首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studiesshowthattheglobalsurfacetemperaturewilriseatarateof0.3℃per10ainthenextseveraldecades(Houghtonetal.,1990,1992;Shi,1995;...  相似文献   

2.
Landsat images, real-time kinematic GPS measurements, and topographic maps were used to determine changes in ice elevation, volume, and areal extent of the Laohugou No. 12 glacier (Qilian Mountains, China) between 1957 and 2007. The glacier experienced significant thinning and areal shrinkage in the ablation zone, but slight thickening in part of the accumulation zone. Elevation decreased by 18.6±5.4 m between 1957 and 2007 in the regions covered by the GPS measurements. The total volume loss for the entire glacier was estimated to be 0.218 km3 using a third-order polynomial fit method. The area diminished by 0.28 km2 between 1957 and 1994, 0.26 km2 between 1994 and 2000, and 0.28 km2 between 2000 and 2007, suggesting that the rate of loss in glacial coverage has increased since the mid-1990s. Significant increases in annual mean air temperature may have contributed to shrinkage and thinning of the glacier.  相似文献   

3.
Glaciers in the Tomor region of Tianshan Mountains preserve vital water resources.However,these glaciers suffer from strong mass losses in the recent years because of global warming.From 2008 to 2009,a large-scale scientific expedition has been carried out in this region.As an individual reference glacier,the tongue area of Qingbingtan glacier No.72 was measured by the high precise Real Time Kinematic-Global Position System (RTK-GPS).In this paper,changes of the tongue area of Qingbingtan glacier No.72 has been studied based on topographic map,remote sensing image and the survey during 2008-2009 field campaign.Results indicated that the ice surface-elevation of the tongue area changed-0.22±0.14 m a-1 from 1964 to 2008.The estimated loss in ice volume was 0.014±0.009 km3,which represented a ~20 % decrease from the 1964 volume and was equivalent to average annual mass balance of-0.20±0.12 m water equivalent for the tongue area during 1964-2008.Terminus retreated by 1852 m,approximately 41 m a-1,with the area reduction of 1.533 km2 (0.034 km2 a-1) from 1964 to 2009.Furthermore,the annual velocity reached to ~70 m a-1.Comparing with the other monitored glaciers in the eastern Tianshan Mountains,Qingbingtan glacier No.72 experienced more intensive in shrinkage,which resulted from the combined effects of climate change and glacier dynamic,providing evidence of the response to climatic warming.  相似文献   

4.
Glaciers were solid reservoirs and important water resources in western China, but they were retreating significantly in context of global warming. Laohugou Glacier No. 12 was the largest valley glacier in Qilian Mountains. In this study, realtime kinematic (RTK) data, topographic map and WorldView-2 satellite imagery were used to measure changes in terminus, extent and volume of Laohugou Glacier No. 12. Results showed that Laohugou Glacier No. 12 was shrinking significantly since 1957. From 1960 to 2015, the terminus reduction of Laohugou Glacier No. 12 was 402.96 m (3.99%) in total, and glacier length decreased to 9.7 km from 10.1 km. Reduction of glacier area and volume were the most obvious. From 1957 to 2015, glacier area and volume decreased by 1.54 km2 (7.03%) and 0.1816 km3, respectively. Reduction trend of terminus and area was slowing in 1950 -1980s, even stable for a period in the mid-1980s, and then accelerated. Ice core analysis result and nearly meteorological station data shown an increasing trend of temperature in 1957 -2015, it was a main reason of continuous retreating of Laohugou Glacier No.12.  相似文献   

5.
6.
Ice and snow chemistry of alpine glaciers is crucial for the research of regional atmospheric environment change. Fresh snow samples were weekly collected from Urumqi Glacier No.1 in the Tianshan Mountains, Xin- jiang, China, and the chemical characteristics and seasonal variations of major ions, mineral dust, δ18O and trace metals were measured. Results show that the concentrations of major ions in the snow are Ca2+ SO42- NH4+ NO3- Cl- Na+ Mg2+ K+, in which Ca2+ is the dominant cation, and SO42-is the dominant anion. All major ions have close positive correlations with each other except NO3-. δ18O shows positive correlation with air temperature change during the study period. Mineral dust particle and major ionic concentrations in fresh snow have obvious seasonal change, with high concentration in spring but low concentration in summer and autumn, which indicates that the chemical mass input from Asian dust activity to snow is very significant. Temporal changes of trace metals in fresh snow, e.g., Cd, Pb, Zn, Al, Fe, have shown that human-induced pollution of central Asian region also has large contribution to the snow chemistry on alpine glaciers of the Tianshan Mountains.  相似文献   

7.
The Qilian Mountains(QM) possess a delicate vegetation ecosystem, amplifying the evident response of vegetation phenology to climate change. The relationship between changes in vegetation growth and climate remains complex. To this end, we used MODIS NDVI data to extract the phenological parameters of the vegetation including meadow(MDW), grassland(GSD), and alpine vegetation(ALV) in the QM from 2002 to 2021. Then, we employed path analysis to reveal the direct and indirect impacts of seasonal c...  相似文献   

8.
This paper presents a dynamic glacier model that simulates the processes in response of Glacier No. 1 in headwaters of the ürümqi River to various future climatic scenarios. The results indicate that the Glacier No. 1 will continue retreating if current climatic conditions prevail, until it reaches an equilibrium state of 1600 m in length after 700 to 800 years. If air temperature raise 1°C, the glacier would become a hanging glacier with a length of 300 m after 700 to 800 years. Due to its retreat, cooling function of the glacier would be weakened, resulting in the air temperature in glaciated area higher than that in ice-free areas. The results also indicate that the current glacier melt runoff is in higher value period in comparison with the runoff in the equilibrium state under the current climatic condition. If the air temperature continues increasing, however, the runoff would still increase to a new peak and then decrease rapidly. The project supported by the National Natural Science Foundation of China.  相似文献   

9.
In glacierized catchments, glacier runoff typically shows a strong diurnal cycle in the ablation season (June-September). To elucidate the effect of these processes on the chemical weathering, fresh snowfall and water samples were collected and studied from the supraglacial river, proglacial river, and gauging site in Qiyi glacierized catchment Qilian Mountains, Northwestern China, in the summer of 2011. The pH and electronic conductivity (EC) were determined in the field, and the concentrations of major ions (Na+, K+, Mg2+, Ca2+, Cl-, SO42-, NO3-) were measured. The results indicated that EC linearly increased with increasing distance from the glacial snout, and the concentrations of major ions increased with increasing water-rock interaction time. Along the flow path of the glacier runoff, Na+ and Cl- are more concentrated than other ions in the supraglacial river while Mg2+ and SO42- are more concentrated than other ions at the gauging site. The discharge, pH, EC, and the concentrations of major ions exhibited significant diurnal variation along the flow path. On the other hand, the amplitude of variation diminished from upstream to downstream along the flow path. The chemical weathering rate (Na++K++Mg2++Ca2+) was determined to be 10.9 t/yr/km2. Moreover, further research indicated that the sampling method influenced the assessment of chemical weathering rates. When the sample was collected randomly in one diurnal cycle of hydrography, the estimated ionic flux could deviate -47%~73% based on estimated hourly data. In contrast, if three samples were collected at peak, base flow and the discharge decreasing rate starts to slow down in one diurnal cycle of hydrography, respectively, the deviation would be less than 15%. The smaller the diurnal variation of discharge, the smaller deviation calculated.  相似文献   

10.
DuringthethreeMt.QomolangmaExpeditionsof1959-1960,1966-1968and1975,ChinesescientistshadobtainedmanydataofglaciersinthedistrictofMt.Qomolangma(Wangetal.,1980;Xieetal.,1975;Zhangetal.,1975).InMay1997,Prof.QinDaheandProf.PaulA.Mayewskiorganizedanothe…  相似文献   

11.
Because of the large number and remoteness, satellite data, including microwave data and optical imagery, have commonly been used in alpine glaciers surveys. Using remote sensing and Geographical Information System (GIS) techniques, the paper presents the results of a multitemporal satellite glacier extent mapping and glacier changes by glacier sizes in the Mt. Qomolangma region at the northern slopes of the middle Himalayas over the Tibetan Plateau. Glaciers in this region have both retreated and advanced in the past 35 years, with retreat dominating. The glacier retreat area was 3.23 km2 (or o.75 km^2 yr^-1 during 1974 and 1976, 8.68 km^2 (or 0.36 km^2 yr^-1 during 1976 and 1992, 1.44 km^2 (or 0.12 km^2 yr^-1) during 1992-2ooo. 1.14 km^2 (or 0.22 km^2 yr^-1 during 2000-2003, and 0.52 km^2 (or 0.07 km^2 yr^-1 during 2003-2008, respectively. While supra-glacier lakes on the debris-terminus of the Rongbuk Glacier were enlarged dramatically at the same time, from 0.05 km^2 in 1974 increased to 0.71 km^2 in 2008, which was more than 13 times larger in the last 35 years. In addition, glacier changes also showed spatial differences, for example, glacier retreat rate was the fastest at glacier termini between 5400 and 5700 m a.s.l than at other elevations. The result also shows that glaciers in the middle Himalayas retreat almost at a same pace with those in the western Himalayas.  相似文献   

12.
In China, flash floods are one of the main natural disasters causing loss of life and damage to infrastructure. The threat of flash floods is exacerbated with climate change and increased human activities, such that the number of disasters has shown a clear upward trend in recent years.However, due to the scarcity of instrumental data or overly short timeseries, we are still lacking critical data to understand spatio-temporal patterns and driving factors of extreme flash floods. This missing kno...  相似文献   

13.
Energy balance at the glacier surface is important for understanding the impacts of climate change on glaciers. Here, we analyzed the characteristics of the glacier surface energy fluxes along with their contributions to glacier melt on Bayi Ice Cap in Qilian Mountains by using a point-scale energy balance model. The half-hourly meteorological data from an automatic weather station (AWS) located on the glacier was used to drive the energy balance model. The model simulated results could accurately represent the mass-balance observations from the stake near the weather station during summer 2016. Our results showed the net radiation (86%) played an important role in the surface energy balance, and the contribution of the turbulent heat fluxes (14%) to the energy budget was relatively less important. A distinct behavior of energy balance, as compared to other continental glaciers in China (e.g., two adjacent glaciers Laohugou No. 12 Glacier and Qiyi Glacier), is the fact that a sustained period of positive turbulent latent flux exists on Bayi Ice Cap during August, causing faster melt rate in the month of August. Our study also presented the effect of frequent summer snowfall in slowing down surface melt by changing the surface albedo during the beginning of the melting season.  相似文献   

14.
This paper applied an integrated method combining grey relation analysis, wavelet analysis and statistical analysis to study climate change and its effects on runoff of the Kaidu River at multi-time scales. Maj or findings are as follows: 1) Climatic factors were ranked in the order of importance to annual runoff as average annual temperature, average temperature in autumn, average temperature in winter, annual precipitation, precipitation in flood season, av- erage temperature in summer, and average temperature in spring. The average annual temperature and annual precipitation were selected as the two representative factors that impact the annual runoff. 2) From the 32-year time scale, the annual runoff and the average annual temperature presented a significantly rising trend, whereas the annual precipitation showed little increase over the period of 1957-2002. By changing the time scale from 32-year to 4-year, we observed nonlinear trends with increasingly obvious oscillations for annual runoff, average annual temperature, and annual precipitation. 3) The changes of the runoff and the regional climate are closely related, indicating that the runoff change is the result of the regional climate changes. With time scales ranging from 32-year, 16-year, 8-year and to 4-year, there are highly significant linear correlations between the annual runoff and the average annual temperature and the annual precipitation.  相似文献   

15.
Daily meteorological data are the critical inputs for distributed hydrological and ecological models. This study modified mountain microclimate simulation model (MTCLIM) with the data from 19 weather stations, and compared and validated two methods (the MTCLIM and the modified MTCLIM) in the Qilian Mountains of Northwest China to estimate daily temperature (i.e., maximum temperature, minimum temperature) and precipitation at six weather stations from i January 2000 to 31December 2009. The algorithm of temperature in modified MTCLIM was improved by constructing the daily linear regression relationship between temperature and elevation, aspect and location information. There are two steps to modify the MTCLIM to predict daily precipitation: firstly, the linear regression relationship was built between annual average precipitation and elevation, location, and vegetation index; secondly, the distance weight for measuring the contribution of each weather station on target point was improved by average wind direction during the rainy season. Several regression analysis and goodness-of-fit indices (i.e., Pearson's correlation coefficient, coefficient of determination, mean absolute error, root-mean-square error and modelingefficiency) were used to validate these estimated values. The result showed that the modified MTCLIM had a better performance than the MTCLIM. Therefore, the modified MTCLIM was used to map daily meteorological data in the study area from 2000 to 2009. These results were validated using weather stations with short time data and the predicted accuracy was acceptable. The meteorological data mapped could become inputs for distributed hydrological and ecological models applied in the Qilian Mountains.  相似文献   

16.
Although many studies have investigated slope gradient uncertainty derived from Digital Elevation Models(DEMs), the research concerning slope length uncertainty is far from mature. This discrepancy affects the availability and accuracy of soil erosion as well as hydrological modeling. This study investigates the formation and distribution of existing errors and uncertainties in slope length derivation based on 5-m resolution DEMs of the Loess Plateau in the middle of China. The slope length accuracy in three different landform areas is examined to analyse algorithm effects. The experiments indicate that the accuracy of the flat test area is lower than that of the rougher areas. The value from the specific contributing area(SCA) method is greater than the cumulative slope length(CSL), and the differences between these two methods arise from the shape of the upslope area. The variation of mean slope length derived from various DEM resolutions and landforms. The slope length accuracy decreases with increasing grid size and terrain complexity at the six test sites. A regression model is built to express the relationship of mean slope length with DEM resolution less than 85 m and terrain complexity represented by gully density. The results support the understanding of the slope length accuracy, thereby aiding in the effective evaluation of the modeling effect of surface process.  相似文献   

17.
Taking the nonlinear nature of runoff system into account,and combining auto-regression method and multi-regression method,a Nonlinear Mixed Regression Model (NMR) was established to analyze the impact of temperature and precipitation changes on annual river runoff process. The model was calibrated and verified by using BP neural network with observed meteorological and runoff data from Daiying Hydrological Station in the Chaohe River of Hebei Province in 1956–2000. Compared with auto-regression model,linear multi-regression model and linear mixed regression model,NMR can improve forecasting precision remarkably. Therefore,the simulation of climate change scenarios was carried out by NMR. The results show that the nonlinear mixed regression model can simulate annual river runoff well.  相似文献   

18.
秦巴山地是中国的南北分界线,也是黄河和长江的分水岭,其山体效应的定量化影响秦巴山地山体垂直带的分布格局、非地带性因素的作用强度和机理,以及中国暖温带和北亚热带的具体位置的确定。山体基面高度是影响山体效应最重要和关键的地形因子,其定量化和数字化提取是秦巴山地山体效应定量化研究的重要内容。本研究针对秦巴山地山体效应的定量化研究,使用30 m分辨率的STRM-1数据,分别基于山体特征线和流域分区2种方法提取了秦巴山地的山体基面高度分区,并根据地形起伏度和坡度,确定基面范围,计算了山体基面高度值。结果表明:① 基于山体特征线的方法将秦巴山地分为93个基面高度分区,基于流域分区的方法将秦巴山地分为209个基面高度分区,根据2种分区结果提取的基面高度值相差不大且均体现了秦巴山地地势的特点;② 秦巴山地山体基面高度从东向西呈阶梯状递增的趋势;③ 从南到北,秦巴山地的东段和中段均呈先增高后降低的趋势,即从大巴山向北至汉江谷地降低,再向北至秦岭升高;④ 山地的不同侧翼的山体基面高度不同,秦岭南坡的基面高度(1000~1809 m)明显高于北坡(850~1300 m)。秦巴山地山体基面高度与其植被带分布上限联系密切,实现山体基面高度的数字化提取,为山体效应的定量化研究提供了重要的技术支持。  相似文献   

19.
Hydrochemical characteristics and solute dynamics of bulk meltwater draining from Urumqi Glacier No.1 were investigated in years 2006 and 2007.The glacial meltwater was slightly alkaline with the mean pH of 7.64 and 7.61 in 2006 and 2007,respectively.In the meltwater,the dominant anions were the bicarbonate and sulphate,and the dominant cation was calcium.The concentration of major cations were varied as c(Ca2+) > c(Mg2+) > c(K+) > c(Na+),while the order for the cations was c(HCO3) > c(SO42) > c(NO3) > c(Cl).The total dissolved solids(TDS) in meltwater had inverse relationships with the diurnal discharge.The major ion composition of meltwater was mainly controlled by rock weathering as inferred from the Gibbs model.Furthermore,the ion ratios and Piper diagram indicated that the main processes controlling the meltwater chemistry were carbonate weathering,pyrite weathering and feldspar weathering in rocks,and Ca2+ and HCO3 were the dominant ions during the carbonate weathering process.Solute flux calculation at Glacier No.1 station suggested that chemical denudation rates were 11.46 and 13.90 ton.km 2.yr 1 in 2006 and 2007,respectively.  相似文献   

20.
Snow chemistry on the glaciers of alpine regions is a good indicator of atmospheric environmental change.We examine snow chemistry in three snowpits at different altitudes on the Haxilegen Glacier No.51,in the Kuitun River source,Tian Shan,China,during July-September 2004 to 2007.We use correlation analysis,factor analysis and sea-salt tracing methods to examine the characteristics and sources of major ions and mineral dust particles in the snow.Results show that mineral dust particles and major ions in the snow pits vary seasonally.During the Asian dust period in springtime,the concentration of mineral dust particles and major ions deposited in snow is high,while the concentration is relatively low during the non-dust period of summer and autumn.This may be caused by dust storm activity in central Asia.The order of major ionic concentrations in the snow packs was determined to be Ca2+ > SO42-> NH4+ > NO3-> Cl-> Na+ > Mg2+ > K+.Ca2+ was the dominant cation;SO42- was the dominant anion.We find,with the exception of NO3-,that the variabilities of ionic concentrations are highly correlated.Results show that the glacier region was significantly affected by dust activity and anthropogenic source.The major ions,especially Na+,originate from dust sources of central Asia and from the Ocean,transported by the westerly winds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号