首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We aim at understanding the statistical properties of luminous sub-millimeter (submm) galaxies (SMGs) in the context of cosmological structure formation. By utilizing a cosmological N-body simulation to calculate the distribution of dark halos in the Universe, we consider the dust enrichment in individual halos by Type II supernovae (SNe II). The SN II rate is estimated under a star formation activity which is assumed to occur on a dynamical timescale in the dark matter potential. Our simple framework successfully explains the luminosity function, the typical star formation rate, and the typical dust mass of an observational SMG sample at z~3. We also examine the clustering properties of SMGs, since a positive cross correlation between SMGs and Lyα emitters (LAEs) is indeed observed by a recent observation. In the simulation, we select SMGs by FIR dust luminosity >1012 L , while LAEs are chosen such that the age and the virial mass are consistent with the observed LAE properties. The SMGs and LAEs selected in this way show a spatial cross correlation whose strength is consistent with the observation. This confirms that the SMGs really trace the most clustered regions at z~3 and that their luminosities can be explained by the dust accumulation as a result of their star formation activities. We extend our prediction to higher redshifts, finding that a statistical sample of submm galaxies at z≥6 can be obtained by ALMA with a 100 arcmin2 survey. With the same survey, a few submm galaxies at z~10 may be detected.  相似文献   

2.
Giant Low Surface Brightness (GLSB) galaxies are amongst the most massive spiral galaxies that we know of in our Universe. Although they fall in the class of late type spiral galaxies, their properties are far more extreme. They have very faint stellar disks that are extremely rich in neutral hydrogen gas but low in star formation and hence low in surface brightness. They often have bright bulges that are similar to those found in early type galaxies. The bulges can host low luminosity Active Galactic Nuclei (AGN) that have relatively low mass black holes. GLSB galaxies are usually isolated systems and are rarely found to be interacting with other galaxies. In fact many GLSB galaxies are found under dense regions close to the edges of voids. These galaxies have very massive dark matter halos that also contribute to their stability and lack of evolution. In this paper we briefly review the properties of this unique class of galaxies and conclude that both their isolation and their massive dark matter halos have led to the low star formation rates and the slower rate of evolution in these galaxies.  相似文献   

3.
We discuss observations of the first galaxies, within cosmic reionization, at centimeter and millimeter wavelengths. We present a summary of current observations of the host galaxies of the most distant QSOs (z∼6). These observations reveal the gas, dust, and star formation in the host galaxies on kpc-scales. These data imply an enriched ISM in the QSO host galaxies within 1 Gyr of the big bang, and are consistent with models of coeval supermassive black hole and spheroidal galaxy formation in major mergers at high redshift. Current instruments are limited to studying truly pathologic objects at these redshifts, meaning hyper-luminous infrared galaxies (L FIR ∼1013 L ). ALMA will provide the one to two orders of magnitude improvement in millimeter astronomy required to study normal star forming galaxies (i.e. Ly-α emitters) at z∼6. ALMA will reveal, at sub-kpc spatial resolution, the thermal gas and dust—the fundamental fuel for star formation—in galaxies into cosmic reionization.  相似文献   

4.
The observational investigation of the evolution of the star formation activities of early-type galaxies (ETGs) with redshifts helps us to understand the formation and evolution of this kind of galaxies. Combined with the highresolution images from HST/ACS (Hubble Space Telescope/Advanded Camera for Surveys) of the GEMS (Galaxy Evolution fromMorphology and SEDs) survey and the multi-band data from Spitzer, GALEX (Galaxy Evolution Explorer) and so on in the CDFS (Chandra Deep Field South) field, a complete sample including 456 ETGs with their redshifts in the range of 0.2 ≤ z ≤ 1.0 is selected on the basis of morphology, color and stellar mass. By using the stacking technique, the ultraviolet and infrared average luminosities of sample galaxies are measured, and the star formation rates of ETGs are estimated. The results indicate that the star formation rates of ETGs are relatively low (< 3 M yr−1) and decrease with decreasing redshifts. The mass contributed by the star formation since z = 1 is less than 15%. The analyses of stellar populations also confirm that the bulk of the population of massive ETGs was formed in the early universe (z > 2).  相似文献   

5.
ALMA provides unprecedented sensitivity and resolution to study gas and dust emission in the millimeter and submillimeter bands. The magnitude of the improvement is such that not only conventional studies can be done much better but entirely new tools and research fields should also become accessible. In this article, I examine several specific areas where new capabilities of ALMA will bring significant quantitative improvements to the determination of star formation rate and properties of the gas fueling the activities. I propose a survey of nearby galaxies with well measured metallicity gradient during the early phase of the ALMA operation as one of the key science projects.  相似文献   

6.
7.
We present predictions for the abundance and nature of extremely red objects (EROs) in the Λ cold dark matter model. EROs are red, massive galaxies observed at   z ≥ 1  and their numbers and properties pose a challenge to hierarchical galaxy formation models. We compare the predictions from two published models, one of which invokes a 'superwind' to regulate star formation in massive haloes and the other which suppresses gas cooling in haloes through 'radio-mode' active galactic nucleus (AGN) feedback. The superwind model underestimates the number counts of EROs by an order of magnitude, whereas the radio-mode AGN feedback model gives excellent agreement with the number counts and redshift distribution of EROs. In the AGN feedback model the ERO population is dominated by old, passively evolving galaxies, whereas observations favour an equal split between old galaxies and dusty starbursts. Also, the model predicts a more extended redshift distribution of passive galaxies than is observed. These comparisons suggest that star formation may be quenched too efficiently in this model.  相似文献   

8.
9.
We develop a coupled model for the evolution of the global properties of the intergalactic medium (IGM) and the formation of galaxies, in the presence of a photoionizing background due to stars and quasars. We use this model to predict the thermodynamic history of the IGM when photoionized by galaxies forming in a cold dark matter (CDM) universe. The evolution of the galaxies is calculated using a semi-analytical model, including a detailed treatment of the effects of tidal stripping and dynamical friction on satellite galaxies orbiting inside larger dark matter haloes. We include in the model the negative feedback on galaxy formation from the photoionizing background. Photoionization inhibits galaxy formation in low-mass dark matter haloes in two ways: (i) heating of the IGM and inhibition of the collapse of gas into dark haloes by the IGM pressure, and (ii) reduction in the rate of radiative cooling of gas within haloes. The result of our method is a self-consistent model of galaxy formation and the IGM. The IGM is reheated twice (during reionization of H  i and He  ii ), and we find that the star formation rate per unit volume is slightly suppressed after each episode of reheating. We find that galaxies brighter than L are mostly unaffected by reionization, while the abundance of faint galaxies is significantly reduced, leading to present-day galaxy luminosity functions with shallow faint-end slopes, in good agreement with recent observational data. Reionization also affects other properties of these faint galaxies, in a readily understandable way.  相似文献   

10.
We present the first results of our Hubble Space Telescope HST WFPC2 F814W snapshot imaging survey, targeting virtually all sub-mJy decimetric radio-selected star-forming galaxies. The radio selection at ∼1 GHz is free from extinction effects and the radio luminosities are largely unaffected by AGN contamination, making these galaxies ideal tracers of the cosmic star formation history. A subsample of four targets is presented here, selected at 1.4 GHz from the spectroscopically homogenous and complete samples of Benn et al. and Hopkins et al. The redshifts are confined to a narrow range around z ∼0.2, to avoid differential evolution, with a radio luminosity close to L ∗ where the galaxies dominate the comoving volume-averaged star formation rate. We find clearly disturbed morphologies resembling those of ultraluminous infrared galaxies, indicating that galaxy interactions may be the dominant mechanism for triggering star formation at these epochs. The morphologies are also clearly different from those of coeval quasars and radio galaxies, as found in star-forming galaxies selected at other wavelengths. This may prove challenging for models that propose direct causal links between AGN evolution and the cosmic star formation history at these epochs. The asymmetries are typically much larger than seen in the Canada–France Redshift Survey at similar redshifts, optical luminosities and H α -derived star formation rates, indicating the possible existence of an obscuration-related morphological bias in such samples.  相似文献   

11.
K.E. Johnson   《New Astronomy Reviews》2004,48(11-12):1337
The Square Kilometer Array (SKA) will enable studies of star formation in nearby galaxies with a level of detail never before possible outside of the Milky Way. Because the earliest stages of stellar evolution are often inaccessible at optical and near-infrared wavelengths, high spatial resolution radio observations are necessary to explore extragalactic star formation. The SKA will have the sensitivity to detect individual ultracompact HII regions out to the distance of nearly 50 Mpc, allowing us to study their spatial distributions, morphologies, and populations statistics in a wide range of environments. Radio observations of Wolf-Rayet stars outside of the Milky Way will also be possible for the first time, greatly expanding the range of conditions in which their mass loss rates can be determined from free-free emission. On a vastly larger scale, natal of super star clusters will be accessible to the SKA out to redshifts of nearly z 0.1. The unprecedented sensitivity of radio observations with the SKA will also place tight constraints on the star formation rates as low as 1M yr−1 in galaxies out to a redshift of z 1 by directly measuring the thermal radio flux density without assumptions about a galaxy’s magnetic field strength, cosmic ray production rate, or extinction.  相似文献   

12.
We explore the role of active galactic nuclei (AGN) in establishing and/or maintaining the bimodal colour distribution of galaxies by quenching their star formation and hence, causing their transition from the blue to the red cloud. Important tests for this scenario include (i) the X-ray properties of galaxies in the transition zone between the two clouds and (ii) the incidence of AGN in post-starbursts, i.e. systems observed shortly after (<1 Gyr) the termination of their star formation. We perform these tests by combining deep Chandra observations with multiwavelength data from the All-wavelength Extended Groth strip International Survey (AEGIS). Stacking the X-ray photons at the positions of galaxies  (0.4 < z < 0.9)  not individually detected at X-ray wavelengths suggests a population of obscured AGN among sources in the transition zone and in the red cloud. Their mean X-ray and mid-infrared (IR) properties are consistent with moderately obscured low-luminosity AGN, Compton thick sources or a mix of both. Morphologies show that major mergers are unlikely to drive the evolution of this population but minor interactions may play a role. The incidence of obscured AGN in the red cloud (both direct detections and stacking results) suggests that black hole (BH) accretion outlives the termination of the star formation. This is also supported by our finding that post-starburst galaxies at z ≈ 0.8 and AGN are associated, in agreement with recent results at low z . A large fraction of post-starbursts and red cloud galaxies show evidence for at least moderate levels of AGN obscuration. This implies that if AGN outflows cause the colour transformation of galaxies, then some nuclear gas and dust clouds either remain unaffected or relax to the central galaxy regions after quenching their star formation.  相似文献   

13.
Void regions of the Universe offer a special environment for studying cosmology and galaxy formation, which may expose weaknesses in our understanding of these phenomena. Although galaxies in voids are observed to be predominately gas rich, star forming and blue, a subpopulation of bright-red void galaxies can also be found, whose star formation was shutdown long ago. Are the same processes that quench star formation in denser regions of the Universe also at work in voids?
We compare the luminosity function of void galaxies in the 2dF Galaxy Redshift Survey, to those from a galaxy formation model built on the Millennium simulation. We show that a global star formation suppression mechanism in the form of low-luminosity 'radio-mode' active galactic nuclei (AGN) heating is sufficient to reproduce the observed population of void early types. Radio-mode heating is environment independent other than its dependence on dark matter halo mass, where, above a critical mass threshold of approximately   M vir∼ 1012.5 M  , gas cooling on to the galaxy is suppressed and star formation subsequently fades. In the Millennium simulation, the void halo mass function is shifted with respect to denser environments, but still maintains a high-mass tail above this critical threshold. In such void haloes, radio-mode heating remains efficient and red galaxies are found; collectively these galaxies match the observed space density without any modification to the model. Consequently, galaxies living in vastly different large-scale environments but hosted by haloes of similar mass are predicted to have similar properties, consistent with observations.  相似文献   

14.
The unsurpassed sensitivity and resolution of the Square Kilometer Array (SKA) will make it possible for the first time to probe the continuum emission of normal star forming galaxies out to the edges of the universe. This opens the possibility for routinely using the radio continuum emission from galaxies for cosmological research as it offers an independent probe of the evolution of the star formation density in the universe. In addition it offers the possibility to detect the first star forming objects and massive black holes.In deep surveys SKA will be able to detect Hi in emission out to redshifts of z ≈ 2.5 and hence be able to trace the conversion of gas into stars over an era where considerable evolution is taking place. Such surveys will be able to uniquely determine the respective importance of merging and accreting gas flows for galaxy formation over this redshift range (i.e. out to when the universe was only one third its present age). It is obvious that only SKA will able to see literally where and how gas is turned into stars.These and other aspects of SKA imaging of galaxies will be discussed.  相似文献   

15.
Starbursts are systems with very high star formation rate per unit area. They are the preferred place where massive stars form; the main source of thermal and mechanical heating in the interstellar medium, and the factory where the heavy elements form. Thus, starbursts play an important role in the origin and evolution of galaxies. The similarities between the physical properties of local starbursts and high-z star-forming galaxies, highlight the cosmological relevance of starbursts. On the other hand, nearby starbursts are laboratories where to study violent star formation processes and their interaction with the interstellar and intergalactic media, in detail and deeply. Starbursts are bright at ultraviolet (UV) wavelengths, as they are in the far-infrared, due to the ‘picket-fence’ interstellar dust distribution. After the pioneering IUE program, high spatial and spectral resolution UV observations of local starburst galaxies, mainly taken with HST and FUSE, have made relevant contributions to the following issues:
  • The determination of the initial mass function (IMF) in violent star forming systems in low and high metallicity environments, and in dense (e.g. in stellar clusters) and diffuse environments: A Salpeter IMF with high-mass stars constrains well the UV properties.
  • The modes of star formation: Starburst clusters are an important mode of star formation. Super-stellar clusters have properties similar to globular clusters.
  • The role of starbursts in AGN: Nuclear starbursts can dominate the UV light in Seyfert 2 galaxies, having bolometric luminosities similar to the estimated bolometric luminosities of the obscured AGN.
  • The interaction between massive stars and the interstellar and intergalactic media: Outflows in cold, warm and coronal phases leave their imprints on the UV interstellar lines. Outflows of a few hundred km s?1 are ubiquitous phenomena in starbursts. These metal-rich outflows and the ionizing radiation can travel to the halo of galaxies and reach the intergalactic medium.
  • The contribution of starbursts to the reionization of the universe: In the local universe, the fraction of ionizing photons that escape from galaxies and reach the intergalactic medium is of a few percent. However, in high-z star-forming galaxies, the results are more controversial.
  • Despite the very significant progress over the past two decades in our understanding of the starburst phenomenon through the study of the physical processes revealed at satellite UV wavelengths, there are important problems that still need to be solved. High-spatial resolution UV observations of nearby starbursts are crucial to further progress in understanding the violent star formation processes in galaxies, the interaction between the stellar clusters and the interstellar medium, and the variation of the IMF. High-spatial resolution spectra are also needed to isolate the light from the center to the disk in UV luminous galaxies at z = 0.1–0.3 found by GALEX. Thus, a new UV mission furnished with an intermediate spectral resolution long-slit spectrograph with high spatial resolution and high UV sensitivity is required to further progress in the study of starburst galaxies and their impact on the evolution of galaxies.  相似文献   

    16.
    We present the first results of our X‐shooter observations for a sample of dwarf (–17 < MB < –15) galaxies in nearby (0.04 < z < 0.07) galaxy clusters. This luminosity range is fundamental to trace the evolution of higher‐z star‐forming cluster galaxies down to the present day, and to explore the galaxy scaling relations of early‐type galaxies over a broad mass range. Thanks to high resolution and availability of several lines we can derive the velocity dispersion of the galaxies in this range of luminosities and we begin the construction of the fundamental plane of faint early‐type galaxies (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

    17.
    The submillimeter (submm) extragalactic background light (EBL) traces the integrated star formation history throughout the cosmic time. Deep blank-field 850 μm and 1.4 GHz surveys and optical follow-up have been only able to determine the redshift of ∼20% of the submm EBL. The majority (80%) of the submm EBL is still below the confusion and sensitivity limits of current submm and radio instruments. We break through these limits with stacking analyses on our deep 850 μm image in the GOODS-N and find that the submm EBL mostly comes from galaxies at redshifts around 1.0. This redshift is much lower than the redshift of z=2–3 previously implied from radio identified submm sources. This result significantly decreases the number of high redshift galaxies that may be seen by ALMA.  相似文献   

    18.
    Between gas dynamics and structure of galaxies is a two-way relation. On one hand, gas dynamics in a galaxy is largely determined by the structure of the galaxy, and on the other hand, gas dynamics can gradually alter the galaxy structure through redistribution of mass and angular momentum within the galaxy. The first half of this relation should mostly determine gas distribution and regulate star formation in undisturbed spirals, and the second half has been suggested to cause secular evolution of spiral galaxies—a slow mode of galaxy evolution in the absence of major mergers. Our knowledge on this relation is going to be greatly deepened by the ALMA. Focusing on the galaxy evolution through gas dynamics, I briefly review what we know about the subject. Then I try to look out what the ALMA can do to answer open questions in the field. It is pointed out that the ALMA will be able to fully map all the spiral galaxies between 1 and 25 Mpc at 1″ resolution in 1000 hours.  相似文献   

    19.
    N -body/hydrodynamical simulations of the formation and evolution of galaxy groups and clusters in a Λ cold dark matter (ΛCDM) cosmology are used in order to follow the building-up of the colour–magnitude relation in two clusters and in 12 groups. We have found that galaxies, starting from the more massive, move to the red sequence (RS) as they get aged over times and eventually set upon a 'dead sequence' (DS) once they have stopped their bulk star formation activity. Fainter galaxies keep having significant star formation out to very recent epochs and lie broader around the RS. Environment plays a role as galaxies in groups and cluster outskirts hold star formation activity longer than the central cluster regions. However, galaxies experiencing infall from the outskirts to the central parts keep star formation on until they settle on to the DS of the core galaxies. Merging contributes to mass assembly until z ∼ 1, after which major events only involve the brightest cluster galaxies.
    The emerging scenario is that the evolution of the colour–magnitude properties of galaxies within the hierarchical framework is mainly driven by star formation activity during dark matter haloes assembly. Galaxies progressively quenching their star formation settle to a very sharp 'red and dead' sequence, which turns out to be universal, its slope and scatter being almost independent of the redshift (since at least z ∼ 1.5) and environment.
    Differently from the DS, the operatively defined RS evolves more evidently with z , the epoch when it changes its slope being closely corresponding to that at which the passive galaxies population takes over the star-forming one: this goes from z ≃ 1 in clusters down to 0.4 in normal groups.  相似文献   

    20.
    I present a model for the formation and evolution of a massive disk galaxy, within a growing dark halo whose mass evolves according to cosmological simulations of structure formation. The galactic evolution is simulated with a new three-dimensional chemo-dynamical code, including dark matter, stars and a multi-phase ISM. We follow the evolution from redshift z= 4.85 until the present epoch. The energy release by massive stars and supernovae prevents a rapid collapse of the baryonic matter and delays the maximum star formation until redshift z ≈ 1. The galaxy forms radially from inside-out and vertically from top-to-bottom. Correspondingly, the inner halo is the oldest component, followed by the outer halo, the bar/bulge, the thick and the thin disk. The bulge in the model consists of at least two stellar subpopulations, an early collapse population and a population that formed later in the bar. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号