首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The North Atlantic Oscillation (NAO), which is a dominant circulation pattern in Northern Hemisphere winter, is known to affect sea-level variability in the Mediterranean Sea mainly through the hydrostatic response of water masses to pressure anomalies and changes in evaporation/precipitation budgets. In this study the influence of the NAO on sea levels along the Adriatic coasts is re-assessed in the attempt to uncover the potential causes of the observed high sensitivity of the northern basin to NAO fluctuations. The investigation is focused on the role of the NAO as forcing factor of the winds blowing in the area and of the freshwaters input from the Po River, both of which influence the hydrodynamics of the Northern Adriatic. In addition, some insights into the future of Venice are discussed on the basis of the hypothesis that NAO phases are modulated by the varying solar activity through the intensity of the Earth's geomagnetic activity.  相似文献   

2.
This study describes surface cyclone activity associated with the interannual variability in summer precipitation in northern Eurasia and how that activity may be connected to other climate signals. An east–west seesaw oscillation of precipitation across Siberia is the primary mode of interannual variability in the summer hydrological cycle over northern Eurasia. This variation occurs at sub-decadal timescales of about 6–8 years. The spatial characteristics of cyclone frequency and cyclone tracks at the two poles in variability [eastern Siberia (ES)-wet–western Siberia (WS)-dry and WS-wet–ES-dry] were examined, and temporal variability in regional cyclone frequency was compared to basin-scale precipitation variability. The analysis period was from 1973 to 2002, when the precipitation variability signal was predominant.Cyclone behavior suggested that the regions of enhanced (reduced) cyclone activity coincided with regions of increased (decreased) precipitation in each phase of the oscillation. Such behavior reflects the zonal displacement of the track of frequent storm activity that accompanies the changes in precipitation. Comparisons of the temporal characteristics confirmed the importance of regional cyclone frequency on precipitation variability in both eastern and western Siberia. Low-frequency changes in regional cyclone activity may produce the precipitation oscillation. We used various climate signals to explore connections between regional precipitation and cyclone activity in Siberia. Results suggest that the North Atlantic Oscillation (NAO) from the preceding winter is significantly and negatively correlated with summer surface cyclone frequency and precipitation over western Siberia. Enhanced (reduced) summer cyclone activity and precipitation in western Siberia follows low- (high-) winter NAO. However, the physical mechanisms linking summer cyclone activity and precipitation over western Siberia with the preceding climate conditions associated with the winter NAO remain unclear.  相似文献   

3.
Sea level variability during the Quarternary is simulated using a stochastic climate model, and a sensitivity relation for the change in net oceanic evaporation due to a change in sea surface temperature. In the application of this relation, it is assumed that the greater part of the change in net oceanic evaporation causes changes in the land ice storage, rather than being directly returned to the ocean by rivers. The analysis suggests that the observed sea level changes can be interpreted as due to the transfer of heat to the deep ocean from the surface mixed layer, arising from random radiation perturbations of the same variance as would give rise to the interannual variability of the global temperature series. The paradox is that glacial conditions (increase in ice storage) are favoured by positive (temperate) sea surface temperature anomalies, and interglacial conditions (decrease in ice storage) by negative (temperate) sea surface temperature anomalies. The evolution of both these regimes, which are inherently unstable, appears to be controlled by the deep water formation process, while albedo feedback is of minor importance. Fluvial feedback, (in which as the ice storage increases the fluvial inflow decreases), however, is found to be an important process, and a small sensitivity of river inflow to storage is consistent with forcing by random variability or by astronomical forcing. A simple analytical model incorporating the key processes of oceanic evaporation and fluvial feedback is presented. The analysis points to the importance of an accurate river model for climate system modelling.  相似文献   

4.
Sea level observed by altimeter during the 1993–2004 period, thermosteric sea level from 1945 through 2004, and tide gauge records are analyzed to investigate the interannual variability of sea level in the South China Sea (SCS) and its relationship with ENSO (El Niño and Southern Oscillation). Both the interannual variations of the observed sea level and the thermosteric sea level are closely related to ENSO. An ‘enigma’ that the SST and sea level in the SCS have inverse response to ENSO is revealed. It is found that the thermosteric sea level has an excellent correspondence to seawater temperature at 100 m depth, and their variations are unsynchronized to SST. Detailed analysis denotes that the warming of seawater occurs only in the upper 75 m during and after the mature phase of El Niño, while the cooling appears in the layers deeper than 75 m during El Niño years. The volume transports between the SCS and the adjacent oceans and the anomalous Ekman pumping contribute a lot for the sea level fall in the developing stage of El Niño, while the mass exchange, which is dominated by precipitation, plays a more significant role in the following continuous negative sea level anomalies.  相似文献   

5.
周永宏  郑大伟 《天文学报》1997,38(2):209-214
本文采用1964-1993年期间日长变化序列、海平面气压和纬向风速资料,通过小波变换等技术研究分析日长年际变化与ElNino/南方涛动、大气准两年振荡之间的关系.结果表明,日长年际变化与ElNino/南方涛动存在着相似的谱结构,而且ElNino/南方涛动叠加上大气准两年振荡后,与日长变化序列的小波变换时频谱更趋于一致.本文研究结果证实,ElNino/南方涛动和大气准两年振荡的贡献基本能够解释地球自转的年际变化.  相似文献   

6.
The North Atlantic Oscillation (NAO) is the leading mode of atmospheric variability in the North Atlantic region, influencing storm tracks and creating a dipole pattern of precipitation from north to south across Western Europe. This distinct spatial distribution of precipitation provides a framework that can be potentially used to identify and reconstruct patterns of past NAO-forced climate variability. In this study we use tree-ring width series from Western Europe, in conjunction with principal components analysis and advanced spectral methods, to prospect for quasi-periodic climate signals that are forced by the NAO. We identify a robust 25-yr anti-phased synchronization in climate variability between Scandinavia and the Mediterranean during the 17th–20th centuries. The amplitude of the 25-yr beat displays a long-term modulation in northern and southern Europe, with minimum amplitude during the late Maunder Minimum. This amplitude minimum coincides with a maximum in Δ14C, suggesting a potential solar or oceanic influence on the intensity of the 25-yr band of quasi-periodic variability.  相似文献   

7.
Glacier mass changes are considered to represent natural key variables with respect to strategies for early detection of enhanced greenhouse effects on climate. The main problem, however, with interpreting worldwide glacier mass balance evolution concerns the question of representativity. One important key to deal with such uncertainties and to assess the spatio-temporal representativity of the few available measurements is the long-term change in cumulative glacier length. The mean specific mass balance determined from glacier length change data since 1900 shows considerable regional variability but centers around a mean value of about −0.25 m year−1 water equivalent.  相似文献   

8.
Long-term series of almost 14 years of altimetry data (1992–2005) have been analysed along with Sea Surface Temperature (SST) and temperature and salinity profiles to investigate sea level trends over the Mediterranean Sea. Although sea level variations are mainly driven by the steric contribution, the mass-induced component plays some role in modulating its oscillation. A spatially averaged positive trend of 2.1 ± 0.6 mm/year has been observed, but a change in sign in 2001 seems to appear. Steric effects (mainly on thermal origin) account for  55% of sea level trend. Although Mediterranean Sea is a semi-enclosed basin, this value is comparable to that reported for the global ocean. Sea level rise is particularly important in the Levantine basin south of Crete with values up to 10 ± 1 mm/year. Other areas of sea level rise are localised throughout the Levantine basin and in the Adriatic and Alboran Seas, with more moderate values. Sea level drop areas are localised in the Algerian basin, between the Balearic Islands and the African coasts and, particularly, in the Ionian basin. In this area, negative trends as high as − 10 ± 0.8 mm/year are detected mainly due to the mass-induced contribution, which suggests decadal changes of surface circulation. The inferred sea level trends have been correlated with North Atlantic Oscillation (NAO) indices and a low but significant correlation has been detected between sea level in the Levantine and Balearic basins and NAO index.  相似文献   

9.
Based on the astronomical ephemerides DE-406, theoretical calculations have been performed of the interannual variability of the Earth’s insolation related to celestial-mechanical processes for 365 points of a tropical year in the time period from 1900 to 2050. It has been determined that the average amplitude of variations of the interannual insolation is 0.310 W/m2 (0.023% of the solar constant). The calculated variations are characterized by strict periodicity that corresponds with the length of a synodic month. Connection between the extreme values of the calculated insolation variability and syzygies has been defined. The average amplitude of the calculated variability exceeds by 1.7 times (0.01% of the solar constant) the amplitude of the interannual variability in the 11-year variation of the total Earth’s insolation.  相似文献   

10.
Interannual variability of regional climate was investigated on a seasonal basis. Observations and two global climate model (GCM) simulations were intercompared to identify model biases and climate change signals due to the enhanced greenhouse effect. Observed record length varies from 40 to 100 years, while the model output comes from two 100-year equilibrium climate simulations corresponding to atmospheric greenhouse gas concentrations at observed 1990 and projected 2050 levels. The GCM includes an atmosphere based on the NCAR CCM1 with the addition of the radiative effects of CH4, N2O and CFCs, a bulk layer land surface and a mixed-layer ocean with thermodynamic sea-ice and fixed meridional oceanic heat transport.Because comparisons of interannual variability are sensitive to the time period chosen, a climate ensemble technique has been developed. This technique provides comparisons between variance ratios of two time series for all possible contiguous sub-periods of a fixed length. The time autocorrelation is thus preserved within each sub-period. The optimal sub-period length was found to be 30 years, based on which robust statistics of the ensemble were obtained to identify substantial differences in interannual variability that are both physically important and statistically significant.Several aspects of observed interannual variability were reproduced by the GCM. These include: global surface air temperature; Arctic sea-ice extent; and regional variability of surface air temperature, sea level pressure and 500 mb height over about one quarter of the observed data domains. Substantial biases, however, exist over broad regions, where strong seasonality and systematic links between variables were identified. For instance, during summer substantially greater model variability was found for both surface air temperature and sea-level pressure over land areas between 20–50°N, while this tendency was confined to 20–30°N in other seasons. When greenhouse gas concentrations increase, atmospheric moisture variability is substantially larger over areas that experience the greatest surface warming. This corresponds to an intensified hydrologic cycle and, hence, regional increases in precipitation variability. Surface air temperature variability increases where hydrologic processes vary greatly or where mean soil moisture is much reduced. In contrast, temperature variability decreases substantially where sea-ice melts completely. These results indicate that regional changes in interannual variability due to the enhanced greenhouse effect are associated with mechanisms that depend on the variable and season.  相似文献   

11.
The sensitivity of climate phenomena in the low latitudes to enhanced greenhouse conditions is a scientific issue of high relevance to billions of people in the poorest countries of the globe. So far, most studies dealt with individual model results. In the present analysis, we refer to 79 coupled ocean–atmosphere simulations from 12 different climate models under 6 different IPCC scenarios. The basic question is as to what extent various state-of-the-art climate models agree in predicting changes in the main features of El Niño-Southern Oscillation (ENSO) and the monsoon climates in South Asia and West Africa. The individual model runs are compared with observational data in order to judge whether the spatio-temporal characteristics of ENSO are well reproduced. The model experiments can be grouped into multi-model ensembles. Thus, climate change signals in the classical index time series, in the principal components and in the time series of interannual variability can be evaluated against the background of internal variability and model uncertainty.There are large differences between the individual model predictions until the end of the 21st century, especially in terms of monsoon rainfall and the Southern Oscillation index (SOI). The majority of the models tends to project La Niña-like anomalies in the SOI and an intensification of the summer monsoon precipitation in India and West Africa. However, the response barely exceeds the level of natural variability and the systematic intermodel variations are larger than the impact of different IPCC scenarios. Nonetheless, there is one prominent climate change signal, which stands out from model variations and internal noise: All forced model experiments agree in predicting a substantial warming in the eastern tropical Pacific. This oceanic heating does not necessarily lead to a modification of ENSO towards more frequent El Niño and/or La Niña events. It simply represents a change in the background state of ENSO. Indeed, we did not find convincing multi-model evidence for a modification of the wavelet spectra in terms of ENSO or the monsoons. Some models suggest an intensification of the annual cycle but this signal is fairly model-dependent. Thus, large model uncertainty still exists with respect to the future behaviour of climate in the low latitudes. This has to be taken into account when addressing climate change signals in individual model experiments and ensembles.  相似文献   

12.
Hubble Space Telescope Wide Field Planetary Camera 2 imaging data of Jupiter were combined with wind profiles from Voyager and Cassini data to study long-term variability in Jupiter’s winds and cloud brightness. Searches for evidence of wind velocity periodicity yielded a few latitudes with potential variability; the most significant periods were found nearly symmetrically about the equator at 0°, 10-12°N, and 14-18°S planetographic latitude. The low to mid-latitude signals have components consistent with the measured stratospheric temperature Quasi-Quadrennial Oscillation (QQO) period of 4-5 years, while the equatorial signal is approximately seasonal and could be tied to mesoscale wave formation. Robustness tests indicate that a constant or continuously varying periodic signal near 4.5 years would appear with high significance in the data periodograms as long as uncertainties or noise in the data are not of greater magnitude. However, the lack of a consistent signal over many latitudes makes it difficult to interpret as a QQO-related change. In addition, further analyses of calibrated 410-nm and 953-nm brightness scans found few corresponding changes in troposphere haze and cloud structure on QQO timescales. However, stratospheric haze reflectance at 255-nm did appear to vary on seasonal timescales, though the data do not have enough temporal coverage or photometric accuracy to be conclusive. Sufficient temporal coverage and spacing, as well as data quality, are critical to this type of search.  相似文献   

13.
Two Mediterranean sea level distributions spanning the last decades are examined. The first one is a reconstruction of sea level obtained by a reduced-space optimal interpolation applied to tide gauge and altimetry data. The second distribution is obtained from a 3D (baroclinic) regional circulation model. None of the two representations includes the mechanical atmospheric forcing. Results are presented for two different periods: 1993–2000 (for which altimetry data are available) and 1961–2000 (the longest period common to both distributions).The first period is examined as a test period for the model, since the reconstruction is very similar to altimetry observations. The modelled sea level is in fair agreement with the reconstruction in the Western Mediterranean and in the Aegean Sea (except in the early nineties), but in the Ionian Sea the model departs from observations. For the whole period 1961–2000 the main feature is a marked positive trend in the Ionian Sea (up to 1.8 mm yr− 1), observed both in the reconstruction and in the model. Also the distribution of positive trends in the Western Mediterranean (mean value of 1.1 mm yr− 1) and the smaller trends in the Aegean Sea (0.5 mm yr− 1) are similar in the reconstruction and in the model, despite the first implicitly accounts for sea level variations due to remote sources such as ice melting and the second does not. The interannual sea level variability associated with key regional events such as the Eastern Mediterranean Transient is apparently captured by the reconstruction but not by the model (at least in its present configuration). Hence, the reconstruction can be envisaged as a useful tool to validate further long-term numerical simulations in the region.  相似文献   

14.
It can be concluded from the calculations performed of interannual variations of the distance between the Sun and the Earth in the moments of the Earth’s position in the equinoctial and solstitial points that the mean amplitude (approximately the same for all the equinoctial and solstitial points) is determined to be equal to 5700 km (at the maximum values being approximately equal to 15000 km). The values of the solar constant have been calculated on the basis of the data of varying distances, and the values of its interannual variability (for the period from 1900 up to 2050) have determined. Based on the analysis of the series, new periodic characteristics of a long-term variation of the solar constant, related to the celestial-mechanical process, namely, to the perturbed orbital motion of the Earth, are obtained. A three-year cycle is distinguished in the interannual variability of the solar constant, which alternates with a two-year cycle every eight and eleven years. The amplitude of the interannual variability in the series of equinoctial and solstitial points is on average about 0.1 W/m2 (about 0.008% of the solar constant value). This is comparable to the interannual variability of the solar constant in the eleven-year cycle of the solar activity. The series obtained can be represented by alternation of eleven-year and eight-year cycles. The eleven-year cycle is composed of three three-year cycles and one two-year cycle, and the eight-year cycle is composed of two three-year cycles and one two-year cycle.  相似文献   

15.
The precipitation and low-level air temperature in East Asia from a regional climate model (RCM) hindcast for the 22-year period 1979–2000 is evaluated against observational data in preparation for the model use in regional climate change research. Emphasis of the evaluation is placed on the RCM capability in capturing the temporal and spatial variability of precipitation and low-level temperature, especially in conjunction with important climatological events such as, ENSO and East Asian monsoon, at three spatial scales of continental, subcontinental, and river basins.Spatial anomaly correlation time series of geopotential height and temperature show that the simulated upper-air fields remain consistent with the driving large-scale fields, NCEP Reanalysis 2 (R2), throughout the period. The simulated seasonal shifts in 850 hPa winds also agree well with R2 over eastern China and the western Pacific Ocean although the magnitudes of the shifts are overestimated, especially over the eastern slope of the Tibetan Plateau and in northern Manchuria. The simulated precipitation climatology agrees reasonably with that from two analysis datasets based on station- and remote-sensing data. Outstanding characteristics of precipitation including the location of the main rainband, climatological means, and the spatiotemporal variability in association with East Asian Monsoon, ENSO, and extreme events, are well represented in the hindcast. The most notable bias in the simulated precipitation is an overestimation of winter rainfall in southwestern coast of China, near the border with Vietnam. The simulation overestimates the interannual variability of seasonal precipitation especially in southern China, however, the corresponding coefficients of variation agree reasonably with observations except in very dry regions. This suggests that climate sensitivity of scaled precipitation can be useful for projecting climate change signals. The simulated low-level temperature climatology agrees reasonably with observational data as well. The most noticeable biases in the simulated low-level temperature are the warm (cold) biases in southern Siberia (northeastern China) during winter (summer) and the systematic underestimation of low-level temperature in the Tibetan Plateau for all seasons. The daily maximum temperature is underestimated for all seasons by 2−3 K with the largest biases in spring and fall except in the northwestern Mongolia region where it has been overestimated during winter. The daily minimum temperature biases ranges from 0.3 K in spring to 2 K in winter, and are much smaller than those in daily maximum temperature. The evaluation of the multidecadal hindcast shows that model errors mostly confined in the region near the lateral boundaries of the model domain with only minor biases in eastern China. This allows us to be cautiously optimistic about the RCM usefulness for studies of precipitation and low-level temperature changes in East Asia induced by increased emissions of greenhouse gases.  相似文献   

16.
This paper presents a synopsis of recently published studies by the co-authors, which show that several land surface characteristics unique to Northern Eurasia are responsible for facilitating a causal relationship between autumn snow anomalies in this region and subsequent hemispheric winter climate patterns. The large size and extratropical location of the contiguous Eurasian land mass results in broad, continental-scale interannual snow cover extent and depth variations throughout autumn and winter, and corresponding diabatic heating anomalies. These surface anomalies occur in the presence of a large region of stationary wave activity, produced in part by the orographic barriers that separate northern/central Eurasia from southern/eastern Eurasia. This co-location of snow-forced anomalies and ambient wave energy is unique to Northern Eurasia, and initiates a teleconnection pathway involving stationary wave–mean flow interaction throughout the troposphere and stratosphere, ultimately resulting in a modulation of the winter Arctic Oscillation (AO). Complementary new results are also presented which show that partial snow cover extent or snow depth only anomalies in Northern Eurasia are insufficient to initiate the teleconnection pathway and produce a winter AO signal. This synopsis provides a useful interpretation of the earlier studies in the specific context of Northern Eurasia regional climate and environmental change.  相似文献   

17.
Sea level trends and inter-annual variability in the Mediterranean Sea for the period 1960–2000 is explored by comparing observations from tide gauges with sea level hindcasts from a barotropic 2D circulation model, and two full primitive equation 3D ocean circulation models, a regional one and the Mediterranean component of a global one,. In the 2D model, 50% of the sea level variance was found to result from the wind and atmospheric pressure forcing. In the 3D models, 20% of the sea level variance was explained by the steric effects. The sea level residuals at the tide gauges locations, calculated by subtraction of the 2D model output from the sea level observations are significantly correlated (r = 0.4) with the steric signals from the 3D models. After the removal of the atmospheric and the steric contributions the tide-gauge sea level records indicate a period where sea level was stable (1960–1975) and a period where sea level was rising (1975–2000) with rates in the range 1.1–1.8 mm/yr. A part of the residual trend can be explained by the contribution of local land movements (0.3 mm/yr) while its major part indicates a global signal, probably mass addition, appearing after 1975.  相似文献   

18.
Tetsuya Tokano 《Icarus》2009,204(2):619-636
The detection of large hydrocarbon seas/lakes near the poles by the Cassini spacecraft raises the question as to whether and how polar seas affect the meteorology on Titan. The polar meteorology and methane hydrological cycle in the presence of seas are investigated by a three-dimensional atmospheric general circulation model coupled to a one-dimensional sea energy balance model considering the observed sea/lake geography. The sea composition has a large control on the seasonal evolution of seas, temperature and wind system in the polar region, particularly in the north where large seas are located. The surface of ethane-rich seas, which do not evaporate methane, undergo a large seasonal temperature variation and the sea surface is often warmer than the surrounding land surface. Land breeze in summer towards the seas causes a moisture convergence over the seas, which leads to enhanced summer precipitation in the sea area. On the other hand, methane-rich seas evaporate some methane and are therefore colder than the surroundings. This causes a sea breeze across the north pole in summer, which blows away the moisture from the polar region, so precipitation becomes scarce in the north polar region. The breeze can become stronger than the tidal wind. Sea evaporation peaks in winter, when the temperature and average methane mixing ratio in the planetary boundary layer become lowest. The sea level predominantly rises in summer by precipitation and retreats in winter by evaporation. The meteorology in the south polar region is less sensitive to the composition of the lakes because of the paucity and smallness of southern lakes. Lake-effect precipitation can occur either by moisture convergence by the breeze or humidity enhancement over the seas, but is more characteristic of warm seasons than of cold seasons.  相似文献   

19.
The Pliocene epoch represents an important transition from a climate regime with high-frequency, low-amplitude oscillations when the Northern Hemisphere lacked substantial ice sheets, to the typical high-frequency, high-amplitude Middle to Late Pleistocene regime characterized by glacial—interglacial cycles that involve waxing and waning of major Northern Hemisphere ice sheets. Analysis of middle Pliocene (3 Ma) marine and terrestrial records throughout the Northern Hemisphere forms the basis of an integrated synoptic Pliocene paleoclimate reconstruction of the last significantly warmer than present interval in Earth history. This reconstruction, developed primarily from paleontological data, includes middle Pliocene sea level, vegetation, land—ice distribution, sea—ice distribution, and sea-surface temperature (SST), all of which contribute to our conceptual understanding of this climate system. These data indicate middle Pliocene sea level was at least 25 m higher than present, presumably due in large part to a reduction in the size of the East Antarctic Ice Sheet. Sea surface temperatures were essentially equivalent to modern temperatures in tropical regions but were significantly warmer at higher latitudes. Due to increased heat flux to high latitudes, both the Arctic and Antarctic appear to have been seasonally ice free during the middle Pliocene with greatly reduced sea ice extent relative to today during winter. Vegetation changes, while more complex, are generally consistent with marine SST changes and show increased warmth and moisture at higher latitudes during the middle Pliocene.  相似文献   

20.
A modelling study of the effects of neutral air winds on the electron content of the mid-latitude ionosphere and protonosphere in winter has been made. The theoretical models are based on solutions of time dependent momentum and continuity equations for oxygen and hydrogen ions. The computations are compared with results from slant path observations of the ATS-6 radio beacon made at Lancaster (U.K.) and Boulder, Colorado (U.S.A.).It is found that the magnitude of the poleward neutral air wind velocity has a strong effect on the general magnitude of the electron content, but that the daily pattern of electron content variation is relatively insensitive to changes in the magnitude and phase of the wind pattern. These results are in contrast with the behaviour reported previously (Sethia et al., 1983) for summer conditions. However, the night-time electron content is increased by advancing the phase of the neutral air wind and decreased by retarding it. It appears that day-to-day variations in the electron content pattern in winter cannot be explained as effects of changing neutral air winds, which again contrasts with the findings for summer. As in summer, the wind has a major effect on the filling of the protonosphere, but in opposite sense.It is argued that the effect of the neutral air wind on the ionospheric and the protonospheric electron contents depends on the duration of the poleward wind in relation to daylight and on whether or not the wind reverses direction whilst the ionosphere is sunlit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号