首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transport mechanisms responsible for the seasonal behavior of total ozone are deduced from the comparison of model results to stratospheric data. The seasonal transport is dominated by a combination of the diabatic circulation and transient planetary wave activity acting on a diffusively and photochemically determined background state. The seasonal variation is not correctly modeled as a diffusive process. The buildup of total ozone at high latitudes during winter is dependent upon transient planetary wave activity of sufficient strength to cause the breakdown of the polar vortex. While midwinter warmings are responsible for enhanced ozone transport to high latitudes, the final warming marking the transition from zonal mean westerlies to zonal mean easterlies is the most important event leading to the spring maximum. The final warming is not followed by reacceleration of the mean flow; so that the ozone transport associated with this event is more pronounced than that associated with midwinter warmings.  相似文献   

2.
In order to study the behavior of stratospheric minor constituents related to aeronomic processes and atmospheric transport in the meridional plane, a numerical two-dimensional model is established.This model is applied to the study of chlorine compounds in the stratosphere. A special attention is devoted to the effect in the ozonosphere of an increase of CIX due to anthropogenic activities.  相似文献   

3.
The observed relationship between atmospheric vorticity variations and solar magnetic sector boundary passages is examined for a possible connection via ionization changes affecting ozone distributions. A superposed epoch analysis was performed on Umkehr distributions for 18 years from Arosa, Switzerland, with use of more than 500 solar sector boundary passages as keyday zero. No significant responses are observed in any Umkehr level or in total observed ozone amounts. Further analyses on shorter records for Belsk, Poland, and Hohenpeissenberg, West Germany, corroborate these results. Another analysis for Arosa with about 100 type IV solar flares as keyday zero also shows no definitive trend. It is concluded that ozone distribution changes cannot be the primary causative mechanism for vorticity variations.Journal Paper No. J-8838 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 1852.  相似文献   

4.
Surface ozone (O3) and vertical O3 distribution in the planetary boundary layer (PBL) at the Ming Tombs (40°17′15″N, 116°12′51″E), Beijing during September 7―12, 2001 were measured by ground based measurements and an in-situ tethersonde system. The results indicated that O3 concentration measured at surface level agreed well with that measured by tethersonde system in daytime when active thermal mixing was dominated. Ozone showed the lowest concentration before the sunrise and then gradually increased in the morning and reached the maximum in the afternoon 14:00―17:00 (lst). After sunset, O3 gradually decreased and resulted in low value below 200―300 m due to surface loss processes and chemical destruction in stable boundary layer characterized by temperature inversions. High O3 was observed whenever there was pollutants transport from the metropolitan areas of Beijing. Our analysis suggested the complex terrain of the Ming Tombs region caused pollutants transported from Beijing to accumulate in the PBL, and resulted in severe O3 pollution, with a maximum over 160×10-9, when the synoptic conditions was favorable for photochemical O3 production.  相似文献   

5.

本文利用2013年6月至2015年10月北京南苑观象台两年多午后臭氧探空资料,初步分析了北京城区大气混合层内臭氧浓度的垂直分布规律以及典型天气条件下大气边界层臭氧的变化特征.主要结果有:(1)季节平均而言,地表至对流层中部(8 km)的臭氧浓度在夏季最高,冬季最低,相差50~130 μg·m-3,最大差异在边界层.总体而言,对流层臭氧浓度随高度有比较缓慢的增加,但是边界层内臭氧浓度的垂直结构随季节有比较大的差异:夏季混合层中部存在一个臭氧浓度极大值,这与夏季比较强的光化学生成臭氧有关;而在冬季地面臭氧浓度很低,平均值小于40 μg·m-3,说明冬季地面是臭氧很强的汇.(2)臭氧浓度季节内变率的季节差异也十分明显,夏季最大、冬季最小.季节内变率在从边界层向自由对流层过渡区域最小(夏季为24 μg·m-3,冬季仅为10 μg·m-3),在边界层内变率较大,夏季可达64 μg·m-3(冬季为30 μg·m-3),这也说明边界层化学过程明显影响臭氧浓度的变化.(3)我们从所有白天样本中严格筛选了部分混合层样本,并把臭氧浓度在由混合层向自由大气过渡时的垂直分布分成了三类,即臭氧浓度随高度增大(Ⅰ型)、减小(Ⅱ型)以及基本稳定不变(Ⅲ型);臭氧垂直结构类型有明显的季节特征,夏季主要是Ⅱ型,而冬季则以Ⅰ型为主.(4)此外,我们还针对一些典型天气过程(强风、静稳雾天和PM2.5污染)边界层内臭氧的变化特征进行了分析,结果表明:强风切变产生的机械对流引起的充分混合,有利于高层臭氧向低层输送,使得混合层内臭氧浓度的垂直梯度明显减小,同时混合层高度较高,达3 km以上;在高湿度静稳天气控制下,大气混合层较稳定,对北京上空污染物的垂直扩散十分不利:颗粒物浓度升高,削弱到达近地层的太阳辐射,从而降低臭氧的生成效率,混合层内臭氧浓度与混合层厚度都处于较低水平.

  相似文献   

6.
two-dimensional time dependent model of the stratosphere incorporating the major interactions between radiative-photochemical and dynamical processes is described. The main prognostic equations considered are the thermodynamic equation and the general conservation equation for the minor chemical constituents representing the odd oxygen (O x =O+('D)+O3), odd hydrogen (HO x =HO+HO2), N2O, odd nitrogen (NO x =NO+NO2+HNO3), CF2Cl2, CFCl3 and odd chlorine (Cl x =Cl+ClO+HCl). The zonal wind and mean meridional circulations are determined diagnostically by the integration of the thermal wind equation and the stream function equation in the meridional plane espectively. The large scale eddy processes are parameterized in terms of zonal mean quantities using the generalized diffusion formulation on a sloping surface. The radiative heating and cooling and the hotochemical sources and sinks are incorporated in a form which allows for the major interactions among the minor trace constituents, temperature and mean circulation.Two integrations consisting of natural stratosphere and a stratosphere contaminated by the chlorofluoromethanes through lower boundary fluxes are carried out for 23 model years by changing the declination of the sun every day and using 6-hour time step. The model simulations of temperature, mean circulation, ozone, HO x , N2O and NO x in the meridional plane for the normal stratosphere, show satisfactory agreement with the available observations. Based on the results of second integration it is found that the injection of chlorofluoromethanes in the atmosphere at the estimated current production rates can lead to significant changes in the meridional distribution of ozone, temperature and NO x in the middle and upper stratosphere. The results also indicate that the percentage total ozone depletion increases from tropics to high latitudes and from summer to winter high latitudes. Also discussed are the results of additional experiments incorporating the reaction of HO2 with NO and the reactions involving ClNO3.  相似文献   

7.
利用1958~2001年共44年的ECMWF资料及参数化方法,计算了对流层顶上、下3 km气层间的臭氧含量及其吸收太阳辐射加热率的时空分布.结果表明: (1) 臭氧分布的空间梯度从赤道指向两极,而加热率则是分别由高纬和低纬指向副热带,这样的经向梯度可能是驱动对流层顶结构变化的一种重要因素;两者空间分布的季节变化显著,但其对应关系并不完全一致,1月和4月的空间结构与7月和10月的相反,随季节调整具有突变现象;东亚及青藏高原是季节变化相对稳定的区域.(2) 在热带对流层顶控制区加热率与臭氧含量呈正相关,而极地对流层顶控制区各季节有所不同,还与太阳赤纬变化相关联;各纬度间加热率季节变化的位相和变率都存在差异,但南半球相对较为一致,最大距平为±2×10-4 K·d-1,北半球则较复杂,最大正距平为4×1010-4 K·d-1;两半球的季节周期位相趋于相反.(3) 除赤道外,臭氧距平的季节变化位相超前于加热率距平2~3月,并且发生在季节变化的调整期;最大距平出现在南极的8月大于0.4 DU,3~4月则小于-0.2 DU,而北极为±0.2 DU.(4) 臭氧含量和加热率的年际与年代际演变关系对应一致,并具有多尺度的结构特征;但两半球及赤道的时空演变差异明显,30° S~30° N间副热带控制区的加热率变幅剧烈,最大距平为±2.5×10-4 K·d-1,高纬和两极的变幅在不同演变期各不相同;臭氧的变幅结构与之相反,北极的最大距平分别大于0.25 DU和小于-0.35 DU.(5) 20世纪70年代以前及70年代中期,两半球的正负距平具有相反的演变结构,而90年代是负距平演变最剧烈的时期.  相似文献   

8.
A spectroscopic method for optical remote sensing of total ozone (O3) is described. It involves detailed spectral matching of near ultraviolet solar observations with synthetic profiles containing various amounts of ozone absorption. Application of this technique is made to airborne solar measurements in the 3100 to 3600 Å wavelength region. In the 3100 to 3200 Å region, measurements made above the tropopause (around geographic latitude 36.7°N, longitude 121.7°W at 0045 UT on 1/23/74) generally fit synthetic profiles constructed with 0.3 atm cm of O3 absorption andBroadfoot's (1972) extra-terrestrial solar irradiance values. However, there are several sections of the solar spectra where the observed intensity is either significantly higher or lower than the calculated value. In addition, several maxima and minima in the observed spectra do not coincide in wavelength with corresponding features in the synthetic profile. Such problems also appear when comparison is made with synthetic profiles based onArvesen et al.'s (1969) extra-terrestrial solar irradiance measurements. These discrepancies may arise from a combination of sources, including errors in laboratory measured O3 absorption coefficients, the extra-terrestrial solar irradiance values and the presence of other UV absorbing species in the stratosphere.  相似文献   

9.
Ozone depression in the polar stratosphere during the energetic solar proton event on 4 August 1972 was observed by the backscattered ultraviolet (BUV) experiment on the Nimbus 4 satellite. Distinct asymmetries in the columnar ozone content, the amount of ozone depressions and their temporal variations above 4 mb level (38 km) were observed between the two hemispheres. The ozone destroying solar particles precipitate rather symmetrically into the two polar atmospheres due to the geomagnetic dipole field These asymmetries can be therefore ascribed to the differences mainly in dynamics and partly in the solar illumination and the vertical temperature structure between the summer and the winter polar atmospheres. The polar stratosphere is less disturbed and warmer in the summer hemisphere than the winter hemisphere since the propagation of planetary wave from the troposphere is inhibited by the wind system in the upper troposphere, and the air is heated by the prolonged solar insolation. Correspondingly, the temporal variations of stratospheric ozone depletion and its recovery appear to be smooth functions of time in the (northern) summer hemisphere and the undisturbed ozone amount is slighily, less than that of its counterpart. On the other hand, the tempotal variation of the upper stratospheric ozone in the winter polar atmosphere (southern hemisphere) indicates large amplitudes and irregularities due to the disturbances produced by upward propagating waves which prevail in the polar winter atmosphere. These characteristic differences between the two polar atmospheres are also evident in the vertical distributions of temperature and wind observed by balloons and rocker soundings.  相似文献   

10.
Summary The accuracy of the electrochemical ozone sonde, type OSR, has been estimated by analysing tandem ozone soundings of the balloon-borne electrochemical ozone sonde OSR at the Lindenberg Observatory from May to November 1982. A negative bias, though not significant, has been observed above about 28 km for soundings having high single correction factors. Random errors are at their minimum just above the level of the maximum of ozone partial pressure, and reach their maximum in the troposphere. Except at heights above about 28 km the random error of ozone sondes is a factor 2 to 3 times less than the error of the short Umkehr method. Provided that soundings with too high correction factors are neglected, the ozone sonde OSR has an accuracy comparable to that of other Brewer type sondes.The maximum amount of information on the vertical ozone distribution can be drawn from sonde measurements in the lower stratosphere. A study is underway to improve the sensitivity of the sonde OSR and thus to further enhance its reliability.  相似文献   

11.
Previous work has shown the importance of the diffuse solar field in the photochemistry of atmospheric active species, the solar zenith angle being an effective parameter. In view of the diurnal and seasonal variability of this single quantity, in this paper estimates are presented of the daily-integrated values of the photodissociation coefficient of ozone throughout the year, for a purely molecular atmosphere in the absence of scattering and when the effects of molecular scattering are included, and for an absorbing-scattering turbid atmosphere characterized by two different aerosol loads. Also, different values of the ground albedo have been taken into account.Results are shown for a latitude of 45oN. The seasonal dependence is strong at altitudes below 20 km and less marked above 20 km. For an albedoA=0.3, the inclusion of molecular scattering increases the daily-integrated photodissociation coefficients approximately by 20% and 40% at 15 km and by 15% and 22% at 30 km, at the winter and summer solstice respectively. The presence of a heavy aerosol load modifies these results by a further factor which is approximately –5% and 10% at 15 km at the winter and summer solstice respectively, and is approximately constant at 8% throughout the year at 30 km.  相似文献   

12.
Results are presented from a two-dimensional, time-dependent model of the atmosphere which has been used to investigate perturbations to the ozone layer due to chlorofluorocarbons. The unperturbed stratosphere is modelled well with the observed features of the ozone distribution reproduced. The main features of the perturbation calculations are the large latitudinal and seasonal variations found in the modelled ozone reductions with greates reductions where the total ozone amounts are largest. The importance of at least a two-dimensional study in problems of this kind is stressed and the important role of dynamical and radiative processes, as well as chemical, is indicated.  相似文献   

13.
The diurnal cycle of ozone at the surface and within the PBL is examined. It is concluded that the intrusion of air masses from ozone-rich layers in the lower troposphere results in late evening ozone maxima observed at ground stations on mountain slopes as well as within distinct layers of the PBL above the valley bottom. The ozone-rich layers are assumed to exist due to meso- or large-scale horizontal transport of smog air masses and a local cross-valley wind system is shown to be responsible for the occurrence of the intrusion processes.  相似文献   

14.
A comparison is made of the first two years of Nimbus-4 backscattered ultraviolet (BUV) ozone measurements with the predictions of the Ames two-dimensional model. The ozone observations used in this study consist of the mixing ratio on the 1-, 2-, 5-, and 10-mb pressure surfaces. These data are zone and time averaged to obtain seasonal means for 1970 and 1971 and are found to show strong and repeatable meridional and seasonal dependencies. The model used for comparison with the observations extends from 80°N to 80°S latitude and from altitudes of 0 to 60 km with 5° horizontal grid spacing and 2.5-km vertical grid spacing. The chemical reaction and photolysis rate constants used in the model are those recommended in the report of the NASA Panel for Data Evaluation (1979) Chemical reaction and photolysis rates are diurnally averaged, and the photodissociation rates are corrected for the effects of scattering.It is found that the large altitude, latitude, and seasonal changes in the ozone data agree well with the model predictions. Also shown are model predictions of the sensitivity of the comparisons to changes in the assumed mixing ratios of water vapor, odd nitrogen, and odd chlorine, as well as to changes in the ambient temperature and transport parameters.  相似文献   

15.
It is shown how to retrieve the atmospheric ozone profile by means of ground based microwave measurements of the radiative intensity. Chahine's iteration method is used. The method is tested by a numerical experiment. The retrieval rms about the mean error is approximately 0.4 ppm. The required measurement accuracy for the brightness temperatures is ±0.01 K.  相似文献   

16.
There may have been three stages in the growth of oxygen in the terrestrial atmosphere. Prior to the origin of photosynthesis the only source of oxygen was photolysis of water vapor followed by escape of hydrogen to space. The rate of this process was probably less than the rate of release of reduced gases (principally hydrogen) from volcanoes, so the oxygen partial pressure was held to negligibly low values by photochemical reactions with an excess of hydrogen. The photosynthetic source of oxygen was probably in operation as long ago as 3.8 billion years. It released oxygen to the ocean. Presumably most of this oxygen was destroyed in the ocean as long as its rate of supply was less than the rate of supply of readily oxidizable material (principally Fe2+) provided by the weathering of rocks. This phase appears to have lasted until about 2 billion years ago, during which period most banded iron formations were deposited. During this period the production of oxygen by algae was limited by competition with photosynthetic bacteria, which preempted the supply of nutrient phosphorus as long as reduced chemicals were available in the environment. Once the photosynthetic oxygen source exceeded the rate of supply of reduced minerals exposed by erosion and weathering, the accumulation of oxygen in the ocean and atmosphere could be controlled only by reaction of oxygen with reduced organic material. This is the stabilization mechanism that operates today. It seems unlikely that oxygen could be consumed at a significant rate by this process until oxygen levels sufficiently high to support respiration had been achieved. I therefore suggest that atmospheric oxygen rose rapidly from essentially zero to approximately its present value (within a factor of 10) when the photosynthetic source of oxygen rose above the weathering source of reduced minerals, probably about 2 billion years ago. The ozone layer and the ultraviolet screen were absent prior to this time and essentially fully developed after this time.Presented at IAGA/IAMAP Symposium on Minor Neutral Constituents in Middle Atmosphere-Chemistry and Transport, Seattle, August, 1977.  相似文献   

17.
All available data of the vertical ozone distribution measured with chemical sondes have been assembled and combined with one year's results from the BUV satellite to obtain the best possible information on the vertical ozone distribution averaged over longitude as a function of season (month by month). For the southern hemisphere Umkehr data have been used as a guideline in the necessary smoothing procedure. Especially in the northern hemisphere considerable adaptation to the observed latitudinal mean of the total amount was needed because most sounding stations, are situated in upper air trough positions.The results are presented as vertical distributions, as meridional cross sections of partial pressure and of mixing ratio and as partial pressure isolines as a function of latitude and season at different levels. The interaction between photochemical processes and transport resonsible for the observed distribution is briefly discussed.  相似文献   

18.
19.
Total ozone observations in the international network have been used as a basis for the analysis of the mean monthly ozone distribution over the globe for the period 1957–75. It has been found that during the period 1961–70 the total ozone amount increased in the Northern Hemisphere by about 12 percent and that this increase seems to be significant at all latitudes. Although the data were sparse for the Southern Hemisphere, there did not appear to be any significant ozone changes during the 10 year period. Relatively large geographic variations were found in the ozone trends and it is suggested that these variations are related to large scale changes in the atmospheric circular pattern.  相似文献   

20.
A scheme of a system of physical and chemical processes controlling the production, transport and destruction of ozone and its gaseous catalysts, as well as other related gases in the low and high stratosphere is presented. An account is made of temperature variations of the stratospheric layer resulting from changes in ozone content; also included is the effect of temperature variations on photochemical reaction rates and ozone and other gases transport between atmospheric layers. Parameters describing major relations of the system are inferred from the analysis of ozone and trace gas data and from the results of model calculations of interdependence between variations in temperature and ozone content of the layer.An analysis of minor fluctuations of the linearized system shows that photochemical processes are responsible for its aperiodic stability and that gas transport between atmospheric layers destabilizes the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号