comparison illustrates the accuracy and consistency of MASW-derived shear wave velocity profiles. We concluded that (1) the low-velocity region that varies between 100 and 250 m/s at surface down to 4 m beneath the surface is characterized by loose/peat materials and may have been responsible for the road failure within the study area; this region depicts a very loose compaction area. (2) The MASW technique is a time–cost-effective tool for obtaining reliable shear wave velocity profiles, and (3) the MASW is particularly attractive in areas that cannot be readily assessed by other geophysical and geotechnical tools.  相似文献   

4.
杨洋  孙锐  陈卓识  袁晓铭 《岩土力学》2019,40(7):2755-2764
分析国际上现有液化场地剪切波速473组数据进行参数特征后,以此为基础,采用分区方法,利用成熟的Logistic模型,提出了以地表峰值加速度、剪切波速、地下水位、可液化层埋深等4个参数表达的土体液化概率计算公式和不同概率下液化临界值计算公式,研究了不同概率水平下公式的适用性,并与现有主要方法进行比较。研究表明:地震动强度为液化判别首要影响参数,液化层与非液化层剪切波速区分度不显著,采用以往一个公式构造液化判别公式的方式难以要达到基本要求;现有Andrus公式和石兆吉公式会将很多明显为非液化的场地误判为液化场地,违背了现有认识,达到了不可接受的程度,需要改进。文中公式取50%概率时液化点和非液化点回判成功率符合对等原则,不同烈度下成功率均在70%左右;总体看,公式表现良好,可为中国工程建设提供一个合理、可操作性强的剪切波速液化概率判别方法。  相似文献   

5.
This study investigated the prediction of suspended sediment load in a gauging station in the USA by neuro-fuzzy, conjunction of wavelet analysis and neuro-fuzzy as well as conventional sediment rating curve models. In the proposed wavelet analysis and neuro-fuzzy model, observed time series of river discharge and suspended sediment load were decomposed at different scales by wavelet analysis. Then, total effective time series of discharge and suspended sediment load were imposed as inputs to the neuro-fuzzy model for prediction of suspended sediment load in one day ahead. Results showed that the wavelet analysis and neuro-fuzzy model performance was better in prediction rather than the neuro-fuzzy and sediment rating curve models. The wavelet analysis and neuro-fuzzy model produced reasonable predictions for the extreme values. Furthermore, the cumulative suspended sediment load estimated by this technique was closer to the actual data than the others one. Also, the model could be employed to simulate hysteresis phenomenon, while sediment rating curve method is incapable in this event.  相似文献   

6.
Shear wave velocity (V s) is one of the most important input parameter to represent the stiffness of the soil layers. It is preferable to measure V s by in situ wave propagation tests, however it is often not economically feasible to perform the tests at all locations. Hence, a reliable correlation between V s and standard penetration test blow counts (SPT-N) would be a considerable advantage. This paper presents the development of empirical correlations between V s and SPT-N value for different categories of soil in Chennai city characterized by complex variation of soil conditions. The extensive shear wave velocity measurement was carried out using Multichannel Analysis of Surface Waves (MASW) technique at the sites where the SPT-N values are available. The bender element test is performed to compare the field MASW test results for clayey soils. The correlations between shear wave velocity and SPT-N with and without energy corrections were developed for three categories of soil: all soils, sand and clay. The proposed correlations between uncorrected and energy corrected SPT-N were compared with regression equations proposed by various other investigators and found that the developed correlations exhibit good prediction performance. The proposed uncorrected and energy corrected SPT-N relationships show a slight variation in the statistical analysis indicating that both the uncorrected and energy corrected correlations can predict shear wave velocity with equal accuracy. It is also found that the soil type has a little effect on these correlations below SPT-N value of about 10.  相似文献   

7.
最大剪切模量是土的基本力学特性参数,对土动力特性分析和岩土工程抗震设计有着重要的意义。目前最大剪切模量的确定主要依赖于室内试验,土样的采取和室内试验既耗时又不能保证精度。以江苏北部里下河古泻湖相软土地区高速公路建设为工程背景,采用地震波孔压静力触探(SCPTU)和下孔法(DHT)进行了土层剪切波速的测试,基于SCPTU和DHT剪切波速测试资料建立了最大剪切模量Gmax与SCPTU测试参数之间的相关关系。结果表明:采用SCPTU测试的锥尖阻力和孔压参数能够用于对软土的最大剪切模量的初步评价。  相似文献   

8.
随采地震勘探是以采煤机为震源的被动地震探测技术,由于采煤机是不断移动的、且其激发的是一种连续信号,因此常规数据处理方法无法直接应用。提出分段波形互相关方法,通过将采煤机产生的数据分段,采用互相关方法提取有效信号的走时,然后利用速度层析成像方法对工作面内部和切眼前方进行速度成像。利用波动方程对含异常体的工作面模型进行随采地震数值模拟,反演得到的成像结果和速度模型基本吻合;实际随采地震数据测试中,利用该方法对采煤机震源数据反演得到采动过程中地震波传播速度的成像结果,实现了对工作面内应力异常变化区域的实时动态监测。研究结果表明:基于分段互相关成像方法能解决采煤机震源信号处理问题,满足随采地震勘探技术实时性和稳定性的要求。   相似文献   

9.
针对致密砂岩气储层复杂的微观孔隙结构进行岩石物理建模,在模型中比较了单一孔隙纵横比、双孔隙模型两种表征孔隙结构的表征方式。岩石物理正演分析表明,两种孔隙结构模型均可解释致密砂岩复杂的速度-孔隙度关系。岩石物理反演结果表明,双孔隙模型对测井横波速度的预测精度更高,说明该模型更适用于表征研究区致密砂岩的孔隙结构,反演的软孔比例参数能够反映地层中孔隙结构的非均匀分布。应用双孔隙模型计算致密砂岩地层岩石骨架的弹性模量,与Krief及Pride等传统经验公式相比,该方法考虑了岩石骨架模量与矿物基质、孔隙度和孔隙结构等微观物性因素的关系,理论上更具有严谨性。对致密砂岩骨架模量计算结果的分析表明,少量微裂隙的存在即能够显著影响致密砂岩骨架的弹性性质,同时孔隙空间中的球形孔隙是致密气的主要赋存空间。并且,通过致密砂岩骨架弹性模量,进一步计算了可用于地层评价的Biot系数等岩石物理参数。致密砂岩骨架模量的预测结果可为Gassmann流体替换理论、BISQ孔隙弹性介质理论等岩石物理方法提供关键参数。  相似文献   

10.
横向各向同性(TI)介质是岩石地球物理中常见的一种现象,研究其井孔声场传播特征对声波测井理论以及为声波测井解释提供依据具有重要意义。针对具有垂直对称轴的横向各向同性(VTI)介质,根据柱坐标系条件下的弹性波波动方程,推导了速度-应力交错有限差分公式,采用时间二阶、空间十阶的交错有限差分算法对VTI介质中的井孔声场进行数值模拟。给出了在均匀介质中井孔声场不同时刻的波场快照,以及不同各向异性系数的VTI介质中的波场快照,计算了井轴上声源激发出的声波全波列波形。结果表明,在其他条件不变的条件下,VTI地层的各向异性系数的增大对横波的传播影响不大,但会使得纵波在纵向上的传播速度相对变小,径向上变化不大。各向异性系数的增大会使声波测井全波列首波信号时差变大,声波幅度略变小。   相似文献   

11.
横波速度对于地震模拟、AVO分析以及流体识别具有重要意义,实际测井数据中横波速度信息缺乏,因此横波速度预测已经成为岩石物理研究的一个焦点。综合Xu-White模型以及Pride模型,提出了一种新的用于计算干岩石模量的岩石物理模型。该模型综合考虑了孔隙形状和成岩作用对干岩石体积模量、剪切模量的影响,因此该模型更加合理并具有更高的精度。同时联合Gassmann理论,建立了饱和流体岩石的纵波、横波速度计算模型。将该模型成功地应用于实验室测量数据和实际测井数据的横波速度预测中,预测结果表明,基于本文提出的岩石物理模型的横波速度预测方法是行之有效的。  相似文献   

12.
文章试图利用静探技术定量评价场地和地基地震效应。通过对静探技术与波速试验的原理研究,得出两者成正相关关系,并选取8个工程共12组静探、波速试验孔,应用多种数理统计技术进行相关分析,分别建立粘性土及砂性土的等效剪切波速计算公式。并得到了工程验证,效果良好。  相似文献   

13.
Genetic algorithm (GA) and support vector machine (SVM) optimization techniques are applied widely in the area of geophysics, civil, biology, mining, and geo-mechanics. Due to its versatility, it is being applied widely in almost every field of engineering. In this paper, the important features of GA and SVM are discussed as well as prediction of longitudinal wave velocity and its advantages over other conventional prediction methods. Longitudinal wave measurement is an indicator of peak particle velocity (PPV) during blasting and is an important parameter to be determined to minimize the damage caused by ground vibrations. The dynamic wave velocity and physico-mechanical properties of rock significantly affect the fracture propagation in rock. GA and SVM models are designed to predict the longitudinal wave velocity induced by ground vibrations. Chaos optimization algorithm has been used in SVM to find the optimal parameters of the model to increase the learning and prediction efficiency. GA model also has been developed and has used an objective function to be minimized. A parametric study for selecting the optimized parameters of GA model was done to select the best value. The mean absolute percentage error for the predicted wave velocity (V) value has been found to be the least (0.258 %) for GA as compared to values obtained by multivariate regression analysis (MVRA), artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and SVM.  相似文献   

14.
土的剪切波速是岩土工程领域的一个重要参数。建筑场地类别划分、地基饱和砂土液化判别、地震反应分析等都依赖于剪切波速,由于其重要性,对它的测定技术和精确程度应重点研究。针对工程中广泛采用的单孔法剪切波速测试,提出了一种基于互相关函数计算土层剪切波速的优化算法。克服了传统数据处理方法中经常遇到的负波速、波速数值明显过大或过小和同一土层各测点波速差别较大等4种不合理因素,提高了数据分析的精度和效率。  相似文献   

15.
宽线三维转换波资料处理方法及效果分析   总被引:1,自引:0,他引:1  
研究了三维转换波资料坐标旋转、面元划分及三维共转换点计算方法,即将每一个转换波共炮点道集内所有地震道进行坐标旋转,旋转后的转换波道集在炮检距、纵横波速度已知的条件下,用迭代方法计算三维转换点的平面坐标,并绘制在平面上.将平面分割为小的面元,凡是转换点在同一面元内的记录道都属于同一共反射点转换波道集,转换点面元大小与纵横波速度比有关.在上述研究的基础上,建立了宽线三维转换波资料处理流程,处理了某油田某地区的宽线转换波资料.  相似文献   

16.
Empirical correlation between standard penetration resistance (SPT-N) and shear wave velocity measured by seismic downhole techniques are prepared of the alluvial soil of quaternary age for the Kanpur city. The Kanpur city is having seismic threat from Himalaya and it falls in seismic zone III according to seismic zones of India. Standard penetration test as well seismic downhole test has been carried out up to 30 m at twelve different locations of Kanpur city. The measured SPT-N values and shear wave velocity values are used to develop empirical correlation between SPT-N and shear wave velocity. The proposed correlations have been compared with the existing regression equations by various other investigators. It is found that the proposed correlation exhibit good performance (10 % error bar). Also the measured shear wave velocity has been used to prepare spatially distributed contour map of 50, 75 and 100 m/s using ArcGIS-9 software. It is observed that the shear wave velocity values for the northern part of Kanpur city vary from 125 to 825 m/s. In southern part, it is varying from 125 to 500 m/s where as in the central part of the city the shear wave velocity varies from 125 to 375 m/s. The eastern part of the city also shows some variation in shear wave velocity which ranges from 250 to 625 m/s. The western part of the city shows the variation of shear wave velocity from ≤125 to 500 m/s. The soil type of the study area are classified as per NEHRP and new Italian O.P.M.C classification system as B, C and D type soil with having site period of 0.1–0.9 s and Poisson’s ratio varying from 0.1 to 0.4.  相似文献   

17.
本文简要介绍了剪切波速测试方法 ,重点论述单孔速度检层法的基本原理、测试技术以及剪切波速度在地震安全性评价中应用  相似文献   

18.
This paper presents the technique to demonstrate reliable two-dimensional (2-D) tomography of near-surface soil through multichannel analysis of surface wave (MASW) method. The MASW method is used as seismic method for determining the shear wave velocity profile of near-surface soil with better performance. Normally, this method represents one-dimensional (1-D) soil layer profile to delineate anomalous subsurface materials and detect soil characteristics in geotechnical investigations. Conventionally, the MASW method is able to represent depth corresponding shear wave velocity through 1-D representation. In this paper, this method is improved through representation of depth and distance versus shear wave velocity profile using 2-D tomography analysis in geotechnical investigations. The outcomes of the newly developed method are more reliable and informative in comparison to the outcome of the conventional MASW method. The significance of this research is incorporating advanced tomography technique with MASW method to obtain 2-D tomography of geotechnical characteristics with consistency.  相似文献   

19.
Higher-precision determinations of hydrate reservoirs, hydrate saturation levels and storage estimations are important for guaranteeing the ability to continuously research, develop and utilize natural gas hydrate resources in China. With seismic stereoscopic detection technology, which fully combines the advantages of different seismic detection models, hydrate formation layers can be observed with multiangle, wide-azimuth, wide-band data with a high precision. This technique provides more reliable data for analyzing the distribution characteristics of gas hydrate reservoirs, establishing velocity models, and studying the hydrate-sensitive properties of petrophysical parameters;these data are of great significance for the exploration and development of natural gas hydrate resources. Based on a velocity model obtained from the analysis of horizontal streamer velocity data in the hydrate-bearing area of the Shenhu Sea, this paper uses three VCs(longitudinal spacing of 25 m) and four OBSs(transverse spacing of 200 m) to jointly detect seismic datasets consisting of wave points based on an inversion of traveltime imaging sections. Accordingly, by comparing the differences between the seismic phases in the original data and the forward-modeled seismic phases, multiangle coverage constraint corrections are applied to the initial velocity model, and the initial model is further optimized, thereby improving the imaging quality of the streamer data. Petrophysical elastic parameters are the physical parameters that are most directly and closely related to rock formations and reservoir physical properties. Based on the optimized velocity model, the rock elastic hydrate-sensitive parameters of the hydrate reservoirs in the study area are inverted, and the sensitivities of the petrophysical parameters to natural gas hydrates are investigated. According to an analysis of the inversion results obtained from these sensitive parameters, λρ, Vp and λμ are simultaneously controlled by the bulk modulus and shear modulus, while Vs and μρ are controlled only by the shear modulus, and the latter two parameters are less sensitive to hydrate-bearing layers. The bulk modulus is speculated to be more sensitive than the shear modulus to hydrates. In other words, estimating the specific gravity of the shear modulus among the combined parameters can affect the results from the combined elastic parameters regarding hydrate reservoirs.  相似文献   

20.
Delhi, the capital of India, has experienced mild seismic shaking during several earthquakes in the past. The large variations of depth to bedrock and ground water table coupled with different soil types at different locations of Delhi necessitate a seismic microzonation study. Dynamic soil properties such as shear wave velocity, modulus reduction and damping characteristics of local soils are the basic and essential input parameters for conducting even a preliminary ground response analysis which is an essential input in microzonation studies. Shear wave velocity is not measured routinely due to its high cost and lack of the required expertise. Several researchers in the past developed correlations between shear wave velocity (V s ) and routinely measured N values. In the present study, shear wave velocity profiles measured in the field at more than 80 borehole locations to a depth of about 20 to 32m using Spectral Analysis of Surface Waves (SASW) are presented and correlations between shear wave velocity and N values are also presented for use by engineers and designers. Results of strain and stress controlled cyclic triaxial tests on remoulded samples of sand-silt mixtures in the high strain range are used for generating the modulus reduction and damping curves and are compared with the well-known curves in the literature. The results presented in this article can be used for microzonation studies as well as site specific ground response analyses at Delhi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号