首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
While it has long been known that Pacific salmon use estuarine habitat, it has proven much harder to establish that the loss of estuarine habitat results in reduced survival. We used coded-wire tagging of hatchery fish to estimate the survival from release until maturity and related this survival to several indicators of estuarine condition. We found a significant relationship between the survival of chinook salmon (Oncorhynchus tshawytscha) and the percentage of the estuary that is in pristine condition, but no significant relationship for coho salmon (Oncorhynchus kisutch). This supports field observations that chinook salmon use estuarine habitat much more than coho salmon and confirms that the loss of estuarine habitat results in lower survival of chinook salmon.  相似文献   

2.
The functional value of a restored estuarine wetland as a foraging area for juvenile chum salmon (Oncorhynchus keta) and fall chinook salmon (O. tshawytscha) was evaluated during the spring seaward migrations of each species in 1987 and 1988. During both years, fish foraged selectively. While temporarily residing in the restored wetland, both salmon selected primarily chironomid insects (midge larvae, pupae, and adults) over all other organisms considered available prey. A detritus-based food chain (detritus-chironomids-juvenile chum salmon or chinook salmon) suggests that the restored wetland provides productive foraging habitat for migrating juvenile chum and fall chinook salmon during their early residency in the estuary. However, the equivalency of foraging in restored or created estuarine wetlands compared to foraging in altered riverine or natural habitats remains untested.  相似文献   

3.
The hydrodynamic characteristics of small, intertidal perimeter habitats make flushing and residence times in these environments difficult to quantify using conventional approaches. The flooding and draining of intertidal shallows surrounding small perimeter sloughs result in large volume changes relative to total system volume during each tidal cycle. In such environments, an Eulerian framework of flushing and residence time may not be the best approach for quantifying tidal exchange; thus, alternative approaches should be considered in analyzing hydrodynamic exchange in small perimeter habitats. In this study, the results of applying such an approach to a small intertidal perimeter slough in South San Francisco Bay are presented. Previous work has shown that hydrodynamic exchange in an estuarine system can be analyzed by making Eulerian measurements of hydrodynamic fluxes and binning them according to salinity and temperature classes, thus providing a quasi-Lagrangian method of analyzing exchange and transport in an estuarine system. We apply a method which uses this approach to estimate the volumetric exchange ratio M, which is used to estimate the tidal exchange within an estuary during each tidal cycle. We find that the estimation of volumetric exchange ratios and the calculation of hydrodynamic residence times in estuarine systems can be complicated by mixing conditions associated with very strong tidal forcing, particularly in small-volume systems such as small perimeter sloughs, where the tidal prism can be on the scale of or greater than the total system volume.  相似文献   

4.
Estuarine rearing has been shown to enhance within watershed biocomplexity and support growth and survival for juvenile salmon (Oncorhynchus sp.). However, less is known about how growth varies across different types of wetland habitats and what explains this variability in growth. We focused on the estuarine habitat use of Columbia River Chinook salmon (Oncorhynchus tshawytscha), which are listed under the Endangered Species Act. We employed a generalized linear model (GLM) to test three hypotheses: (1) juvenile Chinook growth was best explained by temporal factors, (2) habitat, or (3) demographic characteristics, such as stock of origin. This study examined estuarine growth rate, incorporating otolith microstructure, individual assignment to stock of origin, GIS habitat mapping, and diet composition along ~130 km of the upper Columbia River estuary. Juvenile Chinook grew on average 0.23 mm/day in the freshwater tidal estuary. When compared to other studies in the basin our growth estimates from the freshwater tidal estuary were similar to estimates in the brackish estuary, but ~4 times slower than those in the plume and upstream reservoirs. However, previous survival studies elucidated a possible tradeoff between growth and survival in the Columbia River basin. Our GLM analysis found that variation in growth was best explained by habitat and an interaction between fork length and month of capture. Juvenile Chinook salmon captured in backwater channel habitats and later in the summer (mid-summer and late summer/fall subyearlings) grew faster than salmon from other habitats and time periods. These findings present a unique example of the complexity of understanding the influences of the many processes that generate variation in growth rate for juvenile anadromous fish inhabiting estuaries.  相似文献   

5.
Chinook salmon (Oncorhynchus tshawytscha) are ecologically and geographically differentiated into two life history types: “ocean-type,” which enter estuaries as fry or fingerlings in the first year of life and rear there for up to 6 wk before migrating to sea, and “stream-type,” which migrate seaward as smolts after one or more years in fresh water and are only transient residents in the outer portion of estuaries. Following exposure to a long-day priming photoperiod for 2 mo from the time of first feeding, progeny of stream-type chinook salmon undergo a reduction in growth during summer and remain as parr, whereas progeny of ocean-type chinook salmon and hybrids continue to grow during the summer and develop into underyearling smolts. Male purebred and hybrid F1 progeny of ocean-type and stream-type chinook salmon were backcrossed to females of both parental populations to examine the segregation of photoperiod-independent (smolt) and photoperiod-dependent (parr) phenotypes among progeny. Results of the backcrosses of the hybrid F1 males depended on female type. The backcross to ocean-type females produced progeny that were predominantly smolts, whereas progeny from the backcross to stream-type females segregated into approximately equal numbers of smolts and parr. These results are consistent with Mendelian inheritance of a single major gene with two alleles: a dominant allele for the photoperiod-independent phenotype of ocean-type chinook salmon and a recessive allele for the photoperiod-dependent phenotype of stream-type chinook salmon.  相似文献   

6.
Fish aggregations at fronts may be caused by either increased food availability or better thermal conditions at the front, but a quantitative evaluation of the effects of fronts on fish has yet to be done. Bioenergetics models were used to evaluate the growth rate potential of a cool-water fish, the chinook salmon (Oncorhynchus tshawytscha), and a warm-water fish, the striped bass (Morone saxatilis), across thermal fronts of different temperatures and prey concentrations. The distributions of growth rate potentials across these fronts depended on fish physiology, the temperatures encompassed by the front, and prey distributions across the front. When food was distributed uniformly across the front, the growth rates of both species were highest at their optimal temperatures, if sufficient prey was available. Lower temperatures were better for growth if prey availability was low. Increased food availability at the front enhanced fish growth rate potential at the front. Actual growth rates depended on whether the fish behaviorally selected habitats by temperature, food, or growth rate potential. Results illustrate that prey patchiness and the nonlinearities inherent in the relationsip of fish growth to temperature and prey availability must be considered in order to evaluate how a population of fish might respond to a front and how the front might affect fish growth and production.  相似文献   

7.
During the year 1978, juvenile salmonids were collected from coastal streams running through China Poot Marsh and the stomach contents analyzed. Stomach contents of threespine stickleback (Gasterosteus aculeatus) and staghorn sculpin (Leptocottus armatus) from China Poot and of threespine stickleback from Potter Marsh were also analyzed; these two species were generally caught in tidal pools on the marshes. The juvenile coho salmon (Oncorhynchus kisutch) had the most varied diet; 37 different prey items were identified in the stomachs. By comparison, 25, 26, and 33 prey taxa were identified in the stomach contents of Dolly Varden char (Salvelinus malma), threespine stickleback, and staghorn sculpin, respectively. Amphipods were the dominant prey of all fish collected from China Poot Marsh; chironomidae larvae were the most common item in the stomach contents of threespine stickleback from Potter Marsh. The diets of all species changed over the course of the study period; the change was most dramatic for juvenile salmonids and sculpins.  相似文献   

8.
During the transition of juveniles from fresh water to estuarine and coastal environments, the survival of Pacific salmon (Oncorhynchus spp.) can be strongly size selective and cohort abundance is partly determined at this stage. Because quantity and quality of food influence juvenile salmon growth, high rates of prey and energy acquisition during estuarine residence are important for survival. Human activities may have affected the foraging performance of juvenile salmon in estuaries by reducing the area of wetlands and by altering the abundance of salmon. To improve our understanding of the effects of wetland loss and salmon density on juvenile salmon foraging performance and diet composition in estuaries, we assembled Chinook salmon (Oncorhynchus tshawytscha) diet and density data from nine US Pacific Northwest estuaries across a gradient of wetland loss. We evaluated the influence of wetland loss and density on juvenile Chinook salmon instantaneous ration and energy ration, two measures of foraging performance, and whether the effect of density varied among estuaries with different levels of wetland loss. We also assessed the influence of wetland loss and other explanatory variables on salmon diet composition. There was no evidence of a direct effect of wetland loss on juvenile salmon foraging performance, but wetland loss appeared to mediate the effect of density on salmon foraging performance and alter salmon diet composition. Specifically, density had no effect on foraging performance in the estuaries with less than 50 % wetland loss but had a negative effect on foraging performance in the estuaries with greater than 50 % wetland loss. These results suggest that habitat loss may interact with density to constrain the foraging performance of juvenile Chinook salmon, and ultimately their growth, during a life history stage when survival can be positively correlated with growth and size.  相似文献   

9.
Establishing links between migration patterns and trophic dynamics is paramount to ecological studies investigating the functional role habitats provide to resident and transient species. Natural tags in fishes, such as otolith chemistry and tissue stable isotopes, can help reconstruct previous environmental and dietary histories, although these approaches are rarely combined. A novel multiproxy natural tag approach was developed to estimate immigration patterns of juvenile Atlantic croaker Micropogonias undulatus, across contrasting salinity gradients in three subtropical estuaries of the western Gulf of Mexico. Juvenile young-of-year Atlantic croaker were collected along a latitudinal gradient that included positive, neutral, and negative estuaries, based on physicochemical (temperature, salinity, dissolved element) and isotopic (δ15N and δ13C) parameters. Otolith elemental chronologies of Sr/Ca and Ba/Ca were used to classify migratory types within each estuary, while tissue-specific isotope ratios revealed time since recent (liver~weeks) and longer term (muscle~months) diet shifts. Nitrogen isotopes in both liver and muscle tissues were highly correlated, suggesting tissue equilibrium and estuarine residence of at least 3 months, with geographic δ15N gradients reflecting the magnitude of anthropogenic nutrient enrichment within each estuary. Differences in isotopic equilibrium of muscle-liver δ13C values and variation in marginal edge otolith Sr/Ca and Ba/Ca suggested recent shifts in carbon source and habitat utilization, reflecting individualized movement across seascapes and connectivity of habitat mosaics. The multiproxy approach presented here identified diverse migration patterns and linked feeding and movement on regional (inter-estuary), local (intra-estuary), and individual scales to improve our understanding of habitat function across estuarine gradients.  相似文献   

10.
Complex intertidal habitats characteristic of northeastern Pacific coastal estuaries provide critical nursery environments for young-of-the-year Dungeness crab,Cancer magister, yet their role in supporting subsequent year classes remains unclear. SubadultC. magister (40–130 mm; 1+ and >1+ year classes), which reach densities as high as 4,300 crabs ha?1 in subtidal channels during low tides, migrate during flood tides from subtidal refuges into intertidal habitats to forage. As with other brachyuran species that undertake extensive tidally-driven migrations, intertidal foraging may contribute significantly to the energy budget of subadultC. magister. In order to explore the energetic incentive for intertidal migrations by subadult crabs, we developed an ontogenetically-based bioenergetics model for crabs within Willapa Bay, Washington. The model showed that energetic demand varied spatially across the bay, with the highest average energetic demand of a population of subadult crabs (2.13×106 kJ ha?1) occurring in a habitat stratum termed lower side channel (LSC) and characterized by relatively little subtidal area and extensive intertidal flats. Comparison of model results with subtidal prey production revealed that the latter could not satisfy subadultC. magister energetic demands, especially in LSC where modeled crab predation depleted subtidal prey biomass within 17 simulation days. We estimate that 1 ha of subtidal crabs from LSC would minimally require an additional 1.6 ha of intertidal area to satisfy energetic demands without depleting prey biomass. Our model results support the assertion thatC. magister make regular migrations to forage on productive intertidal flats, and suggest that intertidal foraging may contribute significantly to the diet of subadult crabs in coastal estuaries.  相似文献   

11.
The complexity of habitat structure created by aquatic vegetation is an important factor determining the diversity and composition of soft-sediment coastal communities. The introduction of estuarine organisms, such as oysters or other forms of aquaculture, that compete with existing forms of habitat structure, such as seagrass, may affect the availability of important habitat refugia and foraging resources for mobile estuarine fish and decapods. Fish and invertebrate communities were compared between adjacent patches of native seagrass (Zostera marina), nonnative cultured oyster (Crassostrea gigas), and unvegetated mudflat within a northeastern Pacific estuary. The composition of epibenthic meiofauna and small macrofaunal organisms, including known prey of fish and decapods, was significantly related to habitat type. Densities of these epifauna were significantly higher in structured habitat compared to unstructured mudflat. Benthic invertebrate densities were highest in seagrass. Since oyster aquaculture may provide a structural substitute for seagrass being associated with increased density and altered composition of fish and decapod prey resources relative to mudflat, it was hypothesized that this habitat might also alter habitat preferences of foraging fish and decapods. The species composition of fish and decapods was more strongly related to location within the estuary than to habitat, and fish and decapod species composition responded on a larger landscape scale than invertebrate assemblages. Fish and decapod species richness and the size of ecologically and commercially important species, such as Dungeness crab (Cancer magister), English sole (Parophrys vetulus), or lingcod (Ophiodon elongatus), were not significantly related to habitat type.  相似文献   

12.
Estuarine recruitment of fishes is a potential bottleneck in the life cycle of many coastal species. We investigated patterns of size-at-ingress for larval and post-larval California halibut entering the Punta Banda Estuary (PBE), Mexico, using both otolith geochemistry and carbon stable isotope ratios (SIR). Juvenile halibut (n?=?126; 38–163 mm standard length [SL]) were collected from inside PBE and the adjacent exposed coast during the fall of 2003, and otoliths (geochemistry) and muscle tissues (SIR) were analyzed to reconstruct the environmental histories of individuals. Based on geochemical analyses, nearly all fish collected from PBE were characterized by a non-estuarine signature (e.g., low Mn and Ba) in the otolith growth bands deposited when fish were <30 mm SL. Although fish collected from the coast retained that signature throughout their lives, fish collected within PBE showed elevated concentrations of Mn and Ba in the otolith growth bands deposited once halibut were 30–70 mm SL, thereby recording ingress. Carbon SIR of juvenile halibut prey also differed between the estuary and coast. Muscle δ 13C values of halibut captured along the coast were consistent (ca.?15‰), while those captured in the estuary were variable and generally more enriched in 13C (?16‰ to ?11‰). Both natural tagging approaches agreed that most halibut (~75 %) enter PBE long after settlement (>?>?8–12 mm SL), although size-at-ingress estimates were significantly larger (mean difference = 27 mm; p?<?0.001) when derived via carbon SIR than with otolith geochemistry. Potential explanations for the differences in size-at-ingress estimates involve the magnitude of isotopic and trace element gradients at this ocean–estuary boundary, the temporal resolution of environmental tags stored within otoliths and soft tissues, and the size-at-capture or somatic growth rate of juvenile halibut. We conclude by discussing the relative merits of otolith geochemistry and SIR as natural tags, and by considering the implications of secondary dispersal into estuaries by post-larval fish.  相似文献   

13.
Strong contrasts in ambient isotope ratios and in diet suggest stable isotopes in the otoliths of oceanic fish can resolve water masses and geographic areas, promising a powerful multivariate approach for examining population structure and provenance. To test this, whole otoliths were taken from Patagonian toothfish (Dissostichus eleginoides) sampled off the Patagonian Shelf and South Georgia, on either side of a population boundary, and otolith δ18O and δ13C values were measured to see if they could distinguish South American-caught fish from those taken in the Antarctic. Values of otolith δ18O and δ13C predicted capture area with 100% success, validating their use for distinguishing provenance and corroborating the prior evidence of population isolation. Values of δ18O in the otoliths reflected ambient values as well as seawater temperature: low values in Patagonian Shelf fish were consistent with exposure to Antarctic Intermediate Water (AAIW), and high values in South Georgia fish were consistent with exposure to Circumpolar Deep Water (CDW). In contrast, differences in otolith δ13C appeared to reflect diet: relative depletion of otolith δ13C at South Georgia compared to the Patagonian Shelf were most likely linked to differences in sources of metabolic carbon, as well as δ13C in dissolved inorganic carbon (DIC) of seawater. These contrasting properties strongly suggest that stable isotopes can resolve the provenance of toothfish from Antarctic sampling areas that hitherto have been difficult to separate. These results show that, by using the chemistry recorded in otoliths, researchers can exploit biogeochemical variation in fully marine environments to examine the spatial ecology of oceanic fish.  相似文献   

14.
Canary rockfish are one of the commercially important rockfish species along the US Pacific coast. Yet little is known about their life history and stock structure. In this study 120 canary rockfish otoliths were collected from waters off the Washington and Oregon coast and subjected to stable O and C isotope (δ18O and δ13C) analyses. One powder sample was taken from the nucleus of each otolith, and the other from the 5th annual ring. Data from otolith nuclei can provide information on the natal sources and spawning stock separations, while data from age-1 to age-5 may indicate changes in fish habitat. Overall the δ18O values in otoliths of canary rockfish ranged from −0.2 to +1.7‰, whereas δ13C values of the same samples ranged from −5.4 to −1.4‰. The isotopic data and correlation of δ18O versus δ13C did not show clear separation between Washington and Oregon samples, similar to those for a previous study on yelloweye rockfish from the same region. These results suggest that canary rockfish may belong to a single spawning stock or population along the Washington and Oregon coast.  相似文献   

15.
Oysters can create reefs that provide habitat for associated species resulting in elevated resident abundances, lower mortality rates, and increased growth and survivorship compared to other estuarine habitats. However, there is a need to quantify trophic relationships and transfer at created oyster reefs to provide a better understanding of their potential in creating suitable nekton habitat. Stable isotope analyses (δ13C and δ15N) were conducted to examine the organic matter sources and potential energy flow pathways at a created intertidal oyster (Crassostrea ariakensis; hereinafter, oyster) reef and adjacent salt marsh in the Yangtze River estuary, China. The δ13C values of most reef-associated species (22 of 37) were intermediate between those of suspended particle organic matter (POM) and benthic microalgae (BMI), indicating that both POM and BMI are the major organic matter sources at the created oyster reef. The sessile and motile macrofauna colonizing the reef make up the main prey of transient nekton (e.g., spotted sea bass, Asian paddle crab, and green mud crab), thus suggesting that the associated community was most important in supporting higher trophic levels as opposed to the direct dietary subsidy of oysters. The created oyster reef consistently supported higher trophic levels than the adjacent salt marsh habitat due to the dominance of secondary consumers. These results indicate that through the provision of habitat for associated species, created oyster reefs provide suitable habitat and support a higher average trophic level than adjacent salt marsh in the Yangtze River estuary.  相似文献   

16.
We combine information on the influence of temperature on the thermal physiology, growth, and survival of sockeye salmon (Oncorhynchus nerka) with projections of temperature change associated with a doubling of atmospheric CO2 concentrations (over pre-industrial levels) to determine the effect of global warming on two freshwater life history stages (lake residence of juveniles, and spawning by adults) of sockeye salmon from Adams River, British Columbia. Air temperatures are expected to increase by approximately 4.0° and 2.5° C in the summer and winter respectively in the vicinity of the Adams River. Shuswap Lake is used as a rearing area by the juvenile sockeye salmon and global warming will probably change the production characteristics of lake towards a more oligotrophic system. This will cause a reduction in the abundance and availability of food for the juvenile sockeye salmon, and hence a decrease in their freshwater growth, and freshwater and marine survival. However, the increased temperature encountered by adults on the spawning grounds of the Adams River is unlikely to result in higher rates of prespawning mortality. It is anticipated that the net effect of global warming over all freshwater life history stages will be a reduction in the freshwater production of Adams River sockeye salmon.  相似文献   

17.
Male blue crabsCallinectes sapidus Rathbun were allowed to forage on six size classes of the Atlantic rangia clam,Rangia cuneata (Sowerby), in laboratory squaria under conditions of restricted or unrestricted prey size availability. Prey profitability (energy gained divided by handling time) decreased as prey size increased. Crabs preferred smaller clams (1–2 cm long, then 2–3 cm long), as predicted by an energy maximization model. Under conditions of restricted prey sizes (nonreplacement experiments), when the smaller clams were no longer available, crabs tended to choose progressively larger clams. Crabs did not exhibit selective feeding behavior among clams larger than 3 cm long. For the range of crab sizes tested (71–167 mm carapace width), there was no correlation between crab carapace width and the mean clam size that was eaten.  相似文献   

18.
An investigation was conducted in Beijing to identify the groundwater evolution and recharge in the quaternary aquifers. Water samples were collected from precipitation, rivers, wells, and springs for hydrochemical and isotopic measurements. The recharge and the origin of groundwater and its residence time were further studied. The groundwater in the upper aquifer is characterized by Ca-Mg-HCO3 type in the upstream area and Na-HCO3 type in the downstream area of the groundwater flow field. The groundwater in the lower aquifer is mainly characterized by Ca-Mg-HCO3 type in the upstream area and Ca-Na-Mg-HCO3 and Na-Ca-Mg-HCO3 type in the downstream area. The δD and δ18O in precipitation are linearly correlated, which is similar to WMWL. The δD and δ18O values of river, well and spring water are within the same ranges as those found in the alluvial fan zone, and lay slightly above or below LMWL. The δD and δ18O values have a decreasing trend generally following the precipitation → surface water → shallow groundwater → spring water → deep groundwater direction. There is evidence of enrichment of heavy isotopes in groundwater due to evaporation. Tritium values of unconfined groundwater give evidence for ongoing recharge in modern times with mean residence times <50 a. It shows a clear renewal evolution along the groundwater flow paths and represents modern recharge locally from precipitation and surface water to the shallow aquifers (<150 m). In contrast, according to 14C ages in the confined aquifers and residence time of groundwater flow lines, the deep groundwater is approximately or older than 10 ka, and was recharged during a period when the climate was wetter and colder mainly from the piedmont surrounding the plain. The groundwater exploitation is considered to be “mined unsustainably” because more water is withdrawn than it is replenished.  相似文献   

19.
Chesapeake Bay is the largest estuary in the USA and comprises vast areas of polyhaline to freshwater, tidal fish habitat. The Bay experiences large temperature differences between winter and summer, which in combination with the variety of salinities enables approximately 240 species of fish to be temporary inhabitants. This dynamic environment leads to an ever-changing prey field for predators. The goal of this study was to characterize the diet of one of the few resident, euryhaline predators within the tidal rivers in Virginia, Lepisosteus osseus (longnose gar). The top five prey species were Morone americana, Brevoortia tyrannus, Fundulus spp., Micropogonias undulatus, and Leiostomous xanthurus. The diet composition varied with the seasonal fish assemblages, length of L. osseus, water temperature, and salinity. L. osseus consumed a greater amount of marine and anadromous fishes (%W?=?59.4 % and %N?=?56.5 %) than resident fishes (%W?=?40.6 % and %N?=?43.5 %). The seasonal influx of anadromous or coastal spawning fishes appears to be an important prey source for L. osseus and most likely other piscivores in the tributaries of Chesapeake Bay.  相似文献   

20.
Backwater tidal sloughs are commonly found at the landward boundary of estuaries. The Cache Slough complex is a backwater tidal region within the Upper Sacramento–San Joaquin Delta that includes two features that are relevant for resource managers: (1) relatively high abundance of the endangered fish, delta smelt (Hypomesus transpacificus), which prefers turbid water and (2) a recently flooded shallow island, Liberty Island, that is a prototype for habitat restoration. We characterized the turbidity around Liberty Island by measuring suspended-sediment flux at four locations from July 2008 through December 2010. An estuarine turbidity maximum in the backwater Cache Slough complex is created by tidal asymmetry, a limited tidal excursion, and wind-wave resuspension. During the study, there was a net export of sediment, though sediment accumulates within the region from landward tidal transport during the dry season. Sediment is continually resuspended by both wind waves and flood tide currents. The suspended-sediment mass oscillates within the region until winter freshwater flow pulses flush it seaward. The hydrodynamic characteristics within the backwater region such as low freshwater flow during the dry season, flood tide dominance, and a limited tidal excursion favor sediment retention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号