首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The optical spectrum of the carbon star IRAS 12311−3509 is dominated by the Merrill–Sanford emission bands of SiC2, by absorption and emission in the Swan system of C2, and by resonance emission lines of neutral metals. The infrared energy distribution is flat from 1 to 60 μm. These observations are interpreted as arising from a star with a cool dusty disc which is edge-on to the observer and obscures direct starlight. The infrared continuum is caused predominantly by absorption of stellar light by dust in the disc and re-emission at longer wavelengths. The optical stellar spectrum is seen by reflection off dusty material which lies out of the plane of the disc, and the molecular and atomic emission arises in the same geometry through resonance fluorescence. The object has similarities to the J-silicate stars, but may have a carbon-rich rather than oxygen-rich disc. A full spectroscopic assignment and discussion of the SiC2 bands and their intensities are given. Modelling of the rotational contours of the     band yields a rotational temperature of 250 K, indicating very cool gas.  相似文献   

3.
4.
The high resolution laboratory spectrum of hot water vapour has been recorded in the 500–13 000 cm−1 wavenumber range and we report on the analysis of the 4750–13 000 cm−1 (0.769–2.1 μm) portion. The emission spectrum was recorded using an oxy-acetylene welding torch and a Fourier transform spectrometer. Line assignments in the laboratory spectrum as well as in an absorption spectrum of a sunspot umbra were made with the help of the BT2 line-list. Our torch spectrum is the first laboratory observation of the 9300 Å'steam bands' seen in M-stars and brown dwarfs.  相似文献   

5.
6.
7.
8.
Using three independent theoretical approaches (CA, HFR + CP, AUTOSTRUCTURE), oscillator strengths have been calculated for a set of Tc  ii transitions of astrophysical interest and the reliability of their absolute scale has been assessed. The examination of the spectra emitted by some Ap stars has allowed the identification of Tc  ii transitions in HD 125248. This Tc  ii detection should however await confirmation from spectral synthesis relying on dedicated model atmospheres. New partition functions are also provided for Tc  i , Tc  ii and Tc  iii for temperatures ranging between 4000 and 13 000 K.  相似文献   

9.
10.
11.
12.
13.
Solid CO2 is observed to be an abundant interstellar ice component towards both quiescent clouds and active star-forming regions. Our recent models of gas–grain chemistry, appropriate for quiescent regions, severely underproduce solid CO2 at the single assumed gas density and temperature. In this paper, we investigate the sensitivity of our model results to changes in these parameters. In addition, we examine how the nature of the grain surface affects the results and also consider the role of the key surface reaction between O and CO. We conclude that the observed high abundance of solid CO2 can be reproduced at reasonable temperatures and densities by models with diffusive surface chemistry, provided that the diffusion of heavy species such as O occurs efficiently.  相似文献   

14.
We have used the Ultra-High-Resolution Facility (UHRF) at the AAT, operating at a resolution of 0.35 km s−1 (FWHM), to observe K  i and C2 absorption lines arising in the circumstellar environment of the post-AGB star HD 56126. We find three narrow circumstellar absorption components in K  i , two of which are also present in C2. We attribute this velocity structure to discrete shells resulting from multiple mass-loss events from the star. The very high spectral resolution has enabled us to resolve the intrinsic linewidths of these narrow lines for the first time, and we obtain velocity dispersions ( b -values) of 0.2–0.3 km s−1 for the K  i components, and 0.54±0.03 km s−1 for the strongest (and best defined) C2 component. These correspond to rigorous kinetic temperature upper limits of 211 K for K  i and 420 K for C2, although the b -value ratio implies that these two species do not co-exist spatially. The observed degree of rotational excitation of C2 implies low kinetic temperatures ( T k≈10 K) and high densities ( n ≈106 to 107 cm−3) within the shell responsible for the main C2 component. Given this low temperature, the line profiles then imply either mildly supersonic turbulence or an unresolved velocity gradient through the shell.  相似文献   

15.
The first star formation in the Universe is expected to take place within small protogalaxies, in which the gas is cooled by molecular hydrogen. However, if massive stars form within these protogalaxies, they may suppress further star formation by photodissociating the H2. We examine the importance of this effect by estimating the time-scale on which significant H2 is destroyed. We show that photodissociation is significant in the least massive protogalaxies, but becomes less so as the protogalactic mass increases. We also examine the effects of photodissociation on dense clumps of gas within the protogalaxy. We find that while collapse will be inhibited in low-density clumps, denser ones may survive to form stars.  相似文献   

16.
We investigate the molecular bands in carbon-rich asymptotic giant branch (AGB) stars in the Large Magellanic Cloud (LMC), using the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope ( SST ) over the 5–38 μm range. All 26 low-resolution spectra show acetylene (C2H2) bands at 7 and 14 μm. The hydrogen cyanide (HCN) bands at these wavelengths are very weak or absent. This is consistent with low nitrogen abundances in the LMC. The observed 14 μm C2H2  band is reasonably reproduced by an excitation temperature of 500 K. There is no clear dilution of the 14 μm C2H2  band by circumstellar dust emission. This 14-μm band originates from molecular gas in the circumstellar envelope in these high mass-loss rate stars, in agreement with previous findings for Galactic stars. The C2H2 column density, derived from the 13.7 μm band, shows a gas mass-loss rate in the range 3 × 10−6 to 5 × 10−5 M yr−1. This is comparable with the total mass-loss rate of these stars estimated from the spectral energy distribution. Additionally, we compare the line strengths of the 13.7 μm C2H2  band of our LMC sample with those of a Galactic sample. Despite the low metallicity of the LMC, there is no clear difference in the C2H2  abundance among LMC and Galactic stars. This reflects the effect of the third dredge-up bringing self-produced carbon to the surface, leading to high carbon-to-oxygen ratio at low metallicity.  相似文献   

17.
18.
19.
The attempt to understand the temperature dependence of the HNC/HCN abundance ratio in interstellar clouds has been long standing and indecisive. In this paper we report quantum chemical and dynamical studies of two neutral–neutral reactions thought to be important in the formation of HNC and HCN, respectively – C+NH2→HNC+H, and N+CH2→HCN+H. We find that although these reactions do lead initially to the products suggested by astronomers, there is so much excess energy available in both reactions that the HCN and HNC products are able to undergo efficient isomerization reactions after production. The isomerization leads to near equal production rates of the two isomers, with HNC slightly favoured if there is sufficient rotational excitation. This result has been incorporated into our latest chemical model network of dense interstellar clouds.  相似文献   

20.
We have calculated synthetic spectra of perpendicular and parallel rovibronic bands of cumulene carbene molecules of the form C n H2. The perpendicular bands are consistent with a regularly spaced group of diffuse interstellar bands (DIBs) near 6850 Å. Parallel bands calculated for these molecular structures are consistent with the intrinsic profile of the associated 6614-Å DIB. Both types of bands are expected for an electronic transition that these species should have at those energies. We could not determine if the molecule was charged or if an atom other than carbon terminated the chain-end. Constraints due to molecular geometry and temperature place the chain length at 7–15 carbons to fit the 6850-Å group and 9–13 carbons to fit the 6614-Å DIB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号