首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W. BLENDINGER 《Sedimentology》1994,41(6):1147-1159
Middle Triassic carbonate buildups of the Dolomites were high in relief (500–1000m) and small in size (one to a few square kilometres in area). A paradox results from the carbonate platform model that invokes the platform top, including reef rims, as the carbonate factory and flanking beds as talus deposits. Most buildups consist largely of clinoforms (inclined at 10-50°) whereas massive reef rocks and stratified buildup interiors are poorly developed or absent. Facies and modal analysis of 323 thin sections from buildups of the Marmolada indicate that clinoforms are: (i) predominantly composed of in situ boundstones (56% of all samples); (ii) primarily made up of early cements (37 vol.%), microbial crusts (17 vol.%), micritic intraclasts (10 vol.%) and Tubiphytes (8 vol.%); and (iii) contain diagnostic shallow water grains (dasyclads, coated grains) that are less abundant by 1-2 orders of magnitude compared with buildup interior facies. These data suggest that the clinoforms themselves were the main carbonate factory of the Triassic buildups. Stratified buildup interior rocks and massive reef rocks were apparently not a prerequisite for buildup growth and clinoform progradation.  相似文献   

2.
As a result of a phase of extensional tectonics in the western Tethyan region, a horst and graben topography formed during the Middle Triassic (Ladinian) in northern Italy. Horsts were sites of shallow water carbonate sedimentation, while pelagic and volcaniclastic sediments were deposited in the grabens. Two carbonate platforms approximately 500 m thick can be distinguished in the Marmolada area of the Dolomites: the Marmolada platform proper, which covered an area of 6 km2, and the Costabella platform, which extended for about 12 km in a NW-SE direction and was about 3 km across. The facies of these isolated platforms reflect the influence of storms from the SW. Windward platform margins were characterized by a marine sand belt of skeletal and aggregate grainstones with a dominant platform directed cross-stratification. The central portions of the platforms were occupied by supratidal sand cays which are made up of storm washovers. Leeward parts of the platforms are composed of shallow subtidal sand flat deposits. Laterally discontinuous reefs chiefly composed of various calcareous algae are developed at the outer margins of the platforms. Along windward margins, reefs may form a belt several hundred metres wide; along leeward margins their width is commonly reduced to some tens of metres. Foreslope talus breccias surround the platforms. Clinoform bedding showing basinward dips of 30°-40° is typical of this facies belt, which is approximately 2 km wide. Basinal sediments, only some tens of metres thick, are radiolarian micrites. Abundant sediment-gravity-flow deposits expand the basinal sequence at the toes of windward margins and were probably triggered by storm return flows. Synsedimentary faults striking both NNE-SSW and NW-SE separate the bedded platform limestones from flank deposits and reefs. They account for the stationary nature of the platforms. Neptunian dykes show preferred NNE-SSW and E-W trends. Sinistral displacements are associated with NW-SE trending faults. Depressions in the basins, filled with red, turbiditic pelagic sediments, show N-S trends and are probably compressional in origin. The structural pattern may have resulted from oblique, NW-SE oriented extension of the E-W trending Middle Triassic graben zone of the Dolomites. In the Ladinian of the Dolomites, the stationary platform type can be distinguished from a retrograding type, whereas continuously prograding platforms apparently did not develop.  相似文献   

3.
4.
Various types of progradation of Triassic carbonate platforms are described from the Dolomites of the Southern Alps. The internal and external geometric relationships are exposed in spectacular natural sections and, moreover, their scale (500–1000 m of thickness) is such that they can be compared with features found in seismic profiles. The different types of progradation are controlled by a number of factors which, normally, interact with each other. These factors include: rate of basinal sedimentation, rate of subsidence, width of the platform, depth of the surrounding basin and eustatic variations of sea-level. Progradation is not a continuous process but episodic. Moments of massive debris input, during which the platform advances, alternate with long periods of negligible progradation, during which basinal sediments accrete and onlap the toe of slope. Upper boundary relationships of the prograding platforms include offlap, toplap and erosional truncation. Lower boundary relationships are horizontal, climbing and descending progradations. A variety of phenomena and circumstances have caused the cessation of progradation of the Triassic platforms. They include volcanism, collapse of margins, drowning (rapid relative rise of sea-level), subaerial exposure (relative fall of sea-level) and, probably, a natural decay of the system. In the Triassic of the Dolomites, two main progradation models can be put forward: in the Ladinian model, progradation took place simultaneously with aggradation (relative rise of sea-level), whereas the characteristic feature of the Carnian model is toplap (relative stillstand of sea-level).  相似文献   

5.
The Middle Triassic carbonate buildups of the Dolomites show facies similarities with mud mounds but display apparent architectural elements of flat‐topped carbonate platforms. In order to test whether the facies similarities to mounds are also reflected in the internal buildup architecture, a three‐dimensional modelling study of the Middle Triassic Monte Cernera buildup has been carried out. The Cernera buildup exhibits apparent geometries suggesting a mounded platform in the lower and uppermost part of the buildup, separated by an interval with apparent platform geometry and a retrogradational platform interior, which is difficult to explain with a flat top platform model. For this purpose, a number of three‐dimensional models were constructed using the three‐dimensional modelling programme petrel TM. Key geological horizons were constructed based on outcrop measurements, intermediate horizons were calculated in the modelling program, and the intersections of the modelled layers with a digital topography surface were displayed and compared with outcrop photographs. The models were refined stepwise until a best fit with the actual bedding architecture was achieved. The best fit model shows that the mounded geometries in the lower and uppermost part of the buildup are real architectural elements. The intermediate platform stage, about 1·5 km across, had probably retained a mounded top with a relief of up to 50 m, which is difficult to distinguish from an absolutely flat top, but necessary to explain the retrogradational platform interior. The present study shows that Monte Cernera was dominated by mounded geometries at all stages of platform development. The mounded geometry plus facies data suggest that the platform is a deep‐water accumulation, below the zone of intense wave energy, but within the photic zone. The Cernera represents a tropical buildup type, which did not have the capacity to grow into continuously wave‐swept environments because of the small size and the absence of a wave‐resistant energy barrier. Such buildup types are probably common after major crises in earth history, when reef organisms were virtually absent.  相似文献   

6.
The flanks of Middle Triassic carbonate buildups in the Dolomites show well‐developed clinostratification, with typical angles of 30–40°. This paper focuses on the metre‐scale fabric of these clinoforms and sets these within the context of their large‐scale and microscopic features. Clinoform stratification is caused by fibrous cement crusts, by stylolites paralleling a vague stratification and by pelagic limestone interbedded with the lower portions of the clinoforms. These parts of the clinoforms locally exhibit a boulder fabric. A fracture system, subvertical to clinostratification, is filled by fibrous cements and marine internal sediment. The analysis of clinoform fabric indicates that parts consist of in situ automicrite. Other parts of the clinoforms are made up of breccia. The breccias occur as isolated pockets and lenses with random orientation and dimensions ranging from a few square decimetres to hundreds of square metres. The breccias have gradual contacts with the unbrecciated host rock. Breccia components are mostly angular, show a microfacies similar to that of the unbrecciated host rock and are composed of millimetre‐ to decimetre‐sized particles that generally float in radiaxial‐fibrous cement. Matching grain boundaries are common. Calcite cement typically makes up 20 and 40 vol.% of the brecciated areas. Clinostratification, the fracture system, brecciation and boulder fabric point to gravity induced deformation of in situ flank deposits rather than gravity induced depositional processes. Brecciation appears to result from translational sliding (millimetres to metres) on the steep buildup flanks, which caused fracturing of the vaguely stratified automicrite, followed by displacive growth of fibrous cement. Cementation occurred in a (shallow) burial, marine phreatic environment, because cement clasts are virtually absent from the flank‐derived gravity flows in the adjoining basinal sediments. Displacive cement growth indicates a volume increase of the clinoforms during diagenesis of up to 20–40 vol.% and can account for the local drag of buildup interior limestones. Similarly, the boulder fabric appears to be a diagenetic feature, which resulted from differential settling of incompletely lithified boundstone and grainstone, and the interbedded pelagic limestone.  相似文献   

7.
Limestones containing radiaxial fibrous cements were sampled along the southern slope of the late Anisian (Middle Triassic) Latemar carbonate platform in the Dolomites, northern Italy. The Latemar upper slopes comprise massive microbial boundstone, whereas lower slopes are made of clinostratified grainstone, rudstone and breccia. Samples are representative of a seawater column from near sea‐level to an aphotic zone at about 500 m water depth. Radiaxial fibrous cements were analyzed for carbon (δ13C) and oxygen (δ18O) stable isotopic composition, as well as major and trace element content, to shed light on the origin of the slope facies zonation. The δ13C vary between 1·7‰ and 2·3‰ (Vienna Pee‐Dee Belemnite), with lowest values at palaeo‐water depths between 70 m and 300 m. Radiaxial fibrous cements yielded seawater‐like rare earth element patterns with light rare earth element depletion (NdSN/YbSN ≈ 0·4), superchondritic yttrium/holmium ratios (≈55) and negative cerium anomalies. Cadmium reaches maximum values of ca 0·5 to 0·7 μg/g at palaeo‐water depths between 70 m and 300 m; barium contents (0·8 to 1·8 μg/g) increase linearly with depth. The downslope patterns of δ13C and cadmium suggest increased nutrient and organic matter contents at depths between ca 70 m and 300 m and point to an active biological pump. The peak in cadmium and the minimum of δ13C mark a zone of maximum organic matter respiration and high nutrient and organic matter availability. The base of this zone at ca 300 m depth corresponds with the transition from massive microbial boundstone to clinostratified grainstone, rudstone and breccia. The microbial boundstone facies apparently formed only in seawater enriched in organic matter, possibly because this organic matter sustained benthic microbial communities at Latemar. The base of slope microbialites on high‐relief microbial carbonate platforms may be a proxy for the depth to maximum respiration zones of Palaeozoic and Mesozoic periplatform basins.  相似文献   

8.
《Sedimentary Geology》2001,139(3-4):261-283
We have estimated abundance and distribution of automicrite, marine cements and skeletal grains in the Triassic Sella massif, an isolated platform flanked by steep (25–35°) clinoforms. 108 samples were taken at constant intervals from measured sections of the major zones of the platform edifice: the platform top, margin–upper slope, and lower slope. In a first step, carried out in the field and on hand specimen, purely detrital deposits were separated from automicrite facies, i.e. beds with automicrite, cement-filled, primary vugs and admixtures of skeletal carbonate and lithoclasts. In the second step, samples with automicrite facies were thin-sectioned and point counted. The categories used for point counting were (a) automicrite, (b) vugs and cement, (c) microspar or neomorphic spar, (d) skeletal grains and (e) internal sediments. At the platform top 46% of samples are pure detrital deposits, 27% consist of automicrite facies and 27% are too strongly altered by dolomitization to allow classification. At the margin–upper slope 68% of samples consist of automicrite facies, 22% are pure detrital sediments and 10% are strongly altered. At the lower slope 63% are detrital deposits, 10% automicrite facies and 27% are extensively dolomitized. The most important contributors to the automicrite facies are automicrite (41% on the platform top, 29% on the margin–upper slope, 28% on the lower slope) and early marine cement (35% on the platform top, 48% on the margin–upper slope, 27% on the lower slope). The amount of skeletal grains is less than 10%.The automicrite facies stabilized the platform margin and upper slope. Automicrite, abundant early marine cements and micro-organisms such as Tubiphytes, formed a rigid framework, thus substituting for the lack of a metazoan reef. On the upper slopes, the framework of automicrite facies stabilized the slope but intermittently. The automicrite layers are frequently dissected by sediment-filled fractures or are broken into clasts. We assume that they slid on the layers of loose detritus. Bigger slides turned into rubbly debris flows that formed metre-thick breccias at the lower slope and the proximal basin floor. The planar shape and steep angle of the clinoforms indicate that the large-scale geometry of the slope was not controlled by the automicrite but rather by non-cohesive layers of sand and rubble piled up to the angle of repose.The production mode of the Sella is comparable of that of a (mud) mound factory. This factory was highly productive: in 1 Ma, the platform aggraded over 300 m and prograded over 2000 m in all directions.  相似文献   

9.
ABSTRACT Basic shallowing-upward cycles (shu-cycles) and five-bundled megacycles in the Latemar platform have been widely regarded as a model example for precessional and eccentricity forcing in the Mesozoic. Based on bio-/chronostratigraphic data, recent studies questioned this particular type of Milankovitch forcing on the Latemar cyclic series. We present an integrated model that incorporates (i) new cyclostratigraphic data, (ii) new and existing bio-/chronostratigraphic data and (iii) new spectral analyses. The basic shu-cycles in the Latemar reflect sub-Milankovitch control. Cycle bundles of 1 : 4–5 (megacycles : shu-cycles) indicate precessional forcing. They do not reflect eccentricity superimposed on precessional forcing. Spectral analyses reveal highly significant ratios in the large-scale cycle bundlings. Stacking patterns of 1 : 9.9 and 1 : 24.0 shu-cycles represent obliquity and short eccentricity forcing. Both sub-Milankovitch and Milankovitch forcing potentially controlled shallow subtidal carbonate deposition in Mesozoic greenhouse times. Cyclostratigraphic models require an integrated approach including bio- and chronostratigraphic data.  相似文献   

10.
《Earth》2009,92(1-4):93-105
The Dolomites (Southern Alps, Italy) are a reference-area for research on the end-Permian mass extinction and its Early Triassic aftermath. The effects on shallow marine benthic biota are recorded in the Werfen Formation, a thick mixed carbonate-siliciclastic sedimentary succession. Only in its lower (Griesbachian) and upper (Spathian) parts, this formation is bio-chronologically constrained by means of conodonts and ammonoids, whilst no significant bioevent occurs in its middle part. This represents an impediment to the biochronologic recognition of the Induan/Olenekian boundary (IOB).The Bulla/Pufels (Val Gardena) succession is a key-section for the P/T boundary and Early Triassic for global correlation due to the abundance of studies on biostratigraphy (mostly on conodonts), magnetostratigraphy and chemostratigraphy carried out there by stratigraphers of various nationalities. Recent chemostratigraphic studies have permitted the recognition of some carbon isotope positive peaks, the strongest of which is considered to approximate the IOB. However, various authors have reached different conclusions on the position of the maximum peak and thus on the IOB location. This leads to important stratigraphic consequences for the calibration of conodont biostratigraphy. The critical revision of the traditional stratigraphic units (litho- and biostratigraphy), under-evaluated in most of the recent literature, and magneto-, chemo- and sequence stratigraphic units allowed herein an integrated stratigraphic scale for the Bulla/Pufels section to be proposed. This contribution highlights the mid Early Triassic Dolomites record for regional and global correlations.The most significant results attained herein regard the different lithostratigraphic subdivisions of the middle Werfen Formation and its consequences on the position of the IOB with respect to the conodont and bivalve biostratigraphy and sequence stratigraphic units. The upper part of the section is attributed herein to the Gastropod Oolite Member, which is represented by the lithozone A, a predominant supratidal episode, and the lower part of the subtidal lithozone B. Between the lithozones A and B, a sequence boundary of 3th order (Sc2/Sc3) is located. The maximum carbon isotope excursion is near this boundary, which therefore approximates the IOB in the Dolomites. This proposal suggests a Dienerian age for the FO of the conodont Pachycladina obliqua, which occurs about 60 m below the stage boundary. No significant biotic event, either for molluscs or conodonts, occurred across this stage boundary.  相似文献   

11.
In the late Carnian (Late Triassic), a carbonate‐clastic depositional system including a distal alluvial plain, flood basin and sabkha, tidal flat and shallow carbonate lagoon was established in the Dolomites (Northern Italy). The flood basin was a muddy supratidal environment where marine carbonates and continental siliciclastics interfingered. A dolomite phase made of sub‐micrometre euhedral crystals with a mosaic microstructure of nanometre‐scale domains was identified in stromatolitic laminae of the flood basin embedded in clay. This dolomite is interpreted here as primary and has a nearly stoichiometric composition, as opposed to younger early diagenetic (not primary) dolomite phases, which are commonly calcian. This primary dolomite was shielded from later diagenetic transformation by the clay. The stable isotopic composition of dolomite was analyzed along a depositional transect. The δ13C values range between ca ?6‰ and +4‰, with the most 13C‐depleted values in dolomites of the distal alluvial plain and flood basin, and the most 13C‐enriched in dolomites of the tidal flat and lagoon. Uniform δ18O values ranging between 0‰ and +3‰ were found in all sedimentary facies. It is hypothesized that the primary dolomite with mosaic microstructure nucleated on extracellular polymeric substances secreted by sulphate reducing bacteria. A multi‐step process involving sabkha and reflux dolomitization led to partial replacement and overgrowth of the primary dolomite, but replacement and overgrowth were facies‐dependent. Dolomites of the landward, clay‐rich portion of the sedimentary system were only moderately overgrown during late dolomitization steps, and partly retain an isotopic signature consistent with bacterial sulphate reduction with δ13C as low as ?6‰. In contrast, dolomites of the marine, clay‐free part of the system were probably transformed through sabkha and reflux diagenetic processes into calcian varieties, and exhibit δ13C values of ca +3‰. Major shifts of δ13C values strictly follow the lateral migration of facies and thus mark transgressions and regressions.  相似文献   

12.
ANNA BREDA  NEREO PRETO 《Sedimentology》2011,58(6):1613-1647
The Travenanzes Formation is a terrestrial to shallow‐marine, siliciclastic–carbonate succession (200 m thick) that was deposited in the eastern Southern Alps during the Late Triassic. Sedimentary environments and depositional architecture have been reconstructed in the Dolomites, along a 60 km south–north transect. Facies alternations in the field suggest interfingering between alluvial‐plain, flood‐basin and shallow‐lagoon deposits, with a transition from terrestrial to marine facies belts from south to north. The terrestrial portion of the Travenanzes Formation consists of a dryland river system, characterized by multicoloured floodplain mudstones with scattered conglomeratic fluvial channels, merging downslope into small ephemeral streams and sheet‐flood sandstones, and losing their entire discharge subaerially before the shoreline. Calcic and vertic palaeosols indicate an arid/semi‐arid climate with strong seasonality and intermittent discharge. The terrestrial/marine transition shows a coastal mudflat, the flood basin, which is usually exposed, but at times is inundated by both major river floods and sea‐water storm surges. Locally coastal sabkha deposits occur. The marine portion of the Travenanzes Formation comprises carbonate tidal‐flat and shallow‐lagoon deposits, characterized by metre‐scale shallowing‐upward peritidal cycles and subordinate intercalations of dark clays from the continent. The depositional architecture of the Travenanzes Formation suggests an overall transgressive pattern organized in three carbonate–siliciclastic cycles, corresponding to transgressive–regressive sequences with internal higher‐frequency sedimentary cycles. The metre‐scale sedimentary cyclicity of the Travenanzes Formation continues without a break in sedimentation into the overlying Dolomia Principale. The onset of the Dolomia Principale epicontinental platform is marked by the exhaustion of continental sediment supply.  相似文献   

13.
The 720-m-thick succession of the Middle Triassic Latemàr Massif (Dolomites, Italy) was used to reconstruct the lagoonal facies architecture of a small atoll-like carbonate platform. Facies analysis of the lagoonal sediments yields a bathymetric interpretation of the lateral facies variations, which reflect a syndepositional palaeorelief. Based on tracing of lagoonal flooding surfaces, the metre-scale shallowing-upward cycles are interpreted to be of allocyclic origin. Short-term sea-level changes led to subaerial exposure of wide parts of the marginal zone, resulting in the development of a tepee belt of varying width. Occasional emergence of the entire lagoon produced lagoon-wide decimetre-thick red exposure horizons. The supratidal tepee belt in the backreef area represented the zone of maximum elevation, which circumscribed the sub- to peritidal lagoonal interior during most of the platform's development. This tepee rim, the subtidal reef and a sub- to peritidal transition zone in between stabilized the platform margin. The asymmetric width of facies belts within individual metre-scale cycles was caused by redistribution processes that reflect palaeowinds and storm paths from the present-day south and west. The overall succession shows stratigraphic changes on a scale of tens of metres from a basal subtidal unit, overlain by three tepee-rich intervals, separated by tepee-poor units composed of subtidal to peritidal facies. This stacking pattern reflects two third-order sequences during the late Anisian to early middle Ladinian.  相似文献   

14.
15.
Triassic calciturbidites were studied in a 100-m long core and nearby outcrops of the basinal Buchenstein Formation to determine composition and thickness variations. The quantity of recognized turbidite sediment relative to background sediment changes from 15% (by volume) in the lower part to 60% in the upper part, reflecting the steady progradation of nearby platforms. The composition of the sand fraction of 214 turbidites was point-counted in thin sections. Micrite peloids (average 23%) and lithoclasts (16%) are by far the most dominant constituents. They are interpreted as two different varieties of in-situ precipitated micrite (automicrite), which probably formed under the influence of microbes and constitute the principal building material of the adjacent platforms. Platform-derived skeletal grains amount to only 0.5%. Variations in turbidite composition were quantified using Spearman's rank correlation and cluster analysis. The most significant compositional variations seem to be related to hydrodynamic sorting in the turbidity currents and to the gradual shift from distal to more proximal turbidites in the core as the platforms prograded basinward. Cluster analysis of the 214 samples shows a major subdivision into micrite and sparite dominated turbidites. Clusters associated with micrite-dominated turbidites are enriched in Radiolaria and thin-shelled bivalves, whereas the clusters related to sparite-dominated turbidites show an abundance of lithoclasts. This subdivision seems strongly related to sorting effects in a turbidity current. Point-counting of turbidites in nearby outcrops revealed a lateral variation in composition. Proximal turbidites are sparite-dominated and enriched in lithoclasts, distal portions are chiefly micrite with an open-ocean biota (thin-shelled bivalves, Radiolaria). This differentiation resembles the vertical change in composition of thick turbidite beds, and is attributed to different settling rates of the various grains in the turbidity current. There is no indication that turbidite composition fluctuated significantly under the influence of sea-level fluctuations. This is not surprising because the dominant automicrite facies of the platforms only migrates laterally, but does not change much during sea-level cycles.  相似文献   

16.
Hydrogeology Journal - Nitrate reduction constitutes an important natural mechanism to mitigate the widespread and persistent nitrate contamination of groundwater resources. In fractured aquifers,...  相似文献   

17.
In the Dolomites of northernmost Italy the carbonate‐platform growth came to a standstill late in the Early Carnian (Late Triassic). The response to this shutdown of shallow‐water carbonate production in the interplatform basins is largely unknown because erosion has removed most of the soft basinal sediments, giving rise to today's scenic landscape of the Dolomites. Mapping in the central part of the Dolomites and newly available core material has recently revealed a well‐preserved succession of basinal rocks within the Heiligkreuz Hospiz Basin (ital. Ospizio di Santa Croce Basin). In this paper, the regional depositional nature of arrested carbonate platform production is reconstructed by tracing its sedimentological record across the slope and into the basin. The uppermost St. Cassian Formation, the time‐equivalent basinal rocks to the prograding carbonate platforms, is overlain by the Heiligkreuz Formation, whose basal succession was deposited in a restricted and oxygen‐depleted environment immediately post‐dating the platform demise. The succession consists mainly of mudrocks, marlstones, and peloidal packstones, with abundant low‐diversity ostracod and pelecypod fauna and early diagenetic dolomite. C and O isotope values of the basal Heiligkreuz Formation, post‐dating platform demise, average + 2·4 and ? 2·4‰, respectively, and largely overlap the isotopic composition of St. Cassian carbonates. A shift toward slightly lower δ13C values in the Heiligkreuz Formation may reflect incorporation of isotopically depleted C released during bacterial sulphate reduction in the Heiligkreuz sediments. Sedimentological, palaeobiological and geochemical indices suggest that near‐normal marine conditions persisted long after the shutdown of shallow water carbonate‐platform growth, although there are clear indications of severely reduced oxygen levels in the restricted Heiligkreuz Hospiz interplatform basin. The Early Carnian platform demise induced a distinct switch in the locus of carbonate production from the shallow‐water platform and slope to the basin floor and a decrease in the availability of dissolved oxygen in the basinal waters. It is inferred that anoxia extended at least temporarily to the top of the carbonate slope, as indicated by the onlap of normal‐marine mounds by dark marlstones of the basal Heiligkreuz Formation.  相似文献   

18.
Pot casts and gutter casts are described for the first time in the lower part of the Majanillos Formation, a Middle Triassic carbonate unit located in the External Zones of the Betic Cordillera (southern Spain). Their identification, as well as their relation to tempestites, enables the better interpretation of the depositional environments and the shoreline-to-offshore facies transition on the Anisian muddy carbonate ramp of the southern Iberian Massif. The Majanillos Formation contains three members, which become progressively more marly towards the top. Well-preserved pot and gutter casts and thin intercalations of calcarenite, which are interpreted as tempestites, are abundant in the lowest member. Above the pot and gutter casts, thicker calcarenite beds, which locally contain hummocky cross-stratification, predominate. Bioturbated nodular limestones are prevalent at the top of the member. The remaining succession, which records a long-term Triassic transgressive cycle, consists mostly of fine-grained limestones deposited in very shallow-marine environments. Calcarenitic sediments only accumulated within potholes and gutters in the nearshore. They developed during storms when strong currents transported sediment to the outer shelf, where it was deposited as tempestite beds. Pot and gutter casts characterize sedimentation in the bypass zone. It is concluded that storm deposits provide important constraints for the interpretation of palaeobathymetry; it is proposed that gutter casts display a trend of increasing width/thickness ratios towards the outer shelf. The identification of these structures in marine successions elsewhere should prove useful in the interpretation of depositional environments.  相似文献   

19.
The nature of Phanerozoic carbonate factories is strongly controlled by the composition of carbonate‐producing faunas. During the Permian–Triassic mass extinction interval there was a major change in tropical shallow platform facies: Upper Permian bioclastic limestones are characterized by benthic communities with significant richness, for example, calcareous algae, fusulinids, brachiopods, corals, molluscs and sponges, while lowermost Triassic carbonates shift to dolomicrite‐dominated and bacteria‐dominated microbialites in the immediate aftermath of the Permian–Triassic mass extinction. However, the spatial–temporal pattern of carbonates distribution in high latitude regions in response to the Permian–Triassic mass extinction has received little attention. Facies and evolutionary patterns of a carbonate factory from the northern margin of peri‐Gondwana (palaeolatitude ca 40°S) are presented here based on four Permian–Triassic boundary sections that span proximal, inner to distal, and outer ramp settings from South Tibet. The results show that a cool‐water bryozoan‐dominated and echinoderm‐dominated carbonate ramp developed in the Late Permian in South Tibet. This was replaced abruptly, immediately after the Permian–Triassic mass extinction, by a benthic automicrite factory with minor amounts of calcifying metazoans developed in an inner/middle ramp setting, accompanied by transient subaerial exposure. Subsequently, an extensive homoclinal carbonate ramp developed in South Tibet in the Early Triassic, which mainly consists of homogenous dolomitic lime mudstone/wackestone that lacks evidence of metazoan frame‐builders. The sudden transition from a cool‐water, heterozoan dominated carbonate ramp to a warm‐water, metazoan‐free, homoclinal carbonate ramp following the Permian–Triassic mass extinction was the result of the combination of the loss of metazoan reef/mound builders, rapid sea‐level changes across Permian–Triassic mass extinction and profound global warming during the Early Triassic.  相似文献   

20.
A stratigraphic model for carbonate platform evolution in the Dolomites during the late Ladinian-early Carnian is presented. New light on pre-Raibl growth of individual carbonate platforms of the western Dolomites was shed by biostratigraphic data combined with a revised lithostratigraphy. At the Schlern, Langkofel and Sella, the carbonate factory (Upper Schlern Dolomite) remained productive into the lowermost Carnian (Cordevolian = Aon Zone), and caused a levelling-out of the former steep platform-to-basin relief. In the eastern Dolomites, platforms were producing till basal Julian 2 (Austriacum Zone). At the Sella and Langkofel, the sedimentation pattern after deposition of the Upper Schlern Dolomite was strongly influenced by synsedimentary tectonics. A first phase of extensional tectonics led to local fissures, block-tilting, graben structures and breccia deposits. Composition and fabric of the reworked clasts argue for local-source sediments and short transport distances. The extensional structures are sealed by sediments of Lower Carnian age. Two facies belts (Schlernplateau beds and Dürrenstein Dolomite), which interfinger at the western side of the Sella, reflect the shallow marine environment with terrigenous-volcanoclastic input in the western Dolomites. A second generation of breccias at the Sella documents local fracturing of the Dürrenstein and Upper Schlern Dolomite. Depositional environments across the western and eastern Dolomites were largely dependent on differential subsidence. The sediments of early Carnian age on top of the Schlern platform are a few metres thick only, whereas, in the eastern Dolomite, up to 400-m-thick carbonate sediments ('Richthofen reef' and Settsass platform) were deposited. The most incomplete stratigraphic record is present at the Mendel platform in the west, where Ladinian volcanics are unconformably overlain by late Carnian 'Raibl beds'. The increase in sediment thickness towards the eastern Dolomites becomes partly visible at the eastern flank of the Sella platform. Differential subsidence across western and eastern Dolomites caused local fracturing of platform sediments. Synsedimentary extensional tectonics was a significant controlling factor to the lithofacies and thickness variations of early Carnian platform sediments in the Dolomites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号