首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Physical and biological properties of the Chesapeake Bay estuarine turbidity maximum (ETM) region may influence retention and survival of anadromous white perch (Morone americana) and striped bass larvae (Morone saxatilis). To evaluate this hypothesis we collected data in five cruises, three during May 1998 and two during May 1999, in upper Chesapeake Bay. Time series of freshwater discharge, water temperature, wind, and water level explain differences in ETM location and properties between cruises and years. During high flows in 1998, a two-layer response to wind forcing shifted the ETM up-estuary, while a high discharge event resulted in a down-estuary shift in the salt front and ETM location. In 1999, extremely low discharge rates shifted the salt front 15 km up-estuary of its position in 1998. During 1999, the ETM was less intense and apparently topographically fixed. Gradients in depth-specific abundance of ichthyoplankton were compared with salinity and TSS concentrations along the channel axis of the upper Bay. During 1998, the high flow year, most striped bass eggs (75%) and most early-stage white perch larvae (80%) were located up-estuary of the salt front. In addition, most striped bass (91%) and white perch (67%) post-yolk-sac larvae were located within 10 km of maximum turbidity readings. Total abundance of white perch larvae was lower in 1999, a low freshwater flow year, than in 1998, a high flow year. In 1999, striped bass larvae were virtually absent. White perch (1977–1999) and striped bass (1968–1999) juvenile abundances were positively correlated with spring Susquehanna River discharge. The ETM regions is an important nursery area for white perch and striped bass larvae and life-history strategies of these species appear to insure transport to and within the ETM. We hypothesize that episodic wind and discharge events may modulate larval survival within years. Between years, differences in freshwater flow may influence striped bass and white perch survival and recruitment by controlling retention of egg and early-stage in the ETM region and by affecting the overlap of temperature/salinity zones preferred by later-stage larvae with elevated productivity in the ETM.  相似文献   

2.
The relationships between egg production (spawning behavior), larval growth and survival, and environmental conditions that larvae encounter were investigated in the Patuxent River tributary of Chesapeake Bay in 1991. Striped, bass (Morone saxatilis) eggs and larvae occurred predominantly above the salt front where conductivity was ≤800 μmhos cm?1. There were three prominent peaks in egg production, each coinciding with increasing temperatures. Estimated growth rates of 6-d, otolith-aged cohorts, which ranged from 0.15 mm d?1 to 0.22 mm d?1 (mean=0.17 mm d?1), were not demonstrated to differ significantly from each other. Observed zooplankton densities and temperature did not significantly affect growth rates. Stage-specific cumulative mortalities of combined cohorts were calculated for eggs (Zstage=0.20=18.1%), yolk-sac larvae (Zstage=5.80=99.7%), and first-feeding larvae (Zstage=2.95=94.8%). The very high mortality of yolk-sac larvae suggests that dynamic during this stage may have had a major impact on subsquent recruitment. Cohort-specific mortality rates of larvae were variable, ranging from Z=0.045 d?1 to 0.719 d?1, and were strongly temperature-dependent. Cohorts that experiented average temperature <15°C or >20°C during the first 25 d after hatching had significantly higher mortality rates than those which experienced intermediate temperatures. Estimated hatch-date frequencies of larvae ≥8 mm SL indicated goo, very good, and very low potential recruitments for cohorst spawned during early-season (April 2–11), mid-season (April 12–24) and late-season (April 25–May 5), respectively. Because seasonal temperature trends and fluctuations are unpredictable, striped bass females cannot select a spawning time that guarantees their offspring will be exposed to optimum temperatures. Consequently, selection may have occured for spawning over a broad range of temperatures and dates, a behavior insuring that some larval cohorts will encounter favorable temperatures.  相似文献   

3.
Prey availability and feeding success affect survival of larval striped bass (Morone saxatilis) in Chesapeake Bay and contribute to the >30-fold interannual recruitment variability. Gut contents and stable isotope analyses (δ15N and δ13C) were conducted on striped bass larvae to evaluate sources of nutrition in 2007 and 2008, years of high and poor recruitment, respectively. Ichthyoplankton and zooplankton were surveyed in the upper Chesapeake Bay, in proximity to the estuarine turbidity maximum and associated salt front. Feeding incidence and numbers of prey per gut were similar in both years and varied in relation to the salt front. The primary prey in each year was the estuarine copepod Eurytemora affinis. Substantial consumption of the freshwater cladoceran Bosmina spp. also occurred, especially up-estuary of the salt front in 2007, demonstrating that secondary prey are important to larval diets in some years. Stable isotope analysis of yolk sac and feeding-stage larvae of striped bass revealed an ontogenetic shift from maternal stable isotope signatures to those indicative of prey source. Feeding-stage larvae from up-estuary locations had the most negative δ13C values, indicating a relatively high terrestrial carbon source in prey. Spatio-temporal variability in δ15N signatures of larvae followed similar trends of δ15N variability in zooplankton prey with the highest δ15N values up-estuary of the salt front and estuarine turbidity maximum. A stable isotope analysis on archived striped bass larvae collected in 1998 and 2003, years of moderate and high recruitment, respectively, expanded the documented range of isotope signatures but did not clearly distinguish effects of nutritional sources on recruitment.  相似文献   

4.
We quantified temporal and spatial variability in diets of 950 juvenile (age-0) striped bass in the Hudson River estuary. We used canonical correspondence analysis to assess the roles of temporal and spatial habitat variability in juvenile diet variation. We found that juvenile striped bass diets in the Hudson River were only modestly comparable to diets in other east coast estuaries. Among-year differences (51.4%) and spatial differences (41.9%) were substantially associated with juvenile striped bass diet. We found ontogeny (2.8%) and within-season variation (9.5%) to only weakly associate with diet variation. Our results indicate that an understanding of the temporal and spatial variation within the Hudson River estuary is vital in understanding variation in feeding by resident juvenile fish.  相似文献   

5.
Estuarine nursery areas are critical for successful recruitment of tautog (Tautoga onitis), yet they have not been studied over most of this species' range. Distribution, abundance and habitat characteristics of young-of-the-year (YOY, age 0) and age 1+juvenile tautog were evaluated during 1988–1992 in the Narragansett Bay estuary, Rhode Island, using a 16-station, beach-seine survey. Estuary-wide abundance was similar among years. Greatest numbers of juveniles were collected at northern Narragansett Bay stations between July and September. Juvenile abundances varied with density of macroalgal and eelgrass cover; abundances ranged from 0.03 fish per 100 m2 to 8.1 fish per 100 m2. Although juveniles use eelgrass, macroalgae is the dominant vegetative cover in Narragansett Bay. Macroalgal habitats play a previously unrealized, important role and contribute to successful recruitment of juvenile tautog in Narragansett Bay. Juvenile abundances did not vary with sediment type or salinity, but were correlated with surface water temperature. Fish collected in June were age 1+ juveniles from the previous year-class (50–167 mm TL) and these declined in number after July or August. The appearance of YOY (25–30 mm TL) in July and August was coincident with the period of their greatest abundances. A precipitous decline in abundance occurred by October because of the individual or combined effects of mortality and movement to alternative habitats. Based on juvenile abundance, a previously unidentified spawning area was noted in Mount Hope Bay, a smaller embayment attached to the northeastern portion of Narragansett Bay. In August 1991, Hurricane Bob disrupted juvenile sise distribution and abundance, resulting in reduced numbers of YOY collected after the storm and few 1+ juveniles in 1992.  相似文献   

6.
Juvenile striped bass,Morone saxatilis, collected in Albemarle Sound, North Carolina, during 1988–1992 were examined for food habits and growth. Ages estimated from otoliths collected in 1990–1992 were used to determine individual spawning dates and growth in total length and weight. The majority of striped bass examined had been spawned in mid-May 1990, mid-May to early June 1991, and June to early July 1992. Mysid shrimp was the dominant prey taxon and was consumed in all size classes examined. Mysid shrimp were consumed at twice the rate of copepods and 10 times more frequently than cladocerans. Fishes were a minor prey taxon. The number of mysid shrimp consumed increased with increasing length of striped bass. A higher percentage of mysid shrimp were consumed in the more saline waters of the central sound than in the less saline western sound. The opposite trend was found for consumed fishes. Increases in total length were linear from July to October, but increases in weight were not. Weight increased less rapidly in younger striped bass and more rapidly in older striped bass than either length or age. Quadratic and logarithmic equations accurately predicted weight from measures of total length but weight could not be predicted from age nor could age be predicted from total length. Estimating growth from total length at time of capture may be comparing fish of different ages. Age estimation from otoliths allowed us to determine that growth rates were similar among years and that differences in observed total length over time were due to different spawning times and not growth rates.  相似文献   

7.
Young-of-the-year alewife, American shad, blueback herring, and striped bass were analyzed for Kepone contamination. Samples were collected from the Potomac, Rappahannock, Pamunkey, Mattaponi, Chickahominy, and James rivers during the period 1977–79. Concentrations of Kepone ≥0.3 ppm occurred in all four species collected in the James River nursery zone between km 65 and 120, and in the lower Chickahominy River. Concentrations of Kepone <0.3, ppm were also present in samples from the Mattaponi and Pamunkey rivers. Four possible explanations, for the occurrence of Kepone in these samples from the upper York River system (Mattaponi and Pamunkey rivers) were, evaluated. Kepone was not detectable in samples from the Rappahannock and Potomac rivers.  相似文献   

8.
We developed categorical time-series regression models to evaluate the roles of lagged stock abundance history, hydrographic variability, and anthropogenic factors in controlling the variation in abundance of striped bass and American shad in the Potomac, Delaware, and Hudson rivers. These models can be used to evaluate directly the role of interactions of variates to produce greater than average recruitment to commercial fish stocks. Whereas hydrographic factors dominate striped bass dynamics in all three estuaries for the period 1929–1976 compared to the pollution variables tested (i.e., sewage loading, dissolved oxygen, and biological oxygen demand), American shad shows strong dependence on the anthropogenic factors compared to hydrographic variates in all three estuaries.  相似文献   

9.
Altered river flow has been suggested as a cause for the low recruitment of striped bass,Morone saxatilis, in the Roanoke River (North Carolina) because of its effect on the proximity of zooplankton and larval striped bass. This results in unsuccessful feeding and subsequent starvation, which was considered to be a major mortality factor. Other mortality factors, such as parasitism and copepod predation on age-0 fish, may also be regulated to some extent by changes in river flow. The relationship of cestode plerocercoids, trematode metacercaria, mussel glochidia, and cyclopoid copepod predators with age-0 fish was evaluated in the lower Roanoke River and western Albemarle Sound from plankton net collections made in 1984 to 1986 and 1988. Plerocercoid prevalence was higher under low river flow conditions than under high flow conditions in darters (Percidae; 16.7% vs. 9.2%), minnows (Cyprinidae; 28.8% vs. 4.7%), andMorone (1.9% vs. 0%). Gut analysis of the age-0 fish revealed that copepods (source of the plerocercoids) were a major diet component ofMorone and darters but not of minnows or herring (Clupeidae). Decreases in river flow were associated with increases in copepod density (Pearson r=?0.62; p=0.0001) and plerocercoid prevalence inMorone (Pearson r=?0.29; p=0.03). The low correlation value forMorone may be quite strong considering the complexity of the variables associated with prevalence. Metacercaria were found only inMorone and minnows, and prevalence and mean intensity were less than that found for plerocercoids. Mussel glochidia prevalence was less than 0.5% for all affected taxa, an order of magnitude less that that found in other studies. The low value may indicate that the mussel population in the Roanoke River is declining. Prevalence of attacks by the predatory copepodMesocyclops edax on age-0 fish was similar to that in Chesapeake Bay, and striped bass was the primary prey. Spatial and temporal proximity of copepods and fish prey may be the key factors in regulating copepod attacks. The low prevalence of parasites and copepod predators seen in this tudy would suggest that mortality from these sources may not be a major factor in age-0 recruitment in this system. Confirmation of these conclusions would require a more controlled experimental approach.  相似文献   

10.
Replicate groups of larvae from each of three female grass shrimp,Palaemonetes pugio, collected at each of six sites within Chesapeake Bay were reared in the laboratory to metamorphosis at 25°C, 25 ppt salinity. They were provided with approximately 300Artemia nauplii/larva/day. Sites were selected to provide both suspected Kepone® contaminated and non-contamined shrimp populations. A sample of eggs, adult females with and without eggs, and newly hatched larvae from each site were analyzed by Virginia Institute of Marine Science for Kepone as were postlarvae obtained through laboratory rearings. Females and eggs from the James River had highest concentrations of Kepone (0.63 and 0.47 ppm, respectively) with samples from the Lafayette River at the mouth of the James River having the second highest levels (0.04 and 0.4 ppm). Concentrations in ovigerous females and eggs in the populations most distant from the James (mouth of Potomac and upper Potomac River) were at or below the limits of detectability (0.001 to 0.015 ppm). In laboratory reared postlarvae from each site, concentrations of Kepone were undetectable. Despite these apparent differences in Kepone concentrations in the various populations we found no significant differences in larval survival, larval duration, or length of post-larvae attributable to site of origin. Highly significant differences in larval duration and size of post-larvae were attributable to parental variation.  相似文献   

11.
The estuarine turbidity maximum (ETM) is an important nursery area for anadromous fish where early-life stages can be retained in high prey concentrations and favorable salinities. Episodic freshwater flow and wind events could influence the transport of striped bass (Morone saxatilis) eggs to the ETM. This hypothesis was evaluated with regression analysis of observational data and with a coupled biological-physical model of a semi-idealized upper Chesapeake Bay driven by observed wind and freshwater flow. A particle-tracking model was constructed within a numerical circulation model (Princeton Ocean Model) to simulate the transport of fish eggs in a 3-dimensional flow field. Particles with the sinking speed of striped bass eggs were released up-estuary of the salt front in both 2-d event-scale and 60-d seasonal-scale scenarios. In event scenarios, egg-like particles with observed specific gravities (densities) of striped bass eggs were transported to the optimum ETM nursery area after 2 d, the striped bass egg-stage duration. Wind events and pulses in river discharge decreased the number of egg-like particles transported to the ETM area by 20.9% and 13.2%, respectively, compared to nonevent conditions. In seasonal scenarios, particle delivery to the ETM depended upon the timing of the release of egg-like particles. The number of particles transported to the ETM area decreased when particles were released before and during wind and river pulse events. Particle delivery to the ETM area was enhanced when the salt front was moving up-estuary after river pulse events and as base river flow receded over the spawning season. Model results suggest that the timing of striped bass spawning in relation to pulsed events may have a negative (before or during events) or positive (after river flow events) effect on egg transport. Spawning after river flow events may promote early-stage survival by taking advantage of improved transport, enhanced turbidity refuge, and elevated prey production that may occur after river pulse events. In multiple regression analysis of observed data, mean spring freshwater flow rates and the number of pulsed freshwater flow events during the striped bass spawning season explained 71% of the variability in striped bass juvenile abundance in upper Chesapeake Bay from 1986 to 2002. Positive parameter estimates for these effects support the hypothesis that pulsed freshwater flow events, coupled with spawning after the events, may enhance striped bass early-stage survival. Results suggest that episodic events may have an important role in controlling fish recruitment.  相似文献   

12.
Oyster reefs provide structural habitat for resident crabs and fishes, most of which have planktonic larvae that are dependent upon transport/retention processes for successful settlement. High rates of freshwater inflow have the potential to disrupt these processes, creating spatial gaps between larval distribution and settlement habitat. To investigate whether inflow can impact subsequent recruitment to oyster reefs, densities of crab larvae and post-settlement juveniles and adults were compared in Estero Bay, Florida, over 22 months (2005–2006). Three species were selected for comparison: Petrolisthes armatus, Eurypanopeus depressus, and Rhithropanopeus harrisii. All are important members of oyster reef communities in Southwest Florida; all exhibit protracted spawning, with larvae present throughout the year; and each is distributed unevenly on reefs in different salinity regimes. Recruitment to oyster reefs was positively correlated with bay-wide larval supply at all five reefs examined. Species-specific larval connectivity to settlement sites was altered by inflow: where connectivity was enhanced by increased inflow, stock–recruitment curves were linear; where connectivity was reduced by high inflows, stock–recruitment curves were asymptotic at higher larval densities. Maximum recruit density varied by an order of magnitude among reefs. Although live oyster density was a good indicator of habitat quality in regard to crab density, it did not account for the high variability in recruit densities. Variation in recruit density at higher levels of larval supply may primarily be caused by inflow-induced variation in larval connectivity, creating an abiotic simulation of what has widely been regarded as density dependence in stock–recruitment curves.  相似文献   

13.
Although density-dependent growth and mortality are understood to play a large role in regulating populations of some young fish, many investigators report associations between striped bass population fluctuations and environmental variation, not density. One explanation is that mortality is primarily determined by size, which responds through growth to environmental conditions. Mathematically relating mortality to inverse size explains several aspects of striped bass biology. Numerical decline of the 1975 Hudson River cohort is well predicted. Simulated year-class strength responds more strongly to changes in growth and length at hatch than to direct mortality of eggs. The effect of changes in length at hatch and growth, rate on subsequent population size decreases as fish grow. Small changes in temperature or food density early in life could cause the reported association of year-class strength and environmental variation. Disappearance of larvae from an early spawning in the Hudson River in 1976 is attributed to decreasing water temperature, which decreased growth rate. Increased mortality of young striped bass may also result from sublethal exposure to toxicants that decrease growth rate and size at hatch. The approach to modeling population dynamics developed here should be valid for other estuarine and marine species.  相似文献   

14.
We evaluated the prevalence of partial migration, coexisting resident and migratory life history types, within six white perch (Morone americana) populations in sub-estuaries (Upper Bay, and Potomac, Choptank, Nanticoke, James, and York Rivers) of the Chesapeake Bay. Otolith stable isotope (δ18O) values were used to resolve fish habitat use along an estuarine salinity gradient and define resident or migratory behavior. The majority of adults within Upper Bay and Potomac River populations were resident, whereas individuals from the Choptank, Nanticoke, James, and York Rivers were predominantly migratory. Beyond population differences, large interannual variability in life history types was observed, likely due to differences in estuarine conditions that influence growth rate of individuals (e.g., temperature, zooplankton density). Because we observed partial migration in all study populations, we suggest that this trait is characteristic of this species, permitting plastic responses to variation in the estuarine environment.  相似文献   

15.
The copepod Eurytemora carolleeae dominates vernal zooplankton biomass in the Chesapeake Bay estuarine turbidity maximum (ETM) region, where it is an important prey item for larval anadromous fish. Although there have been several zooplankton studies in the Chesapeake Bay ETM focused on spring, the importance of winter zooplankton populations for establishing these vernal conditions has not been investigated. We examined the abundance, distribution, and individual sizes of E. carolleeae in winter of 2007 and 2008 and we investigated the potential impact of varying winter conditions and rising winter temperatures on Eurytemora female carbon content, egg production rate, and generation time. We found higher abundances and larger individuals in the colder 2007 than in 2008 under similar freshwater flow conditions. Empirical estimates showed that overall zooplankton productivity was higher in 2007 than in 2008. Published recruitment indices for anadromous fish including white perch and striped bass were higher in 2007 than in 2008 in the study region. Based on these findings, we hypothesize that colder conditions resulted in larger individuals and therefore increased prey biomass available to larval fish. We further hypothesize that rising winter water temperatures will negatively impact trophic transfer of primary production to copepods and ultimately to fish.  相似文献   

16.
Oxygen consumption rates were measured individually for mixed groups of male, female, and immature striped bass,Morone saxatilis, in filtered Patuxent River, Maryland, water and in filtered water containing suspensions of either fuller’s earth or Patuxent River sediment. Oxygen consumption was determined at fixed swimming speeds at two temperatures, 15 and 22.5°C. Oxygen consumption of striped bass in filtered 15°C water increased as swimming speed increased. At 22.5°C, the same range of swimming speeds had no effect on rates of oxygen consumption. Similar data were obtained with fish swimming at the same speeds in water containing 0.79 g per liter fuller’s earth particles (15°C), and among those swimming at 31.7 and 49.0 cm per s in water containing 1.32 g per 1 Patuxent River sediment (22.5°C). Male and female striped bass respiration rates were similar under all test conditions. At 15°C, striped bass oxygen consumption rates during exposure to fuller’s earth while swimming at 8.6 and 31.7 cm per s did not differ from rates of fish swimming at the same speeds in filtered water. At 49.0 cm per s, rates were significantly depressed. Respiration rates of fish exposed to Patuxent River sediment at 22.5°C while swimming at 31.7 and 49.0 cm per s were significantly lower than those of fish in filtered water. Respiratory response of striped bass to suspended particle stress was manifested by depressed oxygen consumption. This is considered a short-term response to an acute stress. This response and the potential for hematological response to chronic suspended particle stress are discussed.  相似文献   

17.
Results of blood and serum analyses on striped bass,Morone saxatilis (Walbaum), adults taken during the 1975 spawning season on the Nanticoke River, Maryland, are reported. The range in values found were 16–70% for hematocrit, 4.0–12.3 g/100 ml for hemoglobin, 2.86–4.49×106/cc for erythrocyte count, 4.5–18.8 mg% for serum calcium, and 6.1–13.0 g/100 ml for plasma protein. These values are compared with others previously reported for adult bass. Serum chloride and serum protein values, ranging from 80 to 186 mEq/l and 3.92 to 8.32 g%, respectively, are reported for the first time for this species. Hemoglobin and hematocrit values for non-spawning, mature striped bass held in ambient sea water for a year fall within the reported ranges. Serum total protein values ranged from 2.36 to 6.14 g% and serum calcium values varied between 8.1 and 14.9 mg% from migratory adult striped bass. The possibility of sexing striped bass using serum calcium levels is discussed. Hematological values reported will help in defining the range encountered in healthy adults of this species.  相似文献   

18.
Plankton samples of the MECCAS- (Microbial Exchanges and Coupling in Coastal Atlantic Systems) Project, taken in February, June, and August 1985 and April 1986, were analyzed to study the spatio-temporal distribution of sand shrimp, Crangon septemspinosa, larvae of Chesapeake Bay. With up to 250.9 larvae m?3, results confirm C. septemspinosa as a very abundant decapod larval form in early spring in the study area. The overwhelming majority (94.5%) of the larvae occurred in April 1986; a second minor peak of larval production was observed in February 1985. The first two larval stages comprised 81.1% of the collected larvae, and complete series of all developmental stages including juveniles were obtained in June 1985 and April 1986. Newly hatched larvae occurred over a wide range of salinities (22.00–33.60‰), while more advanced forms were found mainly at higher salinities (>30‰). High larval abundances (>50 larvae m?3) were obtained between 10°C; another considerably smaller peak in abundance occurred at temperatures ranging from 2.7°C to 4.5°C. Compared to other developmental stages, high abundances of the first two larval stages were collected at the highest chlorophyll concentrations. The significance of phytoplankton as a possible energy source for early stages of planktonic larvae and the role of phytoplankton as a possible chemical stimulus for larval release is discussed in terms of stomach and mouthpart structure and larval sensitivity to their chemical environment. *** DIRECT SUPPORT *** A01BY066 00016  相似文献   

19.
Estuarine fish populations are exposed to a variety of environmental conditions that cause both short-term variability and long-term trends in abundance. We analyzed an extensive data set for striped bass (Morone saxatilis) in the San Francisco Estuary to refine our understanding of how environmental variability influences recruitment. We examined the effects of environmental variability during early life stages on subsequent recruitment (age 3 yr), and the degree to which conditions in early life may have contributed to a long-term decline in abundance of adult striped bass in the San Francisco Estuary. Survival from egg to young-of-the-year varied strongly with freshwater flow; this effect apparently occurred within the first week or two of life, a time period that encompasses transport of eggs and larvae from the rivers to rearing areas and the onset of feeding. The rate of freshwater flow to pumping facilities that export freshwater from the system had small or sporadic effects on survival during the first month or two of life. Although many young striped bass between ages 2 and 8 mo were entrained in export pumping facilities, the resulting high mortality was unrelated to total mortality rates determined from field data on young striped bass. This lack of effect was apparently due to strong density-dependent mortality occurring between ages 1 mo and 3 yr (Kimmerer et al. 2000). The available data do not support previously suggested relationships between recruitment and freshwater flow during early life, or between gross estimates of pesticide input and survival of early life stages. We used a simple life-cycle model to show that various combined factors could have led to a decline in adult abundance, particularly a large and increasing adult mortality, but that events early in life probably did not contribute substantially to the decline. These results demonstrate that several decades of monitoring data from numerous life stages are needed to distinguish among alternative hypotheses about environmental influences on populations of estuarine fish.  相似文献   

20.
Surface water transport and larval dispersal potential within Mission Bay, San Diego, California and along the southern California coast were studied with drift test tubes. Drift tubes, released once during each season at six sites inside Mission Bay, traveled up to 173 km north and 205 km south of Mission Bay at maximum rates of 36 cm per s (north) and 50 cm per s (south). These findings were used to estimate probability of larval transport out of Mission Bay for the intertidal spionid polychaete Pseudopolydora paucibranchiata (Okuda) which occurred in the back of the bay. Outer coast drift tube returns were used to determine potential for gene flow, via larval exchange, between populations in isolated bays along the California coast. Drift tube recoveries and larval abundances in the plankton indicate that few Pseudopolydora larvae leave Mission Bay, but that longshore currents can carry those which do to other suitable bay habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号