首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
鄱阳湖围、退垦对洪水位影响的计算与分析   总被引:6,自引:1,他引:5  
闵骞 《水文》2000,20(4):37-40
根据鄱阳湖出流的特殊性,提出了用虚拟流量法推算鄱阳湖围垦与退垦对洪水位的影响,计算了鄱阳湖1954年洪水和1998年洪水的水位围垦效应值,比较了这两次洪水的量级大小;建立了1954年洪水洪峰水位的退垦效益,确定了它与退垦还湖面积的关系;依据湖区防洪体系和灾后重建之需要,探讨了鄱阳湖退垦还湖规模及其防灾功效。  相似文献   

2.
从涨退水看鄱阳湖水位-湖面面积关系   总被引:1,自引:0,他引:1  
曾少龙  赖格英  杨涛 《水文》2019,39(3):46-51
鄱阳湖是我国最大的淡水湖,鄱阳湖水位-面积关系对研究鄱阳湖生态环境的变化具有重要意义。目前研究所建立的鄱阳湖水位-面积关系各异,存在一定的不确定性,其原因在于忽略了涨退水对鄱阳湖水位与面积的影响。在考虑鄱阳湖涨水与退水过程的基础上,利用鄱阳湖2000~2014年实测水位数据与对应的遥感影像数据,分析了鄱阳湖同一水位出现多个水面面积情况下湖泊不同面积的空间分布及其成因,并对鄱阳湖水面面积与水位关系的不确定性进行了分析。研究结果表明:(1)鄱阳湖水面面积与水位关系存在不确定性,主要受鄱阳湖涨水与退水过程中鄱阳湖水面比降不同的影响;(2)在同一水位条件下,涨水过程中鄱阳湖水面面积往往大于退水过程的水面面积,同时水面面积的增减变化与涨水退水的幅度变化趋势呈一致性;(3)涨水与退水过程对鄱阳湖水位与面积的影响主要表现在中低水位,随着水位增长到高水位时,这种影响会越来越小。  相似文献   

3.
闵骞 《水文》2004,24(4):17-20
根据鄱阳湖洪水成因及其影响机制,建立了一个包含入湖流量过程还原、湖盆容积变化、出湖流量过程随之而改变等多个可变因素在内的洪水位计算模型;利用该模型计算鄱阳湖1952—2001年历年(次)洪水在不同年代(20世纪50、60、70、80、90年代)背景条件下的最高水位;对不同年代背景条件下年最高水位序列进行频率分析,将求得的5组洪水位一频率特征值进行比较,得出湖水位频率变化规律;探讨了鄱阳湖洪水位频率逐渐提高的原因,估计了退田还湖对洪水位频率的影响。  相似文献   

4.
基于长时间序列遥感数据的鄱阳湖水面面积监测分析   总被引:1,自引:0,他引:1  
国产高分辨率卫星的快速发展可有效弥补遥感湖泊监测中影像分辨率不足的问题,更加及时、准确地实现湖泊动态监测。利用1996~2012年155景Landsat影像和2013~2016年34景GF影像为数据源,结合湖口站水位监测数据,分别选用改进的归一化差异水体指数MNDWI和归一化差异水体指数NDWI方法提取卫星遥感影像的水体信息,同时采用统计分析的方法建立了4个时间段的鄱阳湖水体面积-水位关系模型。结果表明:在空间上,鄱阳湖水体面积整体呈现缓慢缩小的趋势;在时间上,除秋季鄱阳湖面积有明显下降趋势外,其他季节整体趋势变化不大;经验证,鄱阳湖四季水体面积-水位呈现二次函数关系。  相似文献   

5.
一、基本概况鄱阳湖为我国第一大淡水湖,位于江西省北部,纳江西的赣、抚、信、饶、修五大河流来水,经过调蓄后,由湖口汇入长江。五大河流的流域面积136726km~2,湖口总控制流域面积162225km~2。1954年最大水面约有5393km~2,由于围垦,1983年最高水位时湖面约有3800km~2(不包括溃堤面积)。鄱阳湖对长江洪水有一定的调蓄作用,长江与鄱阳湖洪水间的关系极为复杂。当长江水位高于湖水位时,江水倒灌入湖;反之,湖水注入长江。  相似文献   

6.
基于RS与GIS的南汇东滩围垦研究   总被引:1,自引:0,他引:1  
RS和GIS技术是滩涂围垦监测最经济和有效的方法之一。本文基于1983年以来多期遥感影像,解译出了不同时期人工岸线的位置,在此基础上利用GIS技术分析了近30年来南汇东滩的围垦过程及其与滩涂淤涨速率的关系。结果表明,近30年来南汇东滩的围垦过程呈现"由慢至快"的发展趋势,经历了"缓慢—稳步—高速"三个发展阶段:(1)1983~1995年年均围垦速率约1.23km2/a,圈围速率较小;(2)1995~2000年为7.95km2/a,围垦速率处于稳步增长阶段;(3)2002~2005年为35.27km2/a,是围垦速率最大的阶段。2002年以前,围垦速率与滩涂淤涨速率基本一致,2002年之后,围垦速率远大于滩涂淤涨速率。本文认为8km2/a是南汇东滩适宜的围垦速度。2002年之后南汇东滩的快速围垦并没有导致上海整体滩涂面积的减少,围垦可不囿于局部滩涂面积的稳定,以全市总体滩涂面积和湿地水平的动态平衡,可为滩涂资源开发利用提供现实选择。  相似文献   

7.
湖泊的水情变化会影响其与地下水之间的物理水文过程和生态行为,鄱阳湖独特的“河湖相”转换特征使得该地区地表-地下水交换过程更加复杂。采用Visual MODFLOW构建三维非稳定流地下水流数值模型,利用LAK3子程序模块,通过输入五河入湖以及鄱阳湖流入长江的水量,实现湖水面积的动态模拟。结果表明,2019年湖水位模拟值与实测值的均方根误差为0.225 m,地下水水位模拟值与实测值的均方根误差为0.571 m;模型模拟鄱阳湖水面积环比变幅-41%~83%,与遥感影像结论吻合。该模型减少了湖泊作为边界条件的约束,可以有效刻画鄱阳湖频繁变化的湖水位和水体面积,准确模拟地下水流场和地表-地下水相互作用关系对湖泊水体高度动态变化的响应。枯水期主要由地下水补给湖水,交换量为2.03×107~10.58×107 m3/mon;丰水期湖水补给地下水,交换量为2.04×107~16.53×107 m3/mon,湖区及周边地下水水位相比枯水期平均抬升2~3 m,地下水由湖区流向周边地区。本研究为地表水体剧烈变化地区提供了有效的数值模拟方法,研究结果可为鄱阳湖平原区未来水资源管理和环境评价提供基础。  相似文献   

8.
为切实解决乐清发展空间问题,统筹山海资源,乐清市突出四项措施扎实推进滩涂围垦造地工作.取得了明显进展。乐清市胜利塘北片围区滩涂垦造总规模7149亩。2012年滩涂围垦造地立项5607亩,现已通过上级验收4513亩;2013年立项1542亩,现已通过招投标。一、突出山海统筹意识,强化组织保障。  相似文献   

9.
基于MODIS影像的鄱阳湖湖面积与水位关系研究   总被引:7,自引:0,他引:7       下载免费PDF全文
利用统计分析的方法,根据2001年获取的13景鄱阳湖区无云MODIS影像中的9景提取的水体面积,并结合同步观测的水文数据分别采用线性、对数和指数3种模型模拟湖面积-水位之间关系。结果显示对数模型相关性最好(R2=0.918),其次为线性和指数模型。利用另外4景MODIS影像对模型进行检验表明,该模型精度较高,模拟的最大误差为3.36%。本研究显示,可根据鄱阳湖水位观测值,利用该模型预测鄱阳湖洪涝期洪水淹没面积,以弥补云天状况下光学遥感难以监测到洪水淹没范围的不足。本研究为利用遥感影像实时监控鄱阳湖水情空间动态变化提供了可行的方法,对湖泊、水库的泛洪监测、调洪功能分析具有重要意义。  相似文献   

10.
进入21世纪以来,长江干流上游水库群运行和鄱阳湖区采砂等人类活动对鄱阳湖与长江之间水沙交换过程产生了重要影响,加速了江湖关系演变。主要采用Mann-Kendall趋势检验法和其他统计分析法,分析了近50年来鄱阳湖水位变化阶段性和趋势性特征,并探讨了长江干流上游水库群调节和湖区采砂活动对鄱阳湖水位变化的影响机制。结果显示:2000~2014年鄱阳湖水位分阶段降低,2006~2014年水位降至最低,比2000年前低了1.08m。2000年之后,鄱阳湖全年、汛期和枯季平均水位都有减少趋势,特别是10月份平均水位有非常显著的减少趋势;不同季节主湖区与入江水道水位变化趋势不一致。长江干流上游水库群调节对鄱阳湖水位影响存在时空差异,水库群蓄水期加剧了鄱阳湖水位下降的幅度。人工采砂活动对鄱阳湖水位的影响在枯季尤其是冬季影响更明显。合理调度长江干流上游水库群及湖区采砂活动对维护鄱阳湖和长江关系的健康维持具有重要意义。  相似文献   

11.
胡四一  施勇 《水科学进展》1999,10(3):242-250
采用描述江湖洪水运动的数学模型,对长江中游1998年洪水进行实况复演和还原计算,定量分析三口分流变化、洞庭湖湖容扩大、分蓄洪运用对荆江河段、洞庭湖区以及城陵矶至汉口河段水情的相对影响,结合定性的物理解释,深入探讨了1998洪水高洪水位的形成原因及其与江湖水情的相互作用规律,并对退田还湖和三峡水库的防洪作用进行了论证。  相似文献   

12.
鄱阳湖调蓄能力受“五河”(赣江、抚河、信江、饶河、修水,以下简称五河)及长江干流的双重影响,三峡水库运用后,干流水文情势变化影响鄱阳湖与长江之间的水量交换。基于实测资料统计和湖口出流影响因素分析,建立了一种新的鄱阳湖出流及临界调蓄水位的计算公式,进而对三峡水库运用前后鄱阳湖各月调蓄水量的变化情况进行了定量分析。研究结果表明,长江干流和五河来流通过改变星湖落差和湖口水位来影响湖口出流及湖泊调蓄水量,但影响过程及影响量有所差异,若湖口水位不变,五河入流每增加1000m^3/s,湖口出流约增加304m^3/s,九江流量每增加1000m^3/s,湖口出流约减小723m^3/s。三峡水库运用会改变湖泊调蓄水量,年内各月相比,9月鄱阳湖水量减小约49.4%,5月鄱阳湖水量增加约47.7%。  相似文献   

13.
尹志杰  王容  李磊  赵兰兰 《水文》2019,39(2):86-91
2017年6月下旬至7月初,受持续强降雨影响,长江发生中游区域性大洪水。以实时报汛数据为基础,分析长江"2017·07"暴雨洪水特性,依据洪峰水位判断,强降雨导致洞庭湖水系湘江发生超历史最高水位特大洪水,资水、沅江发生超保证水位大洪水,洞庭湖超过保证水位;鄱阳湖水系乐安河上游发生超历史最高水位特大洪水,昌江、乐安河中下游、修水发生10a一遇较大洪水,鄱阳湖超过警戒水位;长江干流莲花塘以下江段全线超过警戒水位。在应对此次洪水过程中,长江上中游重点水库防洪效益十分明显,有效避免中游干流莲花塘至螺山江段超保,缩短洞庭湖城陵矶站超保时间6d左右。  相似文献   

14.
长江中游洪灾形成的地学分析   总被引:7,自引:0,他引:7       下载免费PDF全文
地质地貌条件是长江中游洪灾形成的背景条件,近代洪水位不断上升是人-地不和谐作用下流域环境系统演化的结果.人类作用导致的多流归槽改变了长江中游河流的地貌过程和水文特性,致使洪水过程显著;大堤修筑导致堤外河漫滩出现泥沙加积,自1650年荆江大堤合拢以来,边滩总体淤积厚度为2.8~11.0m,平均淤积速率12.54~25.64mm/a;围湖造田导致江汉-洞庭平原蓄洪空间减少和"小水大灾"局面的形成;漫滩筑堤围垸严重影响了长江行洪,仅荆江段就有围筑的民垸84个,总面积为4895.95km2,民垸面积是泄洪面积的近9倍.因此,在认识自然规律的基础上,正确协调人-地-水关系,重建良性循环的流域环境系统,是解决长江中游的水患的根本出路.  相似文献   

15.
关于长江中游洪灾问题的思考   总被引:2,自引:0,他引:2  
中国是一个水灾频发的国家 ,长江中游历来就是重灾区。 1998年的长江洪水是 1954年以来最大的一次全流域性洪水 ,高水位持续时间长 ,洪水量大 ,洪水遭遇情况恶劣是这次长江汛期的突出特点 ,由此造成的损失十分严重。导致长江中游洪灾的原因是众多的 ,其中气候异常是最直接的影响因素 ,但过度围湖垦殖与江湖关系失调亦是洪涝灾害日趋严重的一个重要原因。由于自然演变和人类活动的共同作用 ,长江中游河湖环境越来越不利于超额洪水的排泄。江汉湖群、洞庭湖和鄱阳湖面积缩小 ,容积减少 ,对河流水量的调蓄作用大大降低。同时荆江已演变为典型的弯曲河道 ,成为防洪的重点地段。荆江大堤的修建隔断了江湖联系 ,改变了中游河湖关系。所有这些因素都使得中游洪灾日益加重。为了实现区域可持续发展 ,迫切需要建立一套完善的抗洪减灾防御体系。  相似文献   

16.
鄱阳湖对长江洪水调蓄功能的分析   总被引:3,自引:1,他引:3  
李荣昉  吴敦银  刘影  冯启旭 《水文》2003,23(6):12-17
通过建立洪水模拟模型,分析计算出鄱阳湖调蓄长江洪水的功能有限,分析了将湖区圩垸还湖对长江洪水的调蓄功能,提出了对鄱阳湖实行人工控制、更好地调蓄洪水的建议,将为减轻长江中下游的洪水灾害做出更大贡献。  相似文献   

17.
Tidal marsh (re)creation on formerly embanked land is increasingly executed along estuaries and coasts in Europe and the USA, either by restoring complete or by reduced tidal exchange. Ecosystem functioning and services are largely affected by the hydro-geomorphologic development of these areas. For natural marshes, the latter is known to be steered by feedbacks between tidal inundation and sediment accretion, allowing marshes to reach and maintain an equilibrium elevation relative to the mean sea level. However, for marsh restoration sites, these feedbacks may be disturbed depending on the restoration design. This was investigated by comparing the inundation-elevation change feedbacks in a natural versus restoration site with reduced tidal exchange in the Scheldt estuary (Belgium). This study analyzes long-term (9 years) datasets on elevation change and tidal inundation properties to disentangle the different mechanisms behind this elevation-inundation feedback. Moreover, subsequent changes in sediment properties that may affect this feedback were explored. In the restoration area with reduced tidal exchange, we found a different elevation-inundation feedback than on natural marshes, which is a positive feedback on initially high sites (i.e., sediment accretion leads to increasing inundation, hence causing accelerating sediment accretion rates) and a gradual silting up of the whole area. Furthermore, there is evidence for the presence of a relict consolidated sediment layer. Consequently, shallow subsidence is less likely to occur. Although short-term ecological development of the tidal marsh was not impeded, long-term habitat development may be affected by the differences in hydro-geomorphological interactions. An increase of inundation frequency on the initially high sites may cause inhibition of habitat succession or even reversed succession. Over time, the climax state of the restoration area may be different compared to natural marshes. Moreover, sediment-related ecosystem services, such as nutrient and carbon burial, may be positively influenced because of continuing sedimentation, although flood water storage potential will decrease with increasing elevation. Depending on the restoration goals, ecosystem trajectories and delivery of ecosystem services can be controlled by adaptive management of the tidal volume entering the restoration area.  相似文献   

18.
三峡工程的运行对鄱阳湖防洪形势存在潜在影响。以三峡-鄱阳湖系统为典型,采用基于copula理论的多维联合分布函数,建立三峡工程运行前长江-鄱阳湖-"五河"(赣江、抚河、信江、饶河、修河)系统中水文要素之间的联合概率分布及条件概率分布,并假设该条件分布关系在三峡工程运行前后保持不变;估计三峡工程运行后长江水文要素的概率分布,结合前面的条件概率分布,可以得到三峡工程运行后研究变量的概率分布;对比分析前后概率分布的变化,即可从统计角度评价三峡水库运行对鄱阳湖水文情势的影响。研究表明:三峡工程运行对鄱阳湖水位有一定影响;5、6月份三峡预泄,将增高鄱阳湖水位,其中,平均水位的增幅大于最高水位增幅,低水增幅大于高水增幅;三峡预泄影响下,湖区圩堤堤前水位没有超过原有堤防设计水位,没有降低湖区圩堤的防洪标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号