首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raman spectroscopy was used to investigate insoluble organic matter (IOM) from a range of chondritic meteorites, and a suite of interplanetary dust particles (IDPs). Three monochromatic excitation wavelengths (473 nm, 514 nm, 632 nm) were applied sequentially to assess variations in meteorite and IDP Raman peak parameters (carbon D and G bands) as a function of excitation wavelength (i.e., dispersion). Greatest dispersion occurs in CVs > OCs > CMs > CRs with type 3 chondrites compared at different excitation wavelengths displaying conformable relationships, in contrast to type 2 chondrites. These findings indicate homogeneity in the structural nature of type 3 chondrite IOM, while organic matter (OM) in type 2 chondrites appears to be inherently more heterogeneous. If type 2 and type 3 chondrite IOM shares a common source, then thermal metamorphism may have a homogenizing effect on the originally more heterogeneous OM. IDP Raman G bands fall on an extension of the trend displayed by chondrite IOM, with all IDPs having Raman parameters indicative of very disordered carbon, with almost no overlap with IOM. The dispersion effect displayed by IDPs is most similar to CMs for the G band, but intermediate between CMs and CRs for the D band. The existence of some overlapping Raman features in the IDPs and IOM indicates that their OM may share a common origin, but the IDPs preserve more pristine OM that may have been further disordered by ion irradiation. H, C, and N isotopic data for the IDPs reveal that the disordered carbon in IDPs corresponds with higher δ15N and lower δ13C.  相似文献   

2.
Abstract— The thermal metamorphism grade of organic matter (OM) trapped in 6 unequilibrated ordinary chondrites (UOCs) (Semarkona [LL 3.0], Bishunpur [L/LL 3.1], Krymka [LL 3.1], Chainpur [LL 3.4], Inman [L/LL 3.4], and Tieschitz [H/L 3.6]) has been investigated with Raman spectroscopy in the region of the first‐order carbon bands. The carbonaceous chondrite Renazzo (CR2) was also investigated and used as a reference object for comparison, owing to the fact that previous studies pointed to the OM in this meteorite as being the most pristine among all chondrites. The results show that the OM thermal metamorphic grade: 1) follows the hierarchy Renazzo << Semarkona << other UOCs; 2) is well correlated to the petrographic type of the studied objects; and 3) is also well correlated with the isotopic enrichment δ15N. These results are strikingly consistent with earlier cosmochemical studies, in particular, the scenario proposed by Alexander et al. (1998). Thermal metamorphism in the parent body appears as the main evolution process of OM in UOCs, demonstrating that nebular heating was extremely weak and that OM burial results in the destabilization of an initial isotopic composition with high δD and δ15N. Furthermore, the clear discrimination between Renazzo, Semarkona, and other UOCs shows: 1) Semarkona is a very peculiar UOC—by far the most pristine; and 2) Raman spectroscopy is a valid and valuable tool for deriving petrographic sub‐types (especially the low ones) that should be used in the future to complement current techniques. We compare our results with other current techniques, namely, induced thermo‐luminescence and opaques petrography. Other results have been obtained. First, humic coals are not strictly valid standard materials for meteoritic OM but are helpful in the study of evolutionary trends due to thermal metamorphism. Second, terrestrial weathering has a huge effect on OM structure, particularly in Inman, which is a find. Finally, the earlier statement that fine‐grained chondrule rims and matrix in Semarkona could be the source of smectite‐rich IDPs is not valid, given the different degree of structural order of their OM.  相似文献   

3.
The chondritic‐porous subset of interplanetary dust particles (CP‐IDPs) are thought to have a cometary origin. Since the CP‐IDPs are anhydrous and unaltered by aqueous processes that are common to chondritic organic matter (OM), they represent the most pristine material of the solar system. However, the study of IDP OM might be hindered by their further alteration by flash heating during atmospheric entry, and we have limited understanding on how short‐term heating influences their organic content. In order to investigate this problem, five CP‐IDPs were studied for their OM contents, distributions, and isotopic compositions at the submicro‐ to nanoscale levels. The OM contained in the IDPs in this study spans the spectrum from primitive OM to that which has been significantly processed by heat. Similarities in the Raman D bands of the meteoritic and IDP OMs indicate that the overall gain in the sizes of crystalline domains in response to heating is similar. However, the Raman ΓG values of the OM in all of the five IDPs clearly deviate from those of chondritic OM that had been processed during a prolonged episode of parent body heating. Such disparity suggests that the nonaromatic contents of the OM are different. Short duration heating further increases the H/C ratio and reduces the δ13C and δD values of the IDP OM. Our findings suggest that IDP OM contains a significant proportion of disordered C with low H content, such as sp2 olefinic C=C, sp3 C–C, and/or carbonyl contents as bridging material.  相似文献   

4.
Abstract— Calcium, aluminum-rich inclusions (CAIs) are characteristic components in carbonaceous chondrites. Their mineralogy is dominated by refractory oxides and silicates like corundum, perovskite, spinel, hibonite, melilite, and Ca-pyroxene, which are predicted to be the first phases to have condensed from the cooling solar nebula. Allowing insights into processes occurring in the early solar system, CAIs in carbonaceous and ordinary chondrites were studied in great detail, whereas only a few refractory inclusions were found and studied in stratospheric interplanetary dust particles (IDPs) and micrometeorites. This study gives a summary of all previous studies on refractory inclusions in stratospheric IDPs and micrometeorites and will present new data on two Antarctic micrometeorites. The main results are summarized as follows: (a) Eight stratospheric IDPs and six micrometeorites contain Ca, Al-rich inclusions or refractory minerals. The constituent minerals include spinel, perovskite, fassaite, hibonite, melilite, corundum, diopside and anorthite. (b) Four of the seven obtained rare-earth-element (REE) patterns from refractory objects in stratospheric IDPs and micrometeorites are related to Group III patterns known from refractory inclusions from carbonaceous chondrites. A Group II related pattern was found for spinel and perovskite in two micrometeorites. The seventh REE pattern for an orthopyroxene is unique and can be explained by fractionation of Gd, Lu, and Tb at highly reducing conditions. (c) The O-isotopic compositions of most refractory objects in stratospheric IDPs and micrometeorites are similar to those of constituents from carbonaceous chondrites and fall on the carbonaceous chondrites anhydrous minerals mixing line. In fact, in most cases, in terms of mineralogy, REE pattern and O-isotopic composition of refractory inclusions in stratospheric IDPs and micrometeorites are in good agreement with a suggested genetic relation of dust particles and carbonaceous chondrites. Only in the case of one Antarctic micrometeorite does the REE pattern obtained for an orthopyroxene point to a link of this particle to enstatite chondrites.  相似文献   

5.
We present in this study the effects of short‐term heating on organics in the Tagish Lake meteorite and how the difference in the heating conditions can modify the organic matter (OM) in a way that complicates the interpretation of a parent body's heating extent with common cosmothermometers. The kinetics of short‐term heating and its influence on the organic structure are not well understood, and any study of OM is further complicated by the complex alteration processes of the thermally metamorphosed carbonaceous chondrites—potential analogues of the target asteroid Ryugu of the Hayabusa2 mission—which had experienced posthydration, short‐duration local heating. In an attempt to understand the effects of short‐term heating on chondritic OM, we investigated the change in the OM contents of the experimentally heated Tagish Lake meteorite samples using Raman spectroscopy, scanning transmission X‐ray microscopy utilizing X‐ray absorption near edge structure spectroscopy, and ultraperformance liquid chromatography fluorescence detection and quadrupole time of flight hybrid mass spectrometry. Our experiment suggests that graphitization of OM did not take place despite the samples being heated to 900 °C for 96 h, as the OM maturity trend was influenced by the heating conditions, kinetics, and the nature of the OM precursor, such as the presence of abundant oxygenated moieties. Although both the intensity of the 1s?σ* exciton cannot be used to accurately interpret the peak metamorphic temperature of the experimentally heated Tagish Lake sample, the Raman graphite band widths of the heated products significantly differ from that of chondritic OM modified by long‐term internal heating.  相似文献   

6.
Synchrotron‐based Fourier transform infrared spectroscopy and Raman spectroscopy are applied with submicrometer spatial resolution to multiple grains of Sutter's Mill meteorite, a regolith breccia with CM1 and CM2 lithologies. The Raman and infrared active functional groups reveal the nature and distribution of organic and mineral components and confirm that SM12 reached higher metamorphism temperatures than SM2. The spatial distributions of carbonates and organic matter are negatively correlated. The spatial distributions of aliphatic organic matter and OH relative to the distributions of silicates in SM2 differ from those in SM12, supporting a hypothesis that the parent body of Sutter's Mill is a combination of multiple bodies with different origins. The high aliphatic CH2/CH3 ratios determined from band intensities for SM2 and SM12 grains are similar to those of IDPs and less altered carbonaceous chondrites, and they are significantly higher than those in other CM chondrites and diffuse ISM objects.  相似文献   

7.
Abstract– Interplanetary dust particles (IDPs) are the most primitive extraterrestrial material available for laboratory studies and may, being likely of cometary origin, sample or represent the unaltered starting material of the solar system. Here we compare IDPs from a “targeted” collection, acquired when the Earth passed through the dust stream of comet 26P/Grigg‐Skjellerup (GSC), with IDPs from nontargeted collections (i.e., of nonspecific origin). We examine both sets to further our understanding of abundances and character of their isotopically anomalous phases to constrain the nature of their parent bodies. We identified ten presolar silicates, two oxides, one SiC, and three isotopically anomalous C‐rich grains. One of seven non‐GSC IDPs contains a wealth of unaltered nebula material, including two presolar silicates, one oxide, and one SiC, as well as numerous δD and δ15N hotspots, demonstrating its very pristine character and suggesting a cometary origin. One of these presolar silicates is the most 17O‐rich discovered in an IDP and has been identified as a possible GEMS (glass with embedded metal and sulfides). Organic matter in an anhydrous GSC IDP is extremely disordered and, based on Raman spectral analyses, appears to be the most primitive IDP analyzed in this study, albeit only one presolar silicate was identified. No defining difference was seen between the GSC and non‐GSC IDPs studied here. However, the GSC collectors are expected to contain IDPs of nonspecific origin. One measure alone, such as presolar grain abundances, isotopic anomalies, or Raman spectroscopy cannot distinguish targeted cometary from unspecified IDPs, and therefore combined studies are required. Whilst targeted IDP populations as a whole may not show distinguishable parameters from unspecified populations (due to statistics, heterogeneity, sampling bias, mixing from other cometary sources), particular IDPs in a targeted collection may well indicate special properties and a fresh origin from a known source.  相似文献   

8.
Abstract— We have analyzed the chemically and isotopically well‐characterized insoluble organic matter (IOM) extracted from 51 unequilibrated chondrites (8 CR, 9 CM, 1 CI, 3 ungrouped C, 9 CO, 9 CV, 10 ordinary, 1 CB and 1 E chondrites) using confocal imaging Raman spectroscopy. The average Raman properties of the IOM, as parameterized by the peak characteristics of the so‐called D and G bands, which originate from aromatic C rings, show systematic trends that are correlated with meteorite (sub‐) classification and IOM chemical compositions. Processes that affect the Raman and chemical properties of the IOM, such as thermal metamorphism experienced on the parent bodies, terrestrial weathering and amorphization due to irradiation in space, have been identified. We established separate sequences of metamorphism for ordinary, CO, oxidized, and reduced CV chondrites. Several spectra from the most primitive chondrites reveal the presence of organic matter that has been amorphized. This amorphization, usually the result of sputtering processes or UV or particle irradiation, could have occurred during the formation of the organic material in interstellar or protoplanetary ices or, less likely, on the surface of the parent bodies or during the transport of the meteorites to Earth. D band widths and peak metamorphic temperatures are strongly correlated, allowing for a straightforward estimation of these temperatures.  相似文献   

9.
Abstract— Infrared diffuse reflectance spectra were measured for several thermally metamorphosed carbonaceous chondrites with CI-CM affinities which were recently found from Antarctica. Compared with other CI or CM carbonaceous chondrites, these Antarctic carbonaceous chondrites show weaker absorption bands near 3 μm due to hydrous minerals, and weaker absorption bands near 6.9 μm due to carbonates, interpreted as thermal metamorphic features. These absorption bands also disappear in the spectra of samples of the Murchison (CM) carbonaceous chondrite heated above 500 °C, implying that the metamorphic temperatures of the Antarctic carbonaceous chondrites considered here were higher than about 500 °C. Model calculations were performed to study thermal metamorphism of carbonaceous chondrites in a parent body internally heated by the decay of the extinct nuclide 26Al. The maximum temperature of the interior of a body more than 20 km in radius is 500–700 °C for the bulk Al contents of CI and CM carbonaceous chondrites, assuming a ratio of 26Al/27Al = 5 × 10?6 which has been previously proposed for an ordinary-chondrite parent body. The metamorphic temperatures experienced by the Antarctic carbonaceous chondrites considered here may be attainable by an internally heated body with an 26Al/27Al ratio similar to that inferred for an ordinary-chondrite parent body.  相似文献   

10.
A crucial topic in planetology research is establishing links between primitive meteorites and their parent asteroids. In this study, we investigate the feasibility of a connection between asteroids similar to 21 Lutetia, encountered by the Rosetta mission in July 2010, and the CH3 carbonaceous chondrite Pecora Escarpment 91467 (PCA 91467). Several spectra of this meteorite were acquired in the ultraviolet to near‐infrared (0.3–2.2 μm) and in the midinfrared to thermal infrared (2.5–30.0 μm or 4000 to ~333 cm−1), and they are compared here to spectra from the asteroid 21 Lutetia. There are several similarities in absorption bands and overall spectral behavior between this CH3 meteorite and 21 Lutetia. Considering also that the bulk density of Lutetia is similar to that of CH chondrites, we suggest that this asteroid could be similar, or related to, the parent body of these meteorites, if not the parent body itself. However, the apparent surface diversity of Lutetia pointed out in previous studies indicates that it could simultaneously be related to other types of chondrites. Future discovery of additional unweathered CH chondrites could provide deeper insight in the possible connection between this family of metal‐rich carbonaceous chondrites and 21 Lutetia or other featureless, possibly hydrated high‐albedo asteroids.  相似文献   

11.
Abstract– Oxygen three‐isotope ratios of three anhydrous chondritic interplanetary dust particles (IDPs) were analyzed using an ion microprobe with a 2 μm small beam. The three anhydrous IDPs show Δ17O values ranging from ?5‰ to +1‰, which overlap with those of ferromagnesian silicate particles from comet Wild 2 and anhydrous porous IDPs. For the first time, internal oxygen isotope heterogeneity was resolved in two IDPs at the level of a few per mil in Δ17O values. Anhydrous IDPs are loose aggregates of fine‐grained silicates (≤3 μm in this study), with only a few coarse‐grained silicates (2–20 μm in this study). On the other hand, Wild 2 particles analyzed so far show relatively coarse‐grained (≥ few μm) igneous textures. If anhydrous IDPs represent fine‐grained particles from comets, the similar Δ17O values between anhydrous IDPs and Wild 2 particles may imply that oxygen isotope ratios in cometary crystalline silicates are similar, independent of crystal sizes and their textures. The range of Δ17O values of the three anhydrous IDPs overlaps also with that of chondrules in carbonaceous chondrites, suggesting a genetic link between cometary dust particles (Wild 2 particles and most anhydrous IDPs) and carbonaceous chondrite chondrules.  相似文献   

12.
Abstract— We compiled a table of all major, minor, and trace-element abundances in 89 interplanetary dust particles (IDPs) that includes data obtained with proton-induced x-ray emission (PIXE), synchroton x-ray fluorescence (SXRF), and secondary ion mass spectrometry (SIMS). For the first time, the reliability of the trace-element abundances in IDPs is tested by various crosschecks. We also report on the results of cluster analyses that we performed on IDP compositions. Because of the incompleteness of the data set, we included only the elements Cr, Mn, Ni, Cu, and Zn, normalized to Fe and CI chondrite abundances, that are determined in 73 IDPs. The data arrange themselves in four rather poorly defined groups that we discuss in relation to CI chondrites following the assumption that on the average CI abundances are most probable. The largest group (chondritic), with 44 members, has close to CI abundances for many refractory and moderately refractory elements (Na, Al, Si, P, K, Sc, Ti, V, Cr, Co, Ge, Sr). It is slightly depleted in Fe and more in Ca and S, while the volatile elements (Cl, Cu, Zn, Ga, Se, Rb) are enriched by =1.7 × CI and Br by 21 × CI. The low-Zn group, with 12 members, is very similar to the chondritic group except for its Zn-depletion, stronger Ca-depletion and Fe-enrichment. The low-Ni group, with 11 members, has Ni/Fe = 0.03 × CI and almost CI-like Ca, but its extraterrestrial origin is not established. The last group (6 members) contains non-systematic particles of unknown origin. We found that Fe is inhomogeneously distributed on a micron scale. Furthermore, the abundances of elements that are measured near their limits of detection are easily overestimated. These biases involved, the incomplete data set and possible contaminating processes prevent us from obtaining information on the specific origin(s) of IDPs from elemental abundances.  相似文献   

13.
Abstract— Using a nuclear microprobe, we measured the carbon and nitrogen concentrations and distributions in several interplanetary dust particles (IDPs) and Antarctic micrometeorites (MMs), and compared them to 2 carbonaceous chondrites: Tagish Lake and Murchison. We observed that IDPs are richest in both elements. All the MMs studied contain carbon, and all but the coarse‐grained and 1 melted MM contained nitrogen. We also observed a correlation in the distribution of carbon and nitrogen, suggesting that they may be held in an organic material. The implications for astrobiology of these results are discussed, as small extraterrestrial particles could have contributed to the origin of life on Earth by delivering important quantities of these 2 bio‐elements to the Earth's surface and their gas counterparts, CO2 and N2, to the early atmosphere.  相似文献   

14.
Abstract— The rare Mg-rich silicate fraction of the C1 meteorites, Orgueil and Alais, is dominated by minute (< 30 μm) forsterite. Twenty three forsterite grains of these meteorites as well as large forsterites in two chondritic porous interplanetary dust particles (IDPs) are characterized by levels of MnO generally, but not always, higher than found in forsterites of C2, C3 and unequilibrated ordinary chondrites (UOC). Forsterite in Orgueil contains 900 to 6200 ppmw MnO while Alais forsterite has less than 2000 ppmw MnO suggesting that the forsterites in the two meteorites are chemically distinct. Alais forsterite shows lower Cr and Al relative to Orgueil forsterite. The C1 forsterites do not show Fe-poor (FeO < 0.3), refractory-rich (Al, Ca, Ti, V) compositions which are relatively common in the C2-C3-UOC meteorites suggesting that the most primitive forsterite compositions are not present in these C1 meteorites. While minor elements in forsterite can not distinguish unambiguously between C1 and C2-C3-UOC sources, the high Mn levels in some IDP forsterites are similar to some C1 forsterites suggesting a possible relation between the forsterites of these two extraterrestrial samples.  相似文献   

15.
Abstract— We have investigated the porosity of a large number of chondritic interplanetary dust particles (IDPs) and meteorites by three techniques: standard liquid/gas flow techniques, a new, noninvasive ultrasonic technique, and image processing of backscattered images. The latter technique is obviously best-suited to sub-kilogram sized samples. We have also measured the gas and liquid permeabilities of some chondrites by two techniques: standard liquid/gas flow techniques, and a new, nondestructive pressure release technique. We find that chondritic IDPs have a somewhat bimodal porosity distribution. Peaks are present at 0 and 4% porosity; a tail then extends to 53%. Type 1–3 chondrite matrix porosities range up to 30%, with a peak at 2%. The bulk porosities for type 1–3 chondrites have the same approximate range as exhibited by the matrix, which indicates that other components of the bulk meteorites (including chondrules and aggregates) have the same average porosity as the matrix. These results reveal that the porosities of primitive materials at scales ranging from nanogram to kilogram are similar, which implies that similar accretion dynamics operated through 12 orders of size magnitude. Permeabilities of the investigated chondrites vary by several orders of magnitude, and there appears to be no simple dependence of permeability with degree of aqueous alteration, chondrite type or porosity.  相似文献   

16.
Chemical states of carbon in terrestrial (meta) sediments and carbonaceous chondrites gather attention as a geothermometer. As a nondestructive analytical method, Raman spectroscopy has been widely used to study their electronic properties, crystallinity, and structural defects through so-called D and G bands. For the analysis of Raman spectra, a common problem is coexistence of a fluorescence background, which should be subtracted prior to the peak-fitting analysis. However, we recently faced a problem that the band shape noticeably changed depending on the background function assumed although the background seemed to be well subtracted at a first glance regardless of the choice of the background function. For the application of the Raman spectroscopy as a geothermometer, a standard background subtraction method must be established to suppress the arbitrariness. In the present study, Raman spectra of seven carbon-containing natural samples, whose background intensities were significantly different, were measured, and their background shape was evaluated by first-, second-, and third-order polynomials. The results indicated that the third-order polynomial was necessary and sufficient as a standard background function. Importantly, although lower order polynomials seem to successfully fit the background at a first glance, they falsely caused dispersion of the shoulder band shape.  相似文献   

17.
The scoriaceous cosmic spherules (CSs) that make up to a few percent (for sizes >150 μm size) of total micrometeorite flux are ubiquitous and have remained enigmatic. The present work provides in-depth study of 81 scoriaceous CSs, from observed ~4000 CSs, collected from Antarctica (South Pole water well) and deep-sea sediments (Indian Ocean) that will allow us to analyze the nature of these particles. The fine-grained texture and the chemical composition of scoriaceous particles suggest that they are formed from matrix materials that are enriched in volatiles. The volatile components such as water, sulfide, Na, K, etc. have vanished due to partial evaporation and degassing during Earth's atmospheric entry leaving behind the vesicular features, yet largely preserving the elemental composition. The elemental ratios (Ca/Si, Mg/Si, Al/Si, Fe/Si, and Ni/Si) of interplanetary dust particles (IDPs) are compatible with the scoriaceous CSs, which in turn are indistinguishable from the matrices of CI and CM chondrites signifying similarities in the nature of the sources. Furthermore, the texture of cometary particles bears resemblance to the texture of the scoriaceous particles. The compilation of petrographic texture, chemical, and trace element composition of scoriaceous CSs presents a strong case for matrix components from hydrated and volatile-rich bodies, such as CI and CM chondrites, rather than chondrules. We conclude that the fine-grained scoriaceous CSs, the matrix materials of hydrated chondrites, IDPs, and cometary particles that overlap compositionally were widespread, indicating a dominant component in the early solar nebula.  相似文献   

18.
Classification of ordinary chondrite meteorites generally implies (1) determining the chemical group by the composition in endmembers of olivine and pyroxene, and (2) identifying the petrologic group by microstructural features. The composition of olivine and pyroxene is commonly obtained by microprobe analyses or oil immersion of mineral separates. We propose Raman spectroscopy as an alternative technique to determine the endmember content of olivine and pyroxene in ordinary chondrites, by using the link between the wavelength shift of selected characteristic peaks in the spectra of olivine and pyroxene and the Mg/Fe ratio in these phases. The existing correlation curve has been recalculated from the Raman spectrum of reference minerals of known composition and further refined for the range of chondritic compositions. Although the technique is not as accurate as the microprobe for determining the composition of olivine and pyroxene, for most of the samples the chemical group can be easily determined by Raman spectroscopy. Blind tests with ordinary chondrites of different provenance, weathering, and shock stages have confirmed the potential of the method. Therefore, we suggest that a preliminary screening and the classification of most of the equilibrated ordinary chondrites can be carried out using an optical microscope equipped with a Raman spectrometer.  相似文献   

19.
R. Brunetto  T. Pino  A.-T. Cao  G. Strazzulla 《Icarus》2009,200(1):323-3884
We use a low pressure flame to produce soot by-products as possible analogues of the carbonaceous dust present in diverse astrophysical environments, such as circumstellar shells, diffuse interstellar medium, planetary disks, as well as in our own Solar System. Several soot samples, displaying an initial chemical diversity from aromatic to aliphatic dominated material, are irradiated with 200-400 keV H+, He+, and Ar++ ions, with fluences comprised between 1014 and 1016 ions/cm2, to simulate expected radiation induced modification on extraterrestrial carbon. The evolution of the samples is monitored using Raman spectroscopy, before, during, and after irradiation. A detailed analysis of the first- and second-order Raman spectra is performed, using a fitting combination of Lorentzian and/or Gaussian-shaped bands. Upon irradiation, the samples evolve toward an amorphous carbon phase. The results suggest that the observed variations are more related to vacancy formation than ionization processes. A comparison with Raman spectra of extraterrestrial organic matter and other irradiation experiments of astrophysically relevant carbonaceous materials is presented. The results are consistent with previous experiments showing mostly amorphization of various carbonaceous materials. Irradiated soots have Raman spectra similar to those of some meteorites, IDPs, and Comet Wild 2 grains collected by the Stardust mission. Since the early-Sun expected irradiation fluxes sufficient for amorphization are compatible with accretion timescales, our results support the idea that insoluble organic matter (IOM) observed in primitive meteorites has experienced irradiation-induced amorphization prior to the accretion of the parent bodies, emphasizing the important role played by early solar nebula processing.  相似文献   

20.
Past studies of the various separable carbonaceous fractions have been unable to account for all of C in primitive chondrites. In particular, up to 20–50% of the C is lost during acid leaching of bulk samples even after the C in carbonates and soluble organic matter is accounted for. To try to better characterize the nature of this “missing C,” we have compared the bulk infrared (IR) absorption spectra of a number of primitive chondrites with those of their previously reported insoluble organic matter (IOM). The aliphatic C–H stretching bands, in particular, allow us to compare the molecular structures of bulk C with that of IOM. The spectral differences between bulk C and IOM reflect “missing C” phases that were lost during acid leaching, although we cannot completely exclude the possibility that the OM was modified after demineralization. Comparing IR spectra of bulk meteorite powder and IOM suggests that the missing C varies in its molecular structure, and that mildly thermally metamorphosed type 3 chondrites tend to be richer in an aliphatic fraction with lower CH2/CH3 ratios, relative to IOM, compared to aqueously altered carbonaceous chondrites (CI/CM/CR). The missing C is most likely released from acid‐labile functional groups, such as esters, acetals, and amides, during demineralization, although it cannot be ruled out that some fraction of the missing C is in small grains that are difficult to recover from suspension, or in water‐soluble compounds trapped in phyllosilicates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号