共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The paper presents a hypoplastic constitutive model for the three-dimensional non-linear stress–strain and dilatant volume change behaviour of sand. The model is developed without recourse to the concept in elastoplasticity theory such as yield surface, plastic potential and decomposition into elastic and plastic parts. Benefited from the non-linear tensorial functions available from the representation theorem the model possesses simple mathematical formulation and contains only four material parameters, which can be easily identified with triaxial compression tests. Comparison of the predictions with the experimental results shows that the model is capable of capturing the salient behaviour of sand under monotonic loading and is applicable to both drained and undrained conditions. 相似文献
3.
Hypoplastic constitutive models are based on nonlinear tensor functions and are characterized by simple formulation and few parameters. In its early stage, mainly basic hypoplastic constitutive equations were concerned, where the stress tensor is assumed as the only state variable. There followed some enhanced models based on the basic constitutive equation by including void ratio as an additional state variable. In this paper, we first show that the widely used hypoplastic model by Wolffersdorff is seriously flawed because the underlying basic equation does not perform properly. We proceed to develop a basic hypoplastic constitutive equation by introducing a new tensorial term, which preserves the critical state at large strain. The model performance is demonstrated by parameter study for some element tests. This simple and robust basic equation is well suited to build more sophisticated models. 相似文献
4.
The paper presents a simple constitutive model for normally consolidated clay. A mathematical formulation, using a single tensor-valued function to define the incrementally nonlinear stress–strain relation, is proposed based on the basic concept of hypoplasticity. The structure of the tensor-valued function is determined in the light of the response envelope. Particular attention is paid towards incorporating the critical state and to the capability for capturing undrained behaviour of clayey soils. With five material parameters that can be determined easily from isotropic consolidation and triaxial compression tests, the model is shown to provide good predictions for the response of normally consolidated clay along various stress paths, including drained true triaxial tests and undrained shear tests. 相似文献
5.
6.
《Geomechanics and Geoengineering》2013,8(1):43-50
The paper deals with the anisotropic extension of an inherently isotropic hypoplastic constitutive model. Inherent transverse isotropy is incorporated into the model with the help of an operator of anisotropy which is determined by the orientation of the bedding plane and three constitutive parameters. The approach is rather general and is not connected with any specific type of constitutive model. In the present study, two possible extensions of the hypoplastic equation are considered: the application of the anisotropy operator to the nonlinear part of the equation and to the whole equation. The two modifications are exemplified by numerical calculations of simple shear. 相似文献
7.
H. S. Yu 《国际地质力学数值与分析法杂志》1998,22(8):621-653
The purpose of this paper is to present a simple, unified critical state constitutive model for both clay and sand. The model, called CASM (Clay And Sand Model), is formulated in terms of the state parameter that is defined as the vertical distance between current state (v, p′) and the critical state line in v–ln p′ space. The paper first shows that the standard Cam-clay models (i.e. the original and modified Cam-clay models) can be reformulated in terms of the state parameter. Although the standard Cam-clay models prove to be successful in modelling normally consolidated clays, it is well known that they cannot predict many important features of the behavior of sands and overconsolidated clays. By adopting a general stress ratio-state parameter relation to describe the state boundary surface of soils, it is shown that a simple, unified constitutive model (CASM) can be developed for both clay and sand. It is also demonstrated that the standard Cam-clay yield surfaces can be either recovered or approximated as special cases of the yield locus assumed in CASM. The main feature of the proposed model is that a single set of yield and plastic potential functions has been used to model the behaviour of clay and sand under both drained and undrained loading conditions. In addition, it is shown that the behaviour of overconsolidated clays can also be satisfactorily modelled. Simplicity is a major advantage of the present state parameter model, as only two new material constants need to be introduced when compared with the standard Cam-clay models. © 1998 John Wiley & Sons, Ltd. 相似文献
8.
Zheng Li Panagiotis Kotronis Sandra Escoffier Claudio Tamagnini 《国际地质力学数值与分析法杂志》2018,42(12):1346-1365
Batter piles are widely used in geotechnical engineering when substantial lateral resistance is needed or to avoid the interference with existing underground constructions. Nevertheless, there is a lack of fast numerical tools for nonlinear soil‐structure interactions problems for this type of foundation. A novel hypoplastic macroelement is proposed, able to reproduce the nonlinear response of a single batter pile in sand under monotonic and cyclic static loadings. The behavior of batter piles (15°, 30°, and 45°) is first numerically investigated using 3D finite element modeling and compared with the behavior of vertical piles. It is shown that their response mainly depends on the pile inclination and the loading direction. Then, starting from the macroelement for single vertical piles in sand by Li et al (Acta Geotechnica, 11(2):373‐390, 2016), an extension is proposed to take into account the pile inclination introducing simple analytical equations in the expression describing the failure surface. 3D finite element numerical models are adopted to validate the macroelement that is proven able to reproduce the nonlinear behavior in terms of global quantities (forces‐displacements) and to significantly reduce the necessary computational time. 相似文献
9.
A hypoplastic constitutive model for clays 总被引:3,自引:0,他引:3
D. Maín 《国际地质力学数值与分析法杂志》2005,29(4):311-336
This paper presents a new constitutive model for clays. The model is developed on the basis of generalized hypoplasticity principles, which are combined with traditional critical state soil mechanics. The positions of the isotropic normal compression line and the critical state line correspond to the Modified Cam clay model, the Matsuoka–Nakai failure surface is taken as the limit stress criterion and the non‐linear behaviour of soils with different overconsolidation ratios is governed by the generalized hypoplastic formulation. The model requires five constitutive parameters, which correspond to the parameters of the Modified Cam clay model and are simple to calibrate on the basis of standard laboratory experiments. This makes the model particularly suitable for practical applications. The basic model may be simply enhanced by the intergranular strain concept, which allows reproducing the behaviour at very small strains. The model is evaluated on the basis of high quality laboratory experiments on reconstituted London clay. Contrary to a reference hypoplastic relation, the proposed model may be applied to highly overconsolidated clays. Improvement of predictions in the small strain range at different stress levels is also demonstrated. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
10.
Moghadam Seyed Iman Taheri Ehsan Ahmadi Morteza Ghoreishian Amiri Seyed Ali 《Acta Geotechnica》2022,17(10):4359-4375
Acta Geotechnica - This paper presents a constitutive model enabled to simulate monotonic and cyclic behaviour of clay and sand in a unified framework. The bounding surface concept has been... 相似文献
11.
Debris flow is a very common and destructive natural hazard in mountainous regions. Pore water pressure is the major triggering factor in the initiation of debris flow. Excessive pore water pressure is also observed during the runout and deposition of debris flow. Debris materials are normally treated as solid particle–viscous fluid mixture in the constitutive modeling. A suitable constitutive model which can capture the solid-like and fluid-like behavior of solid–fluid mixture should have the capability to describe the developing of pore water pressure (or effective stresses) in the initiation stage and determine the residual effective stresses exactly. In this paper, a constitutive model of debris materials is developed based on a framework where a static portion for the frictional behavior and a dynamic portion for the viscous behavior are combined. The frictional behavior is described by a hypoplastic model with critical state for granular materials. The model performance is demonstrated by simulating undrained simple shear tests of saturated sand, which are particularly relevant for the initiation of debris flows. The partial and full liquefaction of saturated granular material under undrained condition is reproduced by the hypoplastic model. The viscous behavior is described by the tensor form of a modified Bagnold’s theory for solid–fluid suspension, in which the drag force of the interstitial fluid and the particle collisions are considered. The complete model by combining the static and dynamic parts is used to simulate two annular shear tests. The predicted residual strength in the quasi-static stage combined with the stresses in the flowing stage agrees well with the experimental data. The non-quadratic dependence between the stresses and the shear rate in the slow shear stage for the relatively dense specimens is captured. 相似文献
12.
A shortcoming of the hypoplastic model for clays proposed by the first author is an incorrect prediction of the initial portion
of the undrained stress path, particularly for tests on normally consolidated soils at isotropic stress states. A conceptually
simple modification of this model, which overcomes this drawback, is proposed in the contribution. The modified model is applicable
to both normally consolidated and overconsolidated soils and predicts the same swept-out-memory states (i.e., normal compression
lines) as the original model. At anisotropic stress states and at higher overconsolidation ratios the modified model yields
predictions similar to the original model. 相似文献
13.
This paper presents a two-surface plasticity constitutive model for clays based on critical-state soil mechanics. The model reproduces the mechanical response of clays under multi-axial loading conditions and predicts both drained and undrained behavior at small and large strains. The constitutive model also captures both the strain-rate-dependent behavior of clays and the drop in strength towards a residual value at very large shear strains using novel approaches. The paper also describes a hierarchical process for the determination of the model parameters relying more on simple curve fitting of model equations to experimental data points corresponding to specific soil states instead of trial-and-error simulations of entire experiments. Model parameter values are determined for London Clay, San Francisco Bay Mud, Boston Blue Clay and Lower Cromer Till, and the performance of the model in simulating mechanical response of clays is demonstrated for a variety of initial states and loading conditions. 相似文献
14.
A new constitutive model is developed for the mechanical behaviour of unsaturated soils based on the theory of hypoplasticity and the effective stress principle. The governing constitutive relations are presented and their application is demonstrated using several experimental data from the literature. Attention is given to the stiffening effect of suction on the mechanical response of unsaturated soils and the phenomenon of wetting‐induced collapse. All model parameters have direct physical interpretation, procedures for their quantification from test data are highlighted. Quantitative predictions of the model are presented for wetting, drying and constant suction tests. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
15.
This paper presents a novel macroelement for single vertical piles in sand developed within the hypo-plasticity theory, where the incremental nonlinear constitutive equations are defined in terms of generalized forces, displacements and rotations. Inspired from the macroelement for shallow foundations of Salciarini and Tamagnini (Acta Geotech, 4(3):163–176, 2009), the new element adopts the “intergranular displacement” mutuated from Niemunis and Herle (Mech Cohes Frict Mater, 2:279–299, 1997) to reproduce the behavior under cyclic loading. Analytical and numerical strategies are provided to calibrate the macroelement’s parameters. Comparisons with experimental results show the performance of the macroelement that while being simple and computational fast is suitable for finite element calculations and engineering design. 相似文献
16.
We propose an extension of the Discrete Element Method for the numerical simulation of cemented sands, in which spherical particles are bonded together by elastic beams connecting the centers of the spheres. The parameters of this model are the strengths and stiffnesses of the bonds and particles. For small strains, the elasticity of the bond element is equal to the well-known linear finite-element Timoshenko beam element with reduced integration. The finite rotations are represented by unit quaternions. An efficient way to compute relative rotations and to decompose them into their components is presented.The results of triaxial compression tests on artificially cemented sands are used to verify that the model can capture the macroscopic behavior of such materials. The results show that peak stress mainly depends on the strength of the bonds and the number of initially bonded particles in the material. Results of triaxial tests with different cement contents are reproduced by the analysis. An important parameter of the model is the strength difference between tension and compression of the bond element. This property controls the influence of the confining pressure on peak strength. In the future, the model could be adapted to other types of bonded materials like asphalt or rock. 相似文献
17.
Numerical simulation of a tunnel surrounded by sand under earthquake using a hypoplastic model 总被引:1,自引:1,他引:1
A numerical model of a centrifuge experiment on tunnel located in sand is being presented. The experiment was carried out under seismic loading using a dynamic actuator. The responses of the tunnel and of the sand were measured. The numerical model is based on a hypoplastic constitutive model with intergranular strains implemented in the FE-code TOCHNOG. The calculated accelerations in the sand match the measured results, while the surface settlement and the bending moments in the tunnel lining are only qualitatively reproduced by the numerical model. 相似文献
18.
亚塑性模型为模拟颗粒材料的非线性力学行为提供了一条新途径,特别是CLoE亚塑性模型在模拟应变局部化时具有一定的优势。然而该模型在模拟小幅应力-应变循环时表现出一定的锯齿效应。为了克服该效应,基于颗粒间应变张量的概念发展了修正的CLoE亚塑性模型以正确模拟循环荷载下密砂的力学行为。此外,为保证单调荷载作用下修正模型与原模型预测结果的一致性,改进了颗粒间应变率及颗粒间最大应变的定义。数值算例表明:(1)修正模型保留了克服锯齿效应的优点。(2)修正模型能够反映不同振幅条件下的卸载刚度。(3)在大振幅循环条件下,滞回圈的面积随着循环次数增加而增大。(4)修正模型能够保证单调加载条件下所得结果与原模型的一致性。(5)修正模型可以反映材料的疲劳破坏机制。 相似文献
19.
This paper presents a constitutive model for describing some important features of the behavior of natural stiff clay evidenced experimentally such as the limited elastic zone, the presence of strain hardening and softening, and the smooth transition from elastic behavior to a plastic one. The model, namely ACC-2, is an adapted Modified Cam Clay model with two yield surfaces: similarly to bounding surface plasticity theory, an additional yield surface—namely Inner yield surface—was adopted to account for the plastic behavior inside the conventional yield surface. A progressive plastic hardening mechanism was introduced with a combined volumetric-deviatoric hardening law associated with the Inner yield surface, enabling the plastic modulus to vary smoothly during loading paths. The main feature of the proposed model is that its constitutive equations can be simply formulated based on the consistency condition for the Inner yield surface, so that it can be efficiently implemented in a finite element code using a stress integration scheme similar to that of the Modified Cam Clay model. Furthermore, it is proved to be an appropriate model for natural stiff clay: the simulations of a set of tests along different mechanical loading paths on natural Boom Clay show good agreement with the experimental results. 相似文献
20.
In this work, a macroelement for shallow foundations on sands has been developed based on the theory of hypoplasticity. The
incrementally nonlinear constitutive equations of the macromodel are defined in terms of generalized forces and displacements
and are constructed based on the general approach proposed by Niemunis (Extended Hypoplastic Models for Soils. Habilitation
Thesis, Bochum University, 2002). A suitable vectorial internal variable—mimicking the concept of intergranular strain introduced
by Niemunis and Herle (Mech Cohes Frict Mater 2:279–299, 1997) for continuum hypoplasticity—is employed to provide the model
sufficient memory of past displacement history to be able to reproduce the observed behavior under cyclic loading paths. As
compared to similar macroelements formulated within the framework of the theory of elastoplasticity, the proposed approach
has the advantage of a much simpler mathematical structure, which allows a straightforward implementation in existing structural
analysis FE codes. The model performance has then been evaluated by comparing the model predictions with available experimental
results from a series of small-scale model tests reported by Nova and Montrasio (Géotechnique 41:243–256, 1991). Overall,
the model captures reasonably well the observed response under nonproportional, complex loading paths. A series of simulations
reproducing the tests performed by di Prisco et al. (Shallow footing under cyclic loading: experimental behaviour and constitutive
modelling. Patron, Bologna, 2003) has also demonstrated the potential of the proposed model to simulate the observed behavior
of footings under cyclic loading paths, at least from a qualitative point of view. 相似文献