首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new theory of the superrotation of upper atmosphere is worked out on the basis of global deposition of meteoroids assuming that a certain constant influx of meteoroids is continually falling upon the Earth's atmosphere. On the average the meteoroids are shown to carry a greater amount of orbital angular momentum than that corresponding to the Earth's orbit about the Sun. It is argued that the excess of orbital angular momentum appears as extra spin angular momentum in the atmospheric layer in which the meteoroids are arrested and this is used to calculate the velocity difference which can be maintained across a certain layer of the atmosphere. It is found that a global deposition of 34 tons/day of meteoric material is required to account for the observed superrotation which agrees with the recent estimates on meteoric mass influx on the Earth.  相似文献   

2.
The meteoric influx explanation of superrotation (Mitra, 1974) is re-examined. It is shown that the excess orbital angular momentum of the meteoroids is transferred to the region below about 110 km, and thus can probably not account for the superrotation of the 150–400 km atmospheric layer.  相似文献   

3.
4.
The theory of superrotation of the Earth's atmosphere by global deposition of meteoroids recently developed by the author (Mitra, 1974) is extended after a slight refinement to explain the rotation period of Venusian clouds. A satisfactory agreement with observations is obtained.  相似文献   

5.
Recent studies have attributed certain properties of the Earth's atmosphere to excess orbita angular momentum of impinging meteoroids. A realistic analysis of meteor observations does not support the existence of this excess.  相似文献   

6.
In the present paper the radiation production and energy deposition by ring current protons precipitated along magnetic field lines into the mid-latitude upper atmosphere is investigated. Specifically, we are interested in protons lost from the ring current by plasma instabilities. We first determine the magnitude and sharpness of the atmospheric loss cone. We then study the behavior of the precipitated hydrogen particles in the denser atmosphere using a Monte Carlo calculation. It is found that the energy deposition and radiation production will critically depend on how far the ring current protons diffuse into the loss cone before being neutralized in the atmosphere; this in turn will depend on the strength of the plasma turbulence in the ring current belt region.  相似文献   

7.
Cassini results indicate that solar photons dominate energy deposition in Titan’s upper atmosphere. These dissociate and ionize nitrogen and methane and drive the subsequent complex organic chemistry. The improved constraints on the atmospheric composition from Cassini measurements demand greater precision in the photochemical modeling. Therefore, in order to quantify the role of solar radiation in the primary chemical production, we have performed detailed calculations for the energy deposition of photons and photoelectrons in the atmosphere of Titan and we validate our results with the Cassini measurements for the electron fluxes and the EUV/FUV emissions. We use high-resolution cross sections for the neutral photodissociation of N2, which we present here, and show that they provide a different picture of energy deposition compared to results based on low-resolution cross sections. Furthermore, we introduce a simple model for the energy degradation of photoelectrons based on the local deposition approximation and show that our results are in agreement with detailed calculations including transport, in the altitude region below 1200 km, where the effects of transport are negligible. Our calculated, daytime, electron fluxes are in good agreement with the measured fluxes by the Cassini Plasma Spectrometer (CAPS), and the same holds for the measured FUV emissions by the Ultraviolet Imaging Spectrometer (UVIS). Finally, we present the vertical production profiles of radicals and ions originating from the interaction of photons and electrons with the main components of Titan’s atmosphere, along with the column integrated production rates at different solar zenith angles. These can be used as basis for any further photochemical calculations.  相似文献   

8.
The diffusive motion of initially ellipsoidal plasma irregularities or ion clouds in the Earth's upper atmosphere is studied theoretically using a model similar to that described by Pickering (1972) for an initially spherical cloud. The work presented here concerns irregularities with major to minor axis ratio between 10:1 and 200:1 at each of the altitudes 97.5 km, 102 km and 114 km (where the ionization could be produced by meteors) and between approximately 200:1 and 1000:1 for altitudes 210 km and 300 km. In particular the effect of the space-charge electric field on the nature of the diffusion process is discussed. The possible effects of ionospheric electric fields and possible relevance to artificial Ba+ clouds released in the upper atmosphere are discussed in the second section.  相似文献   

9.
The process of non-linear ambipolar diffusion in the region overlying the solar surface can be an effective mechanism for producing sharp magnetic structures and current sheets. These may be the sites responsible for the occurrence of connectivity of magnetic field lines, and the subsequent explosive input of energy for heating of some of the features in the atmosphere of the Sun..  相似文献   

10.
Magnetohydrodynamic formulation has been used to deduce the velocity distribution of the upper atmospheric movement caused by the auroral electric field at the thermospheric height. The expressions for Joule heating and viscous heating are obtained. Numerical analysis has been made to estimate their magnitudes as well as the rate of their variations with time. The results are presented graphically.  相似文献   

11.
A kinetic model is developed for the prediction of upper atmospheric i.r. radiation from the vibrational bands of NO. The model is appropriate to both the quiescent and aurorally excited nighttime atmosphere and has been exercised to examine the variation in NO radiation levels which can result from both natural atmospheric variability and uncertainties in kinetic parameters. Comparisons between model predictions and i.r. radiance data are presented.  相似文献   

12.
Gladstone GR  Allen M  Yung YL 《Icarus》1996,119(1):1-52
The hydrocarbon photochemistry in the upper atmosphere of Jupiter is investigated using a one-dimensional, photochemical-diffusive, and diurnally averaged model. The important chemical cycles and pathways among the major species are outlined and a standard model for the North Equatorial Belt region is examined in detail. It is found that several traditionally dominant chemical pathways among the C and C2 species are replaced in importance by cycles involving C-C4 species. The pressure and altitude profiles of mixing ratios for several observable hydrocarbon species are compared with available ultraviolet- and infrared-derived abundances. The results of sensitivity studies on the standard model with respect to variations in eddy diffusion profile, solar flux, atomic hydrogen influx, latitude, temperature, and important chemical reaction rates are presented. Measured and calculated airglow emissions of He at 584 angstroms and H at 1216 angstroms are also used to provide some constraints on the range of model parameters. The relevance of the model results to the upcoming Galileo mission is briefly discussed. The model is subject to considerable improvement; there is a great need for laboratory measurements of basic reaction rates and photodissociation quantum yields, even for such simple species as methylacetylene and allene. Until such laboratory measurements exist there will be considerable uncertainty in the understanding of the C3 and higher hydrocarbons in the atmospheres of the jovian planets.  相似文献   

13.
Modeling the effects of atmospheric drag is one of the more important problems associated with the determination of the orbit of a near-earth satellite. Errors in the drag model can lead to significant errors in the determination and prediction of the satellite motion. The uncertainty in the drag acceleration can be attributed to three separate effects: (a) errors in the atmospheric density model, (b) errors in the ballistic coefficient, and (c) errors in the satellite relative velocity. In a number of contemporary satellite missions, the requirements for performing the orbit determination and predictions in near real-time has placed an emphasis on density model computation time as well as the model accuracy. In this investigation, a comparison is made of three contemporary atmospheric density models which are candidates for meeting the current orbit computation requirements. The models considered are the analytic Jacchia-Roberts model, the modified Harris-Priester model, and the USSR Cosmos satellite derived density model. The computational characteristics of each of the models are compared and a modification to the modified Harris-Priester model is proposed which improves its ability to represent the diurnal variation in the atmospheric density.This investigation was supported by the NASA Goddard Spaceflight Center under contract NAS5-20946 and Contract NSG 5154.  相似文献   

14.
Evaluations are presented of the time-average heating at different latitudes and heights due to energy flux divergence of the equinox diurnal and semidiurnal tides calculated by Forbes (1982a,h)from 0 to 400 km.It is found that diurnal tidal heating maximizes in the region of 80 km and semidiurnal has a sharp maximum at 108 km. Thermospheric diurnal oscillations give rise to a second region of heating that maximizes at 200 km and effectively transports energy from low to high latitudes.Global means are evaluated for the time-averaged vertical energy fluxes and heating rates: below 130 km, the results for the diurnal tide agree with those for the (1,1) mode alone, and for the semidiurnal tide, heating rates below 130 km are the same as those that would he obtained without the thermospheric semidiurnal excitation.Comparisons are made from 90 to 170 km between the combined diurnal and semidiurnal heating rates and previously reported rates due to e.u.v. radiation, Sq currents and gravity waves.  相似文献   

15.
Joule heating has been shown to be very effective in increasing electronic temperature in the upper atmosphere. It is found theoretically that the electronic temperature can rise up to several thousands °K soon after certain ionospheric current disturbances occur, while the temperature of neutral particles increases only very slowly. Temperatures in various conditions have been computed and are found to be compatible with observation. It is also possible that the high electronic temperatures may explain the excitation of certain auroral glows.  相似文献   

16.
The activity of Librids on 4 April 1973 was detected by the rise of the twilight luminosity. The ratio of circumzenithal luminosity in the antisolar to solar azimuth also increases in the presence of cosmic dust in the upper atmosphere.  相似文献   

17.
A study of the upper-atmosphere variations induced by solar activity was made by using 29,574 densities derived from the drag of 10 satellites in the interval 1958–1971. In a comparison of the respective merits of the Ca II-plage index and the 10.7 cm solar flux to represent the erratic (‘27 day’) component of the variation, the latter is shown to give invariably better results. The ratio ΔTδF of the temperature variations to the variations of the decimetric flux is shown to vary considerably with solar activity, but little with height or with local solar time. The time lag of the atmospheric variations behind those of the decimetric flux varies from a minimum of 0.9 day at noon to 1.6 days at midnight.  相似文献   

18.
Density profiles for CO, O, and O2 in the Cytherean atmosphere above 90 km are plotted with eddy diffusion coefficient (K) as a parameter, subject to the constraint that the mixing ratios of CO and O2 approach their observed value or values under the observed upper limit at the lower boundary. It is then shown that the value of K puts upper limits on the amount of hydrogen (in the form of H2O, HCl, and H2) the atmosphere near 90km can contain. This value is a function of the density and temperature of hydrogen at the critical level and the magnitude of the total escape flux, where unspecified flux mechanisms other than thermal are postulated ad hoc. In general these constraints call for large values of K to accomodate the atomic hydrogen produced by measured mixing ratios of HCl and H2O. Hence they constrain thee amount of O in the upper atmosphere to values well under 1% at 130 km unless there are very large hydrogen escape fluxes, 107 cm?2sec?1 or larger. The freedom to assume arbitrary amounts of H2 in the atmosphere is also restricted. We suggest either very effective escape mechanisms—despite low exospheric hydrogen densities—or novel excitation mechanisms for O(33S) and O(35S) in the upper atmosphere.  相似文献   

19.
Problems of hypervelocity interaction of large bodies with the Earth's atmosphere has attracted more attention during last few years. Several new concepts of dynamical explosive fragmentation of strong interplanetary bodies at extremely low heights under dynamic pressures of hundreds of Mdyn/cm2 were published. Comparison of these theoretical models with precise observations has not yet been done, because data on atmospheric penetration of large bodies are not available.Single body theory with sudden gross-fragmentation was successfully applied to photographic observations of fireballs. The largest bodies observed have sizes up to several meters. The highest dynamic pressure acting on these observed bodies reached slightly over 100 Mdyn/cm2. All these photographed fireballs follow theoretical concepts of motion of either the single-body or the single-body with gross-fragmentation under dynamic pressures in the range from 1 to 12 Mdyn/cm2. When this theory has been applied to photographic observations, typical standard deviation of the distance flown in the trajectory has been found in a range of 10 to 30 m for one observed distance corresponding also to the geometrical precision of the observations. This model can explain all good observations of atmospheric trajectories of meteoroids up to initial sizes of several meters with high precision. Also the three photographed and one videorecorded meteorite falls fit to this concept completely.The most important phenomenon of atmospheric motion of meteoroids up to several meters in size is the ablation with final stage of hot vapor from ablated material. Spectral records of meteoroids up to several meters in size, down to a height of 16 km and for various velocities show overwhelming radiation of rather low excited metalic atoms (several eV; temperatures 3000 to 5000 K) in the pass-band of visible light. Radiation from high excited atoms of either atmospheric or ablational origin forms only an insignificant part of visible radiation.Contrary to this regime, theories of very large bodies contain ablation mostly in the form of explosive fragmentation. Ablation at higher heights is negligible. This absence of classical ablation and fragmentation at low dynamic pressures for large bodies (contrary to observations of smaller bodies) brings the body to lower heights without too much change of size and makes thus the dynamic pressure much higher than in reality. In any case the change of body dynamics and radiation going from sizes of several meters (observed regime) to sizes of several tens of meters (hypothetical regime) may be crucial for our understanding of dynamics and radiation of large body penetration through the low atmosphere to the Earth's surface. Observations of atmospheric trajectory of these bodies with sufficiently high precision are extremely needed.  相似文献   

20.
G. Kockarts 《Solar physics》1981,74(2):295-320
Several semi-empirical models of the terrestrial upper atmosphere are presently available. These models take into account solar activity effects by using the solar decimetric flux as an index. Such a procedure is a consequence of the lack of continuous determinations of the solar spectrum directly responsible for the physical structure of the upper atmosphere. Variations of the thermopause temperature are discussed. Using five sets of solar irradiances measured in the ultraviolet and in the extreme ultraviolet, the penetration of solar radiation is analyzed as a function of solar activity. Several examples of absorption profiles and ion production rates are discussed for variable conditions. Various energetic effects are also described. All computations are made for physical conditions above Scheveningen (52.08° N) where the 14th ESLAB symposium was held.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号