首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Earth》2002,57(1-2):75-124
The present paper reviews Tertiary volcanic and sedimentary formations in the Inter-Andean region of southern Ecuador (between 2°S and 4°20′S) in order to develop a geodynamic model of the region. The formations occur in the southern shallow prolongation of the Inter-Andean Valley between the Cordillera Real to the east, and the Cordillera Occidental and Amotape–Tahuı́n Provinces to the west. One hundred fifty zircon fission-track analyses has established a detailed chronostratigraphy for the sedimentary and volcanic formations and several small intrusions. The Paleogene to early Miocene formations are dominated by intermediate and acidic volcanic and pyroclastic rocks. In addition, relics of Eocene continental sedimentary series have been identified.The Neogene sedimentary series lie unconformably on deformed and eroded metamorphic, sedimentary and volcanic formations. They were deposited in two stages, which are separated by a major unconformity dated at ≈10–9 Ma. (1) During the middle and early late Miocene (≈15–10 Ma) marginal marine deltaic, lagoonal, lacustrine and fluvial environments prevailed, which we group under the heading “Pacific Coastal sequences”. They presumably covered a greater surface area in southern Ecuador than their present occurrence in small topographic depressions. We suggest that they were deposited in the shallow marine Cuenca and Loja Embayments. Deposition in a marginal marine environment is also supported by the occurrence of brackish water ostracods and other fauna. (2) Above the regional (angular) unconformity, the coastal facies are overlain by late Miocene (≈9–5 Ma) continental alluvial fan and fluvial facies which are in turn covered by mainly airborne volcanic material. They represent the “Intermontane sequences” of the basins of Cuenca, Girón–Santa Isabel, Nabón, Loja and Malacatos–Vilcabamba.Sedimentologic and stratigraphic results are used to discuss the tectonic setting of Neogene sedimentation in the forearc and arc domain of the Ecuadorian subduction system. During the Pacific Coastal stage, northward displacement of the coastal forearc block along the Calacali–Pallatanga fault zone has driven crustal collapse in the Inter-Andean region. As a result, extensional subsidence drove the eastward ingression of shallow seas into the Cuenca and Loja Embayments from the Manabı́ and Progreso Basins to the west. Tectonic inversion in the forearc area during the early late Miocene (at ≈9.5 Ma) reflects the initiation of W–E oriented compression and uplift in the Inter-Andean region and the establishment of smaller Intermontane stage basins, which host the continental sequences. Coeval topographic rise of the Cordillera Occidental is indicated by the onset of clastic input from the west. The small Intermontane Basin of Nabón (≈8.5–7.9 Ma) formed during the period of maximum compression.The present data prove that the Neogene Andean forearc and arc area in southern Ecuador was a site of important but variable tectonic activity, which was presumably driven by the collision and coupling of the Carnegie Ridge with the Ecuadorian margin since ≈15–9 Ma.  相似文献   

2.
To reveal the causes of differences in the hydrocarbon accumulation in continental marginal basins in the centralsouthern South China Sea,we used gravity-magnetic,seismic,drilling,and outcrop data to investigate the tectonic histories of the basins and explore how these tectonic events controlled the hydrocarbon accumulation conditions in these basins.During the subduction of the Cenozoic proto-South China Sea and the expansion of the new South China Sea,the continental margin basins in the central-southern South China Sea could be classified as one of three types of epicontinental basins:southern extensional-foreland basins,western extensional-strike slip basins,and central extensional-drift basins.Because these basins have different tectonic and sedimentary histories,they also differ in their accumulated hydrocarbon resources.During the Cenozoic,the basin groups in the southern South China Sea generally progressed through three stages:faulting and subsidence from the late Eocene to the early Miocene,inversion and uplift in the middle Miocene,and subsidence since the late Miocene.Hydrocarbon source rocks with marine-continental transitional facies dominated byⅡ-Ⅲkerogen largely developed in extremely thick Miocene sedimentary series with the filling characteristics being mainly deep-water deposits in the early stage and shallow water deposits in the late stage.With well-developed sandstone and carbonate reservoirs,this stratum has a strong hydrocarbon generation potential.During the Cenozoic,the basin groups in the western South China Sea also progressed through the three developmental stages discussed previously.Hydrocarbon source rocks with lacustrine facies,marine-continental transitional facies,and terrigenous marine facies dominated byⅡ2-Ⅲkerogen largely developed in the relatively thick stratum with the filling characteristics being mainly lacustrine deposits in the early stage and marine deposits in the late stage.As a reservoir comprised of self-generated and self-stored sandstone,this unit also has a high hydrocarbon generation potential.Throughout those same three developmental stages,the basin groups in the central South China Sea generated hydrocarbon source rocks with terrigenous marine facies dominated byⅢkerogen that have developed in a stratum with medium thicknesses with the filling characteristics being mainly sandstone in the early stage and carbonate in the late stage.This reservoir,which is dominated by lower-generation and upper-storage carbonate rocks,also has a high hydrocarbon generation potential.  相似文献   

3.
Isla San Pedro Nolasco (ISPN) is a structural high bounded by inactive dextral oblique-slip faults in the east-central part of the Gulf of California rift zone and is composed of intrusive rocks not exposed on other Gulf of California islands. Here we present the reconnaissance results from geological mapping, as well as first geochemical and geochronological data for the ISPN intrusive complex. The intrusive rocks compose a sheet-like body of intermediate and felsic composition intruded by an intermediate and acidic dike swarm. All intrusive rocks (host and dikes) range in age from ca. 9 Ma to 10 Ma (40Ar/39Ar) and show a hydrous ferromagnesian mineral association (amphibole and biotite) with a calc-alkalic and transitional affinity. This hydrated mineralogical association has not been recognized in the coeval rocks along the onshore western margin of the North American plate (coastal Sonora). However, such hydrous mineralogical association is found in the coeval rift transitional volcanic rocks from the Baja California Microplate at Santa Rosalía and Bahía de Los Ángeles – Bahía de Las Ánimas. The ISPN continental block, at least 40 km long, has been pulled apart by transtensional faulting of the late Miocene Gulf of California shear zone before the westward migration of the North America-Pacific plate boundary at ca. 3–2 Ma. Eventually, ISPN became isolated as an island during the late Miocene flooding of the Gulf of California seaway.  相似文献   

4.

Geological mapping of fault systems on the Gazelle Peninsula, eastern New Britain arc, combined with a reinterpretation of existing sea floor data indicate that faults previously thought to be a possible location of the boundary between the North and South Bismarck Plates, do not appear to be directly related to the plate boundary spreading centres and transform faults in the 3.5 Ma Manus Basin. Structure on the Gazelle Peninsula is dominated by the Mediva Fault (new name) and the Wide Bay Fault System, both north‐northwest trending, deep‐seated features. The Mediva Fault, an element of the Baining Mountain Horst and Graben Zone, is an extensional structure which has focused Middle Miocene intrusive activity, controlled Mio‐Pliocene sedimentation in the central Gazelle Peninsula, and displaced Quaternary volcanic deposits. The Wide Bay Fault System has been active since at least the Late Oligocene. One hundred kilometres of sinistral strike‐slip motion is likely on this fault since at least the late Middle Miocene, moving the Gazelle Peninsula in a north‐northwest direction with respect to the remainder of New Britain. The nature and timing of movements along these two major structures indicate that some other major tectonic process has operated (and presently continues) in this region of the New Britain arc to create these structures.  相似文献   

5.
We use structural and seismostratigraphic interpretation of multichannel seismic reflection data to understand the structure and kinematic history of the central Gulf of California. Our analysis reveals that oblique strain in the central Gulf formed two tectono–sedimentary domains during distinct deformation stages. The eastern domain, offshore Sonora, is bounded by the East and West Pedro Nolasco faults that may constitute the southernmost segments of the Tiburón Fault System. Within this domain, the dip-slip Yaqui Fault controlled deposition of 3.9 km of sediments in the half-graben Yaqui Basin. The western domain, offshore Baja California, is bounded by the Guaymas Transform Fault, which controlled the accumulation of 1.45 km of sediments within a half-graben that formed the early Guaymas Basin. The tectono–sedimentary activity offshore Sonoran likely ranges from Late Miocene–Pliocene to Late Pliocene time, while activity in the Guaymas Basin commenced in Late Pliocene time. Extinction of the main faults offshore Sonora was nearly coeval to the initiation of the Guaymas Transform Fault. Our results suggest that oblique strain has been accommodated by strain partition since the onset of rifting in the central Gulf. The Guaymas Basin is now a nascent spreading center, but prior to this, it evolved as a half-graben controlled by the Guaymas Transform Fault; such drastic transition is not constrained, but likely occurred during the Pleistocene time and must be localized < 30 km north of the axial troughs. The faults within the central Gulf transpose the Miocene N–S oriented grabens of Basin and Range style preserved onshore in the conjugate rifted margins.  相似文献   

6.
RESEARCH PROGRESS OF ALTYN FAULT IN WESTERN CHINA   总被引:2,自引:0,他引:2  
RESEARCH PROGRESS OF ALTYN FAULT IN WESTERN CHINATheresearchisfundedbyNSFC (No.4 9772 157)  相似文献   

7.
最新地质调查与研究表明,赣东北江南次级盆地新元古界南华系是一套沉积超覆于基底变质岩系之上的裂谷系“楔状地层”。桃源组陆相火山岩及火山碎屑岩是该“楔状地层”的最低层位,代表了南华裂谷系江南次级盆地新一轮沉积旋回的起点。取自桃源组流纹岩样品的结晶锆石SHRIMP U Pb同位素年龄为803±9 Ma,这一年龄值基本上代表了该次级盆地新元古代盆地的开启时间。沉积相研究表明,江南次级盆地沉积作用主要由四个沉积相组合构成:(1)陆相火山岩组合;(2)冲洪积相及河湖相组合;(3)滨浅海-次深海相组合;(4)冰碛岩相组合。与扬子东南缘其它次级盆地相比,江南次级盆地沉积作用以陆相为主,但两者的剖面沉积演化序列非常相似,都经历了一个由陆相至海相的沉积超覆演化过程,代表了新元古代南华期华南古大陆解体之后扬子地块东南缘典型的裂谷盆地演化特征。  相似文献   

8.
通过对南海西北次海盆新获得的地震资料进行综合解释和层序地层分析,揭示了海盆中的沉积对构造演化阶段的响应。始新世-早渐新世陆缘裂陷期,盆地以对称裂谷形式,发育地堑裂谷层序,沉积以近物源为特征,相变大,发育了冲积扇-扇三角洲-湖相沉积,沉积体系的配置受同沉积断裂控制明显,快速沉降和充分的物源供给决定了沉积体系的构成特征。晚渐新世海底扩张期,岩石圈破裂,陆缘进一步拉开并开始海底扩张,出现海相沉积,来自陆坡的陆架边缘三角洲越过陆坡进入海盆,在海盆内沉积了一套向海盆中部逐渐减薄的楔状地层,并伴有大量的火山碎屑沉积物。早-中新世以来热沉降期,随着构造沉降增大,相对海平面总体不断上升,进入深水盆地,形成陆架陆坡体系,大量的碎屑物质以重力流、深水底流等深水作用方式进入海盆;沉降晚期陆架-陆坡物源供应减弱,琼东南中央峡谷成为其主要的物质供应来源通道,在此期间二次海平面下降、回升的综合作用下,海盆内发育了多期以下切水道为特征的低水位域沉积体系。  相似文献   

9.
Phosphates are present on the surface of the Mio-Pliocene unconformity in the Otway, Port Phillip and Gippsland basins of south-east Australia. The phosphates occur as lenticular lag deposits and include reworked phosphatic intraclasts, vertebrate bone and teeth. In situ phosphatized burrows are also found in sediments of Late Miocene and Early Pliocene age. The phosphatic intraclasts on the unconformity are interpreted as reworked phosphatized burrows derived from latest Miocene sediments (6 to 5 Ma). The phosphatization of these intraclasts is temporally related to the unconformity. The timing of phosphogenesis coincides with a period of transgression across the south-east Australian margin following Late Miocene uplift. This transgression is responsible for initial marine erosion of the underlying Miocene sequence, creation of a period of very slow sedimentation that was favourable to phosphate formation and subsequent deposition of the latest Miocene through to Pliocene sediments. The continental weathering of the uplifted highlands adjacent to the sedimentary basins, global phosphorus enrichment in the Late Miocene oceans and localized upwelling may all have contributed to phosphatization in south-eastern Australia.  相似文献   

10.
We demonstrate that Pliocene to Early Quaternary sedimentary formations in Baja California Sur (Mexico) were deposited syn-tectonically over a major detachment associated with the exhumation of Mesozoic crust. The detachment dips to the ENE and is associated with E–W stretching. This large extensional structure strikes almost parallel to the general trend of the Gulf of California and extension is oblique to the East-Pacific seafloor-spreading direction. Crustal-scale stretching in this area was still active after the beginning of seafloor spreading c.  3.6 Ma ago. The detachment is capped by Late Pleistocene–Holocene alluvial sediments the deposition of which seems to be partly syn-tectonic and controlled by minor stretching subparallel to the present-day North American–Pacific kinematic vector. We discuss the implications of our observations on strain partitioning during opening of the California Gulf as well as on the structure of the Gulf of California margin.  相似文献   

11.
莺歌海盆地构造演化与强烈沉降机制的分析和模拟   总被引:9,自引:3,他引:9  
孙珍  钟志洪  周蒂 《地球科学》2007,32(3):347-356
莺歌海盆地新生代发生了快速沉降, 盆内充填了最厚达17 km的沉积, 根据模拟实验, 印支地块或之上刚性地块的存在对莺歌海盆地的强烈沉降具有重要的贡献, 可能是造成莺歌海盆地裂陷期强烈沉降的重要原因之一.结合地质分析和物理模拟实验, 莺歌海盆地的演化大致可以分为以下4个主要阶段: 早期(42 Ma以前) 主要受到南海北部陆缘(主要是北部湾盆地) 裂解造成的右旋转换伸展作用的影响, 但影响范围较小, 主要为莺歌海盆地西北部和东部边界.42~21 Ma期间, 主要受控于印支地块左行走滑和顺时针旋转作用的影响, 莺歌海盆地在此期间发育了主体裂陷体系, 东侧受到右旋转换伸展应力场的叠加影响而导致沉降加强; 21~10.4 Ma期间, 受印支地块逐渐减弱直至停止的左行走滑作用的影响, 盆地西北部在21~15.5 Ma期间发生局部反转褶皱, 但盆地整体进入以热沉降为主的时期; 10.4 Ma以后, 盆地受华南地块沿红河断裂右旋走滑作用和5 Ma以后新一期热事件的影响.   相似文献   

12.
The structural-stratigraphic history of the North Luconia Province, Sarawak deepwater area, is related to the tectonic history of the South China Sea. The Sarawak Basin initiated as a foreland basin as a result of the collision of the Luconia continental block with Sarawak (Sarawak Orogeny). The foreland basin was later overridden by and buried under the prograding Oligocene-Recent shelf-slope system. The basin had evolved through a deep foreland basin (‘flysch’) phase during late Eocene–Oligocene times, followed by post-Oligocene (‘molasse’) phase of shallow marine shelf progradation to present day.Seismic interpretation reveals a regional Early Miocene Unconformity (EMU) separating pre-Oligocene to Miocene rifted basement from overlying undeformed Upper Miocene–Pliocene bathyal sediments. Seismic, well data and subsidence analysis indicate that the EMU was caused by relative uplift and predominantly submarine erosion between ∼19 and 17 Ma ago. The subsidence history suggests a rift-like subsidence pattern, probably with a foreland basin overprint during the last 10 Ma. Modelling results indicate that the EMU represents a major hiatus in the sedimentation history, with an estimated 500–2600 m of missing section, equivalent to a time gap of 8–10 Ma. The EMU is known to extend over the entire NW Borneo margin and is probably related to the Sabah Orogeny which marks the cessation of sea-floor spreading in the South China Sea and collision of Dangerous Grounds block with Sabah.Gravity modelling indicates a thinned continental crust underneath the Sarawak shelf and slope and supports the seismic and well data interpretation. There is a probable presence of an overthrust wedge beneath the Sarawak shelf, which could be interpreted as a sliver of the Rajang Group accretionary prism. Alternatively, magmatic underplating beneath the Sarawak shelf could equally explain the free-air gravity anomaly. The Sarawak basin was part of a remnant ocean basin that was closed by oblique collision along the NW Borneo margin. The closure started in the Late Eocene in Sarawak and moved progressively northeastwards into Sabah until the Middle Miocene. The present-day NW Sabah margin may be a useful analogue for the Oligocene–Miocene Sarawak foreland basin.  相似文献   

13.
The Western foreland basin in Taiwan originated through the oblique collision between the Luzon volcanic arc and the Asian passive margin. Crustal flexure adjacent to the growing orogenic load created a subsiding foreland basin. The sedimentary record reveals progressively changing sedimentary environments influenced by the orogen approaching from the East. Based on sedimentary facies distribution at five key stratigraphic horizons, paleogeographic maps were constructed. The maps highlight the complicated basin-wide dynamics of sediment dispersal within an evolving foreland basin.The basin physiography changed very little from the middle Miocene (∼12.5 Ma) to the late Pliocene (∼3 Ma). The transition from a passive margin to foreland basin setting in the late Pliocene (∼3 Ma), during deposition of the mud-dominated Chinshui Shale, is dominantly marked by a deepening and widening of the main depositional basin. These finer grained Taiwan derived sediments clearly indicate increased subsidence, though water depths remain relatively shallow, and sedimentation associated with the approach of the growing orogen to the East.In the late Pleistocene as the shallow marine wedge ahead of the growing orogen propagated southward, the proximal parts of the basin evolved into a wedge-top setting introducing deformation and sedimentation in the distal basin. Despite high Pleistocene to modern erosion/sedimentation rates, shallow marine facies persist, as the basin remains open to the South and longitudinal transport is sufficient to prevent it from becoming overfilled or even fully terrestrial.Our paleoenvironmental and paleogeographical reconstructions constrain southward propagation rates in the range of 5–20 km/Myr from 2 Ma to 0.5 Ma, and 106–120 km/Myr between late Pleistocene and present (0.5–0 Ma). The initial rates are not synchronous with the migration of the sediment depocenters highlighting the complexity of sediment distribution and accumulation in evolving foreland basins.  相似文献   

14.
The paper reports on the micropaleontologcal (diatoms, silicoflagellates, radiolarians, and pollen flora) data substantiating the age and conditions of sedimentary cover formation of the submarine Ulleung Plateau (Krishtofovich Rise) in the Sea of Japan. Five rock complexes with different age and origin were distinguished on the basis of micropaleontological and petrographic data. Complex 1 (tuffites, tuffogenous siltstones) with numerous freshwater diatoms and pollen flora that prove the lacustrine genesis and the Early Miocene age occurs at the base of the sedimentary cover. Complexes 2–5 are composed of marine tuffogenous sedimentary deposits of end of Early Miocene–Pleistocene age. Stratigraphic unconformity between continental and marine deposits involves a short-time interval in the end of the Early Miocene and points to rather fast tectonic submersion of the Ulleung Plateau. Marine sedimentation in bathyal conditions dominated from the end of the Early Miocene. In the Late Miocene, in the northern part of the plateau, the region of the large rise was characterized by shallow-water conditions, indicating supposed existence of an island territory in this place.  相似文献   

15.
The Gulf of Corinth in central Greece is an active normal fault zone with particularly clear evidence of isostatic footwall uplift, constrained by Quaternary marine terraces, and hanging-wall subsidence and sedimentation. It is bounded to the south by a Pliocene to Early Pleistocene sedimentary basin, which is now eroding into the Gulf. Previous work has suggested that the relief across this region has increased dramatically since the Early Pleistocene, due to the isostatic response to increased rates of footwall erosion and hanging-wall sedimentation. It is indeed assumed here that incision accompanying the draw-down of global sea-level at 0.9 Ma, during the first major Pleistocene glaciation, initiated the erosion of the basin south of the Gulf of Corinth and so abruptly increased the sedimentation rate in the Gulf. The resulting transient thermal and isostatic response to these changes is modelled, with the subsiding depocentre and eroding sediment source coupled by flow in the lower continental crust. The subsequent enhancement of relief, involving an increase in bathymetry from near zero to 900 m and 500 m of uplift of the eroding land surface in the sediment source, is shown to be a direct consequence of this change. The model is sensitive to the effective viscosity of the lower crust, and can thus resolve this parameter by matching observations. A value of 6×1019 Pa s is indicated, suggesting a viscosity at the Moho no greater than 1018 Pa s. Similar transient topographic effects caused by increased rates of sedimentation and erosion are likely to be widespread within the geological record, suggesting that this coupling process involving flow in the weak lower crust may be of major geological and geomorphological importance.  相似文献   

16.
Magmatism in NW Mexico records a Late Miocene transformation from convergence to extension in the Gulf of California rift system. Miocene calc-alkalic rocks in the Baja California peninsula are related to the final subduction of the Farallon plate system, but the heterogeneous nature of volcanism younger than 12.5 Ma has led to conflicting tectonic interpretations. Neogene volcanic rocks in the Sierra Santa Ursula, Sonora, were emplaced in three magma pulses, according to mapping, K–Ar geochronology, and geochemistry. From 23.5 to 15 and 14 to 11.4 Ma, calc-alkalic rocks show an arc-like signature. The 12–11 Ma calc-alkalic dacites, however, are characterized by higher K, Rb, 87Sr/86Sr, and light REE abundances than are the older rocks. The timing, petrography, and geochemistry of the 12–11 Ma rocks are interpreted to reflect postsubduction magmatism. A change in magma chemistry from predominantly calc-alkalic to tholeiitic rocks at 10.3 Ma corresponds to orthogonal extension during early Gulf of California evolution. Sr, Nd, and Pb radiogenic isotope signatures show minor changes over time. The volcanic record for 20–12.5 Ma at Sierra Santa Ursula and adjacent areas is consistent with the reconstructed history of the Guadalupe microplate. The interval of magmatism produced from 12 to 11 Ma appears to reflect changes in plate geometry during the transition from subduction to rifting.  相似文献   

17.
The sedimentary pattern of the southern Gulf of Suez, Egypt, especially during the Cenozoic rift stage, was controlled mainly by tectonic activities (subsidence and uplift) and sea level change. The stratigraphic record of the southern Gulf of Suez can be divided into two megasequences: pre-rift and syn-rift. The pre-rift megasequence can be viewed as two distinctive depositional regimes, clastic rocks of continental to braided stream environment during Cambrian and open marine transgression extended from Upper Cretaceous till Eocene. The syn-rift deposits showed a distinctive contrast between the depocenter and peripheral basins. This difference can be shown clearly on the sedimentary sequence of Hilal and Shoab Ali oilfields. The syn-rift megasequence can be differentiated in relation to rift evolution into the following stages: initial rift stage with low subsidence rate, main rift stage with maximum subsidence rate, quiescence stage with the slowest subsidence rate throughout the rift evolution, evaporite stage with restriction conditions, and Pliocene–Recent stage with shallow marine condition.  相似文献   

18.
位于南海北部陆缘的珠江口盆地裂后沉降特征不同于陆内典型断陷盆地。研究表明,盆地裂后期发生了阶段性有序差异沉降,可分为4个阶段: (1)渐新世早期(~33.9~27.2 Ma),以盆地整体缓慢沉降,大规模海侵为主要特征;(2)渐新世晚期(~27.2~23.0 Ma),以邻近西北次海盆的珠四坳陷强烈沉降为主要特征,差异沉降控制了陆架坡折带的发育和该时期陆架浅水和陆坡深水沉积环境的分布;(3)中新世早—中期(~23.0~10.0 Ma),陆缘强烈沉降区向北扩展至珠二坳陷,尤其是白云凹陷,导致陆架坡折带向北跃迁,并奠定了现今陆架浅水和陆坡深水的沉积格局;(4)中新世晚期—现今(~10.0~0 Ma),陆缘构造沉降逐渐减弱,陆坡由沉积区转变为沉积过路区,沉积物得以大量进入西北次海盆。渐新世2期快速沉降的初始时间,分别对应于南海扩张脊的跃迁,陆缘裂后沉降随扩张脊向南跃迁而向北扩展,并伴有岩浆作用的早强晚弱特点,而沉降量的大小则与裂陷期地壳的薄化程度正相关,反映了陆缘岩石圈经历了早期挠曲回弹的均衡调整和扩张脊跃迁导致地幔物质有序向南撤离而沉降的演化过程。珠江口盆地裂后有序差异沉降控制了陆架坡折带的发育,进而控制了浅水与深水两大沉积体系的展布。  相似文献   

19.
The Kutai Basin occupies an area of extensive accommodation generated by Tertiary extension of an economic basement of mixed continental/oceanic affinity. The underlying crust to the basin is proposed here to be Jurassic and Cretaceous in age and is composed of ophiolitic units overlain by a younger Cretaceous turbidite fan, sourced from Indochina. A near complete Tertiary sedimentary section from Eocene to Recent is present within the Kutai Basin; much of it is exposed at the surface as a result of the Miocene and younger tectonic processes. Integration of geological and geophysical surface and subsurface data-sets has resulted in re-interpretation of the original facies distributions, relationships and arrangement of Tertiary sediments in the Kutai Basin. Although much lithostratigraphic terminology exists for the area, existing formation names can be reconciled with a simple model explaining the progressive tectonic evolution of the basin and illustrating the resulting depositional environments and their arrangements within the basin. The basin was initiated in the Middle Eocene in conjunction with rifting and likely sea floor spreading in the Makassar Straits. This produced a series of discrete fault-bounded depocentres in some parts of the basin, followed by sag phase sedimentation in response to thermal relaxation. Discrete Eocene depocentres have highly variable sedimentary fills depending upon position with respect to sediment source and palaeo water depths and geometries of the half-graben. This contrasts strongly with the more regionally uniform sedimentary styles that followed in the latter part of the Eocene and the Oligocene. Tectonic uplift documented along the southern and northern basin margins and related subsidence of the Lower Kutai Basin occurred during the Late Oligocene. This subsidence is associated with significant volumes of high-level andesitic–dacitic intrusive and associated volcanic rocks. Volcanism and uplift of the basin margins resulted in the supply of considerable volumes of material eastwards. During the Miocene, basin fill continued, with an overall regressive style of sedimentation, interrupted by periods of tectonic inversion throughout the Miocene to Pliocene.  相似文献   

20.
《Sedimentary Geology》2005,173(1-4):373-408
The Alaşehir (Gediz) Graben exemplifies clastic sedimentation in a long-lived continental half-graben in a semi-arid setting, developed within relatively incompetent metamorphic rocks. Early Miocene to Recent rift-related sediments are exhumed on both flanks of the graben, allowing detailed three-dimensional study. During the Early Miocene, small fan-delta lobes were shed northwards from the rugged Menderes Metamorphic Massif into a bordering lacustrine basin. During Early to Mid-Miocene time, large alluvial fans prograded northwards into this basin. Through-drainage to the Aegean Sea was established as the basin widened and filled. Discrete lobes of coarse alluvial fan sediments of latest Miocene(?)–Pliocene age, also shedding northwards, are likely to have been climatically influenced. Quaternary alluvium party infills the modern Alaşehır rift basin.The sedimentary information can be used to test two alternative tectonic models for the Alaşehır Graben. In the first model, an E–W graben bounded by high-angle faults was active during latest Miocene(?)–Recent time, whereas earlier Miocene sedimentation was controlled by N–S faulting related to a N–S compressional stress regime. In the second hypothesis, the Alaşehır Graben was initiated much earlier, in the Early Miocene and was then either continuously or episodically active until Recent. Our results, especially facies and palaeocurrent data from alluvial sediments, indicate that clastic sedimentation was controlled by mainly E–W faulting in a N–S stress regime. Assuming the Early Miocene clastic sediments are correctly dated, this supports the second (long-lived extension) model. However, rather than steady-state extension for ca. 15 Ma, the sedimentary evidence and regional context are consistent with a pulsed extension model, whereby initial Early to Mid-Miocene extension and related clastic sedimentation was followed by a second phase of extension in latest Miocene(?)–Pliocene time. The driving force of initial, Early Miocene extension was probably gravity spreading towards a south-Aegean subduction zone, whereas the inferred second extension pulse is seen as being triggered by westward “tectonic escape” of Anatolia towards the extending Aegean back-arc region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号