首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhifang Xu  Guilin Han   《Applied Geochemistry》2009,24(9):1803-1816
The Xijiang River is the main channel of the Zhujiang (Pearl River), the second largest river in China in terms of water discharge, and flows through one of the largest carbonate provinces in the world. The rare earth element (REE) concentrations of the dissolved load and the suspended particulate matter (SPM) load were measured in the Xijiang River system during the high-flow season. The low dissolved REE concentration in the Xijiang River is attributed to the interaction of high pH and low DOC concentration. The PAAS-normalized REE patterns for the dissolved load show some common features: negative Ce anomaly, progressively heavy REE (HREE) enrichment relative to light REE (LREE). Similar to the world’s major rivers the absolute concentration of the dissolved REE in the Xijiang River are mainly pH controlled. The degree of REE partitioning between the dissolved load and SPM load is also strongly pH dependent. The negative Ce anomaly is progressively developed with increasing pH, being consistent with the oxidation of Ce (III) to Ce (IV) in the alkaline river waters, and the lack of Ce anomalies in several DOC-rich waters is presumably due to both Ce (III) and Ce (IV) being strongly bound by organic matter. The PAAS-normalized REE patterns for the dissolved load and the SPM load in rivers draining the carbonate rock area exhibit middle REE (MREE) enrichment and a distinct maximum at Eu, indicating the preferential dissolution of phosphatic minerals during weathering of host lithologies. Compared to the Xijiang River waters, the MREE enrichment with a maximum at Eu disappeared and light REE were more depleted in the South China Sea (SCS) waters, suggesting that the REE sourced from the Xijiang River must be further fractionated and modified on entering the SCS. The river fluxes of individual dissolved REE introduced by the Xijiang River into the SCS vary from 0.04 to 4.36 × 104 mol a−1.  相似文献   

2.
Data are presented on rare-earth elements (REE) in prefiltered (<450 nm) near-surface and deeper groundwaters and in corresponding particulate matter (>450 nm) from the Osamu Utsumi uranium mine and the Morro do Ferro thorium-REE-deposit. Groundwaters from both sites typically contain between 1–50 μg/l of total REE, but can reach values of up to 160 μg/l in the deepest borehole F4 (U-Mine: 150–415 m). Even higher REE concentrations of up to 29 mg/l were measured in acidic, sulfate-rich near-surface waters of the same site. The chondrite-normalized REE patterns in deeper, more reducing groundwaters and in their corresponding suspended particle fractions are similar to those observed in the bedrock (phonolites), indicating that bedrock leaching and secondary mineral sorption occurred without significant fractionation between these elements, in accordance with the only small variations in the stability constants of the expected REE-sulfate complexes in these waters. Groundwaters from the unsaturated zone of both sites show a very characteristic cerium depletion (less pronounced than that observed in the corresponding suspended particulate fractions), which is most probably related to the oxidation of Ce (III) under the prevailing Eh-conditions of these waters (600 to 800 mV), and to sorption/precipitation reactions of the much less soluble Ce(IV) species. Coarse particulate matter (>450 nm), composed mainly of amorphous ferric hydrous oxides, has a strong capacity for sorption of REE. This is shown by its very high REE concentrations, in some boreholes > 8,000 μg/g (total REE), and by the calculated association ratios Ra (ml/g), which are in the order of 105 to 106. The implications of these findings for the migration behavior of REE in both environments are discussed.  相似文献   

3.
Winter seasonal concentrations of dissolved rare earth elements (REE) of two major river systems (the Wujiang River system and the Yuanjiang River system) in karst-dominated regions in winter were measured by using a method involving solvent extraction and back-extraction and subsequent ICP-MS measurements. The dissolved REE concentrations in the rivers and their tributaries are lower than those in most of the large rivers in the world. High pH and high cation (i.e., Na+ + Ca2+) concentrations of the rivers are the most important factors controlling the concentrations of dissolved REE in the river water. The dissolved load (<0.22 μm) REE distribution patterns of high-pH river waters are very different from those of low-pH river waters. The shale (PAAS)-normalized REE patterns for the dissolved loads are characterized by light REE-enrichment and heavy REE-enrichment. Water in the upper reaches of the Wujiang River generally shows light REE-enriched patterns, while that in the middle and lower reaches generally shows heavy REE-enriched patterns. The Yuanjiang River is heavy REE enriched with respect to the light REE in the same samples. Water of the Wuyanghe River draining dolomite-dominated terrains has the highest heavy REE-enrichment. Most river water samples show the shale-normalized REE patterns with negative Ce and Eu anomalies, especially water from Wuyanghe River. Y/Ho ratios show that the water/particle interaction might have played an important role in fractionation between HREE and LREE.  相似文献   

4.
The Tinto and Odiel rivers drain 100 km from the Rio Tinto sulphide mining district, and join at a 20-km long estuary entering the Atlantic Ocean. A reconnaissance study of heavy metal anomalies in channel sand and overbank mud of the river and estuary by semi-quantitative emission dc-arc spectrographic analysis shows the following upstream to downstream ranges in ppm (μg g?1): As 3,000 to <200, Cd 30 to <0.1, Cu 1,500 to 10, Pb 2,000 to <10, Sb 3000 to <150, and Zn 3,000 to <200. Organic-rich (1.3–2.6% total organic carbon, TOC), sandysilty overbank clay has been analyzed to represent suspended load materials. The high content of heavy metals in the overbank clay throughout the river and estuary systems indicates the importance of suspended sediment transport for dispersing heavy metals from natural erosion and anthropogenic mining activities of the sulfide deposit. The organic-poor (0.21–0.37% TOC) river bed sand has been analyzed to represent bedload transport of naturally-occurring sulfide minerals. The sand has high concentrations of metals upstream but these decrease an order of magnitude in the lower estuary. Although heavy metal contamination of estuary mouth beach sand has been diluted to background levels estuary mud exhibits increased contamination apparently related to finer grain size, higher organic carbon content, precipitation of river-borne dissolved solids, and input of anthropogenic heavy metals from industrial sources. The contaminated estuary mud disperses to the inner shelf mud belt and offshore suspended sediment, which exhibit metal anomalies from natural erosion and mining of upstream Rio Tinto sulphide lode sources (Pb, Cu, Zn) and industrial activities within the estuary (Fe, Cr, Ti). Because heavy metal contamination of Tinto-Odiel river sediment reaches or exceeds the highest levels encountered in other river sediments of Spain and Europe, a detailed analysis of metals in water and suspended sediment throughout the system, and epidemiological analysis of heavy metal effects in humans is appropriate.  相似文献   

5.
With the aim of contributing to the knowledge of the geochemical behaviour and mobility of the rare earth element (REE) in the natural water systems, the ground and surface waters of the Ottana-Orani area (Central Sardinia, Italy) were sampled. The study area consists of albititic bodies included in Hercynian granodiorites. The waters have pH in the range of 6.0-8.6, total dissolved solid (TDS) of between 0.1 and 0.6 g/l, and major cation composition dominated by Ca and Na, whereas predominant anions are Cl and/or HCO3.The pH and the major-element composition of the waters are the factors affecting the concentration of REE in solution. The concentrations of ∑REE+Y in the samples filtered at 0.4 μm vary between 140 and 1600 ng/l, with La of between 14 and 314 ng/l, and Yb of between <6 and 12 ng/l. A negative Ce anomaly, especially marked at high pH, is observed in the groundwaters. The surface waters show lower REE concentrations, which are independent of pH, and negligible Ce anomaly.Speciation calculations, carried out with the EQ3NR computer program, showed that the complexes with the CO32− ligand are the dominant REE species at pH in the range of 6.7-8.6. The REE3+ ions dominate the speciation at pH <6.7 and only in the light REE (LREE).The relative concentrations of REE in water roughly reflect those in the aquifer host rocks. However, when concentrations of REE in water are normalised relative to the parent rocks, a preferential fractionation of heavy REE (HREE) into the water phase can be observed, suggesting the greater mobility and stability of HREE in aqueous solution.  相似文献   

6.
《Applied Geochemistry》1998,13(7):861-884
Concentrations of the rare earth elements (REE), Th and U have been determined in thermal waters emerging from a number of locations in and around the Idaho Batholith. Previous investigators have suggested that the source of heat for the geothermal systems studied is the radioactive decay of K, Th and U which are enriched in the rocks through which the fluids flow. Thus, knowledge of the behavior of REE, Th and U in these systems may contribute to a better understanding of the potential consequences of the interaction of hydrothermal fluids with deeply buried nuclear waste. Such studies may also lead to the possible use of REE as an exploration tool for geothermal resources. The thermal waters investigated may be characterized as near-neutral to slightly alkaline, dilute, NaHCO3-dominated waters with relatively low temperatures of last equilibration with their reservoir rocks (<200°C). REE, Th and U concentrations were measured using Fe(OH)3 coprecipitation, followed by ICP-MS, which yielded detection limits of 0.01–0.003 μg/l for each element, depending on the volume of fluid sample taken. The concentrations of REE, Th and U measured (from <0.1 up to a few μg/l) are 3–5 orders of magnitude less than chondritic, in agreement with concentrations of these elements measured in other similar continental geothermal systems. The REE exhibit light REE-enriched patterns when normalized to chondrite, but when normalized to NASC or local granites, they exhibit flat or slightly heavy REE-enriched trends. These findings indicate that the REE are either taken up in proportion to their relative concentrations in the source rocks, or that the heavy REE are preferentially mobilized. Concentrations of REE and Th are often higher in unfiltered, compared to filtered samples, indicating an important contribution of suspended particulates, whereas U is apparently truly dissolved. In some of the hot springs the REE concentrations exhibit marked temporal variations, which are greater than the variations observed in major element concentrations, alkalinity and temperature. There are also variations in the fluid concentrations of REE, Th and U related to general location within the study area which may be reflective of variations in the concentrations of these elements in the reservoir rocks at depth. Thermal waters in the southern and central parts of the field area all contain ∑REE concentrations exceeding 0.1 μg/l (up to as high as 3 μg/l), Th exceeding 0.2 μg/l and U generally <0.4 μg/l. In contrast, thermal waters from the northern area contain lower ∑REE (<0.6 μg/l) and Th (<0.1 μg/l), but higher U (>3.0 μg/l). Using experimentally measured and theoretically estimated thermodynamic data, the distribution of species for La, Ce and Nd have been calculated and also the solubility of pure, endmember (La, Ce, Nd) phosphate phases of the monazite structure in selected hot spring fluids. These calculations indicate that, at the emergence temperatures, CO2−3 and OH complexes of the REE are the predominant species in the thermal waters, whereas at the deep-aquifer temperatures, OH complexes predominate. In these thermal waters, monazite solubility is strongly prograde with respect to temperature, with solubility often decreasing several orders of magnitude upon cooling from the deep-aquifer to the emergence temperature. At the surface temperature, calculated monazite solubilities are, within the uncertainty of the thermodynamic data, comparable to the REE concentrations measured in the filtered samples, whereas at the deep-aquifer temperature, monazite solubilities are generally several orders of magnitude higher than the REE concentrations measured in the filtered or unfiltered samples. Therefore, a tentative model is suggested in which the thermal fluids become saturated with respect to a monazite-like phase (or perhaps an amorphous or hydrated phosphate) upon ascent and cooling, followed by subsequent precipitation of that phase. The temporal variations in REE content can then be explained as a result of sampling variable mixtures of particulate matter and fluid and/or variable degrees of attainment of equilibrium between fluid and solid phosphate.  相似文献   

7.
Concentrations of total and dissolved elements were determined in 35 water samples collected from rivers in Sardinia, a Mediterranean island in Italy. The overall composition did not change for waters sampled in both winter and summer (i.e., January at high-flow condition and June at low-flow condition), but the salinity and concentrations of the major ions increased in summer. Concentrations of elements such as Li, B, Mn, Rb, Sr, Mo, Ba and U were higher in summer with only small differences between total and dissolved (i.e., in the fraction <0.4 μm) concentrations. The fact that these elements are mostly dissolved during low flow periods appears to be related to the intensity of water–rock interaction processes that are enhanced when the contribution of rainwater to the rivers is low, that is during low-flow conditions. In contrast, the concentrations of Al and Fe were higher in winter during high flow with total concentrations significantly higher than dissolved concentrations, indicating that the total amount depends on the amount of suspended matter. In waters filtered through 0.015 μm pore-size filters, the concentrations of Al and Fe were much lower than in waters filtered through 0.4 μm pore-size filters, indicating that the dissolved fraction comprises very fine particles or colloids. Also, Co, Ni, Cu, Zn, Cd and Pb were generally higher in waters collected during the high-flow condition, with much lower concentrations in 0.015 μm pore-size filtered waters; this suggests aqueous transport via adsorption onto very fine particles. The rare earth elements (REE) and Th dissolved in the river waters display a wide range in concentrations (∑REE: 0.1–23 μg/L; Th: <0.005–0.58 μg/L). Higher REE and Th concentrations occurred at high flow. The positive correlation between ∑REE and Fe suggests that the REE are associated with very fine particles (>0.015 and <0.4 μm); the abundance of these particles in the river controls the partitioning of REE between solution and solid phases.Twenty percent of the water samples had dissolved Pb and total Hg concentrations that exceeded the Italian guidelines for drinking water (>10 μg/L Pb and >1 μg/L Hg). The highest concentrations of these heavy metals were observed at high-flow conditions and they were likely due to the weathering of mine wastes and to uncontrolled urban wastes discharged into the rivers.  相似文献   

8.
The authors determine the concentrations of dissolved (<0.22 μm) rare earth elements (REE) and suspended particulate matter (SPM) of typical karst rivers in Guizhou Province, China during the high-flow period. The concentrations of acid-soluble REE extracted from SPM using diluted hydrochloric acid are also obtained to investigate water/particle interaction in the river water. The dissolved REE contents in the river water are extremely low in the rivers of the study. The dissolved REE distribution patterns normalized by the Post Archean Australia Shale (PAAS) in the karst rivers are not flat, show slight enrichment of heavy REE to light REE, and also have significant negative Ce and Eu anomalies. The acid-soluble REE appears to have similar distribution patterns as characterized by MREE enrichment and slight LREE depletion, with unremarkable Ce and Eu anomalies. The PAAS-normalized REE distribution patterns of SPM are flat with negative Eu anomalies. The contents and distribution patterns of REE in the SPM are closely related to the lithological character of the source rocks. The SPM contains almost all the REE produced in the process of surficial weathering. This demonstrates that particle-hosted REE are the most important form of REE occurrence. REE fractionation, which takes place during weathering and transport, leads to an obvious HREE enrichment in the dissolved loads relative to the SPM. Y/Ho ratio can be used to shed light on REE behaviors during water/particle interaction.  相似文献   

9.
Chemical weathering and resulting water compositions in the upper Ganga river in the Himalayas were studied. For the first time, temporal and spatial sampling for a 1 year period (monthly intervals) was carried out and analyzed for dissolved major elements, trace elements, Rare Earth Elements (REE), and strontium isotopic compositions. Amounts of physical and chemical loads show large seasonal variations and the overall physical load dominates over chemical load by a factor of more than three. The dominant physical weathering is also reflected in high quartz and illite/mica contents in suspended sediments. Large seasonal variations also occur in major elemental concentrations. The water type is categorized as HCO3–SO42––Ca2+ dominant, which constitute >60% of the total water composition. On an average, only about 5–12% of HCO3 is derived from silicate lithology, indicating the predominance of carbonate lithology in water chemistry in the head waters of the Ganga river. More than 80% Na+ and K+ are derived from silicate lithology. The silicate lithology is responsible for the release of low Sr with extremely radiogenic Sr (87Sr/86 Sr>0.75) in Bhagirathi at Devprayag. However, there is evidence for other end-member lithologies for Sr other than carbonate and silicate lithology. Trace elements concentrations do not indicate any pollution, although presence of arsenic could be a cause for concern. High uranium mobilization from silicate rocks is also observed. The REE is much less compared to other major world rivers such as the Amazon, perhaps because in the present study, only samples filtered through <0.2 m were analysed. Negative Eu anomalies in suspended sediments is due to the excess carbonate rock weathering in the source area.  相似文献   

10.
Data are presented on suspended particles and colloids in groundwaters from the Osamu Utsumi mine and the Morro do Ferro analogue study sites. Cross-flow ultrafiltration with membranes of different pore sizes (450 nm to 1.5 nm) was used to prepare colloid concentrates and ultrafiltrates for analyses of major and trace elements and U- and Th-isotopic compositions. Additional characterization of colloidal and particulate material was performed by ESCA, SEM and X-ray diffraction. The results indicate the presence of low concentrations of colloids in these waters (typically < 500 μg/l), composed mainly of iron/organic species. Minor portions of uranium and other trace elements, but significant fractions of the total concentrations of Th and REE in prefiltered waters (< 450 nm) were associated with these colloids.Suspended particles (> 450 nm), also composed mainly of hydrous ferric oxides and humic-like compounds, show the same trend as the colloids with respect to U, Th and REE associations, but elemental concentrations were typically higher by a factor of 1,000 or more. In waters of low pH and with high sulphate content, these associations are considerably lower. Due to the low concentrations of suspended particles in groundwaters from the Osamu Utsumi uranium mine (typically <0.5 mg/l), these particles carry only a minor fraction of U and the REE (<10% of the total concentrations in unfiltered groundwaters), but a significant, usually predominant fraction of Th (30–70%). The suspended particle load in groundwaters from the Morro do Ferro environment is typically higher than in those from the mine by a factor of 5 to 10. This suggests that U, Th and the REE could be transported predominantly by particulate matter. However, these particles and colloids seem to have a low capacity for migration.  相似文献   

11.
Rare earth element concentrations have been measured in organic-rich Luce river water and coastal sea water. Concentrations (e.g. ~350?1850 pmol/kg Nd in the Water of Luce and ~45?350 pmol/ kg Nd in Luce Bay) are related to the presence of particles, with 30–60% of the REE associated with >0.4?0.7 μm particles, and to riverine Fe concentrations. REE fractionation occurs in the river water the submicrometre river water is heavy REE enriched whereas the coarser fraction has a more shale-like REE pattern.Laboratory experiments show that the REE in organic-rich river waters are chiefly associated with Feorganic matter colloids which flocculate during estuarine mixing. Preferential removal of heavy REE (~95%) relative to light REE (~60%) occurs, but no Ce anomaly is developed. In contrast, no REE removal occurs during estuarine mixing with organic-poor river water.  相似文献   

12.
Experiments were conducted to evaluate the impact of organic complexation on the development of Ce anomalies and the lanthanide tetrad effect during the adsorption of rare-earth elements (REE) onto MnO2. Two types of aqueous solutions—NaCl and NaNO3—were tested at pH 5 and 7.5. Time-series experiments indicate that a steady-state is reached within less than 10 h when REE occur as free inorganic species, whereas steady state is not reached before 10 d when REE occur as REE-humate complexes. The distribution coefficients (KdREE) between suspended MnO2 and solution show no or only very weak positive Ce anomaly or lanthanide tetrad effect when REE occur as humate complexes, unlike the results obtained in experiments with REE occurring as free inorganic species. Monitoring of dissolved organic carbon (DOC) concentrations show that log KdREEorganic/KdDOC ratios are close to 1.0, implying that the REE and humate remain bound to each other upon adsorption. Most likely, the Ce anomaly reduction/suppression in the organic experiments arises from a combination of two processes: (i) inability of MnO2 to oxidize Ce(III) because of shielding of MnO2 surfaces by humate molecules and (ii) Ce(IV) cannot be preferentially removed from solution due to quantitative complexation of the REE by organic matter. We suggest that the lack of lanthanide tetrad effect arises because the adsorption of REE-humate complexes onto MnO2 occurs dominantly via the humate side of the complexes (anionic adsorption), thereby preventing expression of the differences in Racah parameters for 4f electron repulsion between REE and the oxide surface. The results presented here explain why, despite the development of strongly oxidizing conditions and the presence of MnO2 in the aquifer, no (or insignificant) negative Ce anomalies are observed in organic-rich waters. The present study demonstrates experimentally that the Ce anomaly cannot be used as a reliable proxy of redox conditions in organic-rich waters or in precipitates formed at equilibrium with organic-rich waters.  相似文献   

13.
《Applied Geochemistry》2000,15(6):695-723
Ground and surface waters collected from two undisturbed Zn–Pb massive sulphide deposits (the Halfmile Lake and Restigouche deposits) and active mines in the Bathurst Mining Camp (BMC), NB, Canada were analysed for the rare earth elements (REE). REE contents are highly variable in waters of the BMC, with higher contents typical of waters with higher Fe and lower pH. There are significant differences between ground- and surface waters and between groundwaters from different deposits. The REE contents of surface waters are broadly similar within and between deposit areas, although there are spatial variations reflecting differences in pH and redox conditions. Surface waters are characterised by strong negative Ce anomalies ([Ce/Ce*]NASC as low as 0.08), produced by oxidation of Ce3+ to Ce4+ and preferential removal of Ce4+ from solution upon leaving the shallow groundwater environment. Groundwaters and seeps typically lack significant Ce anomalies reflecting generally more reducing conditions in the subsurface environment and indicating that Ce oxidation is a rapid process in the surface waters. Deeper groundwaters at the Halfmile Lake deposit are characterised by REE patterns that are similar to the host lithologies, whereas most groundwaters at the Restigouche deposit have LREE-depleted patterns compared to NASC. Halfmile Lake deposit groundwaters have generally lower pH values, whereas Restigouche deposit groundwaters show greater heavy REE-complexation by carbonate ions. Shallow waters at the Halfmile Lake and Stratmat Main Zone deposits have unusual patterns which reflect either the adsorption of light REE onto colloids and fracture-zone minerals and/or precipitation of REE–phosphate minerals. Middle REE-enrichment is typical for ground- and surface waters and is highest for neutral pH waters. The labile portion of stream sediments are generally more middle REE-enriched than total sediment and surface waters indicating that the REE are removed from solution by adsorption to Fe- and Mn-oxyhydroxides in the order middle REE≥light REE>heavy REE.  相似文献   

14.
Precisional analyses of the abundances of La, Ce, and major elements in thermal waters and rocks of the Uzon-Geyzernaya volcanotectonic depression, supplemented by published data on a number of modern high-temperature hydrothermal systems of Kamchatka and two other areas of the world, allowed defining genetically important patterns of rare-earth elements (REE) distribution. The La and Ce abundances positively correlate with silica contents both in fresh igneous rocks of the study areas and in the products formed by hydrothermal processes.All studied hydrothermal clays are enriched in La and Ce. The general enrichment trend is similar to the pattern of positive correlation between the La and Ce abundances. Geothermal waters display a strong relationship between REE enrichment and pH. Enhanced REE enrichment trend is observed in thermal waters with abundant SO42 ? and K. The REE versus Cl and B diagrams show two individual fields reflecting the level of acidity-alkalinity of thermal waters. These data demonstrate that La and Ce concentrations in the products of modern hydrothermal systems (in fluids and secondary mineral phases) are governed by wallrock composition, anionic water composition, and pH/Eh-dependent adsorption processes.  相似文献   

15.
河流稀土元素地球化学研究进展   总被引:30,自引:1,他引:30  
河流系统中,稀土元素(REE)受区域地质背景、风化作用、溶液化学以及水与颗粒物相互作用等因素的影响发生分异。河流悬浮物显示轻稀土(LREE)适度富集;河水显示重稀土(HREE)富集,或在HREE富集的基础上又有适度的中稀土(MREE)富集;与其它微量元素相比,REE在河水与颗粒物之间有较小的分配系数(K≈10-6);河流沉积物多显示平坦的REE配分模式。  相似文献   

16.
Rare earth elements (REE) concentrations of Archean and Proterozoic chemical sediments are commonly used as proxies to study secular trends in the geochemistry of Precambrian seawater. In addition, similarities in the REE signatures of Archean chemical sediments and modern seawater have led researchers to argue that some Archean rocks originated as biochemical precipitates (i.e., microbial carbonates) in shallow marine (e.g., peritidal) environments. However, terrestrial waters, including river water and groundwater, also commonly exhibit REE fractionation patterns that resemble modern seawater. Here, we present the seawater-like REE data for groundwaters from central México as additional evidence that these patterns are not unique to the marine environment. The shale-normalized REE patterns of the groundwaters are compared to those of modern seawater (open ocean and nearshore), Holocene reefal microbial carbonates and corals, and Archean chemical sediments using statistical means (i.e., ANOVA and Wilcoxon analyses) in order to quantify the similarities and/or differences in the REE patterns. Shale-normalized (SN) Ce anomalies and measures of REE fractionation [i.e., (La/Yb)SN, (Pr/Yb)SN, (Nd/Yb)SN, and (Gd/Yb)SN] of the central México groundwater samples are statistically indistinguishable from those of modern seawater. Moreover, except for differences in the Ce anomalies, which are lacking in Archean chemical sediments, the REE patterns of the central México groundwaters are also statistically similar to REE patterns of Archean chemical sediments, especially those of the 3.45 Ga Strelley Pool Chert. Consequently, we suggest that without additional information, it may be premature to unequivocally conclude that Archean chemical sediments record REE signatures of an Archean ocean.  相似文献   

17.
Humic Ion-Binding Model V, which focuses on metal complexation with humic and fulvic acids, was modified to assess the role of dissolved natural organic matter in the speciation of rare earth elements (REEs) in natural terrestrial waters. Intrinsic equilibrium constants for cation-proton exchange with humic substances (i.e., pKMHA for type A sites, consisting mainly of carboxylic acids), required by the model for each REE, were initially estimated using linear free-energy relationships between the first hydrolysis constants and stability constants for REE metal complexation with lactic and acetic acid. pKMHA values were further refined by comparison of calculated Model V “fits” to published data sets describing complexation of Eu, Tb, and Dy with humic substances. A subroutine that allows for the simultaneous evaluation of REE complexation with inorganic ligands (e.g., Cl, F, OH, SO42−, CO32−, PO43−), incorporating recently determined stability constants for REE complexes with these ligands, was also linked to Model V. Humic Ion-Binding Model V’s ability to predict REE speciation with natural organic matter in natural waters was evaluated by comparing model results to “speciation” data determined previously with ultrafiltration techniques (i.e., organic acid-rich waters of the Nsimi-Zoetele catchment, Cameroon; dilute, circumneutral-pH waters of the Tamagawa River, Japan, and the Kalix River, northern Sweden). The model predictions compare well with the ultrafiltration studies, especially for the heavy REEs in circumneutral-pH river waters. Subsequent application of the model to world average river water predicts that organic matter complexes are the dominant form of dissolved REEs in bulk river waters draining the continents. Holding major solute, minor solute, and REE concentrations of world average river water constant while varying pH, the model suggests that organic matter complexes would dominate La, Eu, and Lu speciation within the pH ranges of 5.4 to 7.9, 4.8 to 7.3, and 4.9 to 6.9, respectively. For acidic waters, the model predicts that the free metal ion (Ln3+) and sulfate complexes (LnSO4+) dominate, whereas in alkaline waters, carbonate complexes (LnCO3+ + Ln[CO3]2) are predicted to out-compete humic substances for dissolved REEs. Application of the modified Model V to a “model” groundwater suggests that natural organic matter complexes of REEs are insignificant. However, groundwaters with higher dissolved organic carbon concentrations than the “model” groundwater (i.e., >0.7 mg/L) would exhibit greater fractions of each REE complexed with organic matter. Sensitively analysis indicates that increasing ionic strength can weaken humate-REE interactions, and increasing the concentration of competitive cations such as Fe(III) and Al can lead to a decrease in the amount of REEs bound to dissolved organic matter.  相似文献   

18.
This work, which was done within the Swedish nuclear waste management program, was carried out in order to increase the understanding of the mobility and fate of rare earth elements (REEs) in natural boreal waters in granitoidic terrain. Two areas were studied, Forsmark and Simpevarp, one of which will be selected as a site for spent nuclear fuel. The highest REE concentrations were found in the overburden groundwaters, in Simpevarp in particular (median ∑REE 52 μg/L), but also in Forsmark (median ∑REE 6.7 μg/L). The fractionation patterns in these waters were characterised by light REE (LREE) enrichment and negative Ce and Eu anomalies. In contrast, the surface waters had relatively low REE concentrations. They were characterised either by an increase in relative concentrations throughout the lanthanide series (Forsmark which has a carbonate-rich till) or flat patterns (Simpevarp with carbonate-poor till), and had negative Ce and Eu anomalies. In the bedrock groundwaters, the concentrations and fractionation patterns of REEs were entirely different from those in the overburden groundwaters. The median La concentrations were low (just above 0.1 μg/L in both areas), only in a few samples were the concentrations of several REEs (and in a couple of rare cases all REEs) above the detection limit, and there was an increase in the relative concentrations throughout the lanthanide series. In contrast to these large spatial variations, the temporal trends were characterised by small (or non existent) variations in REE-fractionation patterns but rather large variations in concentrations. The Visual MINTEQ speciation calculations predicted that all REEs in all waters were closely associated with dissolved organic matter, and not with carbonate. In the hydrochemical data for the overburden groundwater in particular, there was however a strong indication of association with inorganic colloids, which were not included in the speciation model. Overall the results showed that within a typical boreal granitoidic setting, overburden groundwaters are enriched in REEs, organic complexes are much more important than carbonate complexes, there is little evidence of significant mixing of REEs between different water types (surface, overburden, bedrock) and spatial variations are more extensive than temporal ones.  相似文献   

19.
Rare earth elements (REE) analysis was carried out in two coral species Diploria strigosa and Copophyllia natans from Isla de Sacrificios Reef (ISR) (19° 10′ 51.6″N; 96° 5′ 45.6″W) Veracruz, Mexico. Both corals were cut at the top, middle and bottom parts to detect possible differences in REE concentrations related to water masses and sediment inputs. An enrichment in heavy rare elements (HREE) compared to light rare elements (LREE) at the top of Diploria strigosa and Copophyllia natans, evidenced by (La/Lu)SN <0.5, (La/Yb)SN <0.5 and (Pr/Yb)SN <0.5 is observed. This HREE enrichment in both corals is probably due to the high pH and CO32? content in the seawater. A negative Ce anomaly is observed throughout Diploria strigosa and Copophyllia natans, probably linked with well oxygenated, highly oxidative modern shallow waters, and high nutrients related to suspended matter. Positive Eu anomalies in both corals are due to development of the ISR in shallow waters. Ce/Ce* vs. (Pr/Yb)SN diagram suggests the input of terrigenous material, as all samples have Ce/Ce* and Pr/Yb values outside the seawater range signature. However, the Nd/Yb and (Nd/Yb)SN suggest that the top of Diploria strigosa and Copophyllia natans are associated with coastal waters at about 50 m depth.  相似文献   

20.
The aquatic chemistry of rare earth elements in rivers and estuaries   总被引:17,自引:0,他引:17  
Laboratory experiments were carried out to determine how pH, colloids and salinity control the fractionation of rare earth elements (REEs) in river and estuarine waters. By using natural waters as the reaction media (river water from the Connecticut, Hudson and Mississippi Rivers) geochemical reactions can be studied in isolation from the large temporal and spatial variability inherent in river and estuarine chemistry. Experiments, field studies and chemical models form a consistent picture whereby REE fractionation is controlled by surface/solution reactions. The concentration and fractionation of REEs dissolved in river waters are highly pH dependent. Higher pH results in lower concentrations and more fractionated composition relative to the crustal abundance. With increasing pH the order of REE adsorption onto river particle surfaces is LREEs > MREEs > HREEs. With decreasing pH, REEs are released from surfaces in the same order. Within the dissolved (<0.22 µm) pool of river waters, Fe-organic colloids are major carriers of REEs. Filtration through filters and ultrafilters with progressively finer pore sizes results in filtrates which are lower in absolute concentrations and more fractionated. The order of fractionation with respect to shale, HREEs > MREEs > LREEs, is most pronounced in the solution pool, defined here as <5K and <50K ultrafiltrates. Colloidal particles have shale-like REE compositions and are highly LREE enriched relative to the REE composition of the dissolved and solution pools. The addition of sea water to river water causes the coagulation of colloidal REEs within the dissolved pool. Fractionation accompanies coagulation with the order of sea water-induced removal being LREEs > MREEs > HREEs. While the large scale removal of dissolved river REEs in estuaries is well established, the release of dissolved REEs off river particles is a less studied process. Laboratory experiments show that there is both release and fractionation of REEs when river particles are leached with seawater. The order of sea water-induced release of dissolved REE(III) (LREEs > MREEs > HREEs) from Connecticut River particles is the same as that associated with lowering the pH and the same as that associated with colloidal particles. River waters, stripped of their colloidal particles by coagulation in estuaries, have highly evolved REE composition. That is, the solution pool of REEs in river waters are strongly HREE-enriched and are fractionated to the same extent as that of Atlantic surface seawater. This strengthens the conclusions of previous studies that the evolved REE composition of sea water is coupled to chemical weathering on the continents and reactions in estuaries. Moreover, the release of dissolved Nd from river particles to sea water may help to reconcile the incompatibility between the long oceanic residence times of Nd (7100 yr) and the inter-ocean variations of the Nd isotopic composition of sea water. Using new data on dissolved and particle phases of the Amazon and Mississippi Rivers, a comparison of field and laboratory experiments highlights key features of REE fractionation in major river systems. The dissolved pool of both rivers is highly fractionated (HREE enriched) with respect to the REE composition of their suspended particles. In addition, the dissolved pool of the Mississippi River has a large negative Ce-anomaly suggesting in-situ oxidation of Ce(III). One intriguing feature is the well developed maximum in the middle REE sector of the shale normalized patterns for the dissolved pool of Amazon River water. This feature might reflect competition between surface adsorption and solution complexation with carbonate and phosphate anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号