首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
中国南方森林冠顶高度Lidar反演—以江西省为例   总被引:1,自引:0,他引:1  
董立新  李贵才  唐世浩 《遥感学报》2011,15(6):1308-1321
激光雷达(Lidar)与光学遥感的有效结合对中国南方区域森林冠顶高度反演意义重大,而国产卫星将为中国森林生态研究提供新的数据源。本文联合利用大脚印激光雷达GLA和国产MERSI数据,在实现GLAS波形数据处理和不同地形条件下森林冠顶高度反演算法基础上,建立了区域尺度不同森林类型林分冠顶高度GLAS+MERSI联合反演关系模型,进行了江西地区森林冠顶高度反演。总体上,GLAS激光雷达森林冠顶高度估算精度较高;且在与MERSI 250 m数据的联合反演模型中,针叶林模型精度较好(R2=0.7325);阔叶林次之(R2=0.6095);混交林较差(R2=0.4068)。分析发现,考虑了光学遥感生物物理参数的GLAS+MERSI联合关系模型在区域森林冠顶高度估算中有较高精度,且在空间分布上与土地覆盖数据分布特征非常一致。  相似文献   

2.
汪凌霄  肖鹏峰  冯学智 《遥感学报》2012,16(5):1035-1053
天山中段的山地针叶林带很大程度上影响了该地区整体卫星雪盖的识别精度,多角度卫星遥感技术的发展为林区积雪识别提供了新的途径。本文选取了2000年4月至2001年6月,10个时段研究区内无云覆盖的(Multi-angle Imaging Spectro Radiometer)MISR多角度数据,首先对红光波段不同角度观测结果组成的角度谱图像进行非监督分类,以确定天山林带的分布区域,然后在玛纳斯河中下游与那拉提山东部选取典型像元,分析这些像元红光波段各角度反射率在林区不同积雪覆盖状况下的表现差异。研究发现,若林区存在积雪,0°,±26.1°,±45.6°五个观测角度反射率的平均值大于0.1,在部分降雪月份,后向45.6°观测的反射率大于天顶方向观测的2.5倍。根据这一结论,给出基于MISR数据的研究区不同时段的积雪识别结果。结果表明,MISR红光波段对林区积雪反应敏感,不同角度观测的反射率在林区有雪和无雪时差异较大,故可利用多角度遥感信息进行林区积雪识别。  相似文献   

3.
Detailed forest height data are an indispensable prerequisite for many forestry and earth science applications. Existing research of using Geoscience Laser Altimeter System (GLAS) data mainly focuses on deriving average or maximum tree heights within a GLAS footprint, i.e. an ellipse with a diameter of 65 m. However, in most forests, it is likely that the tree heights within such ellipse are heterogeneous. Therefore, it is desired to uncover detailed tree height variation within a GLAS footprint. To the best of our knowledge, no such methods have been reported as of now. In this study, we aim to characterize tree heights’ variation within a GLAS footprint as different layers, each of which corresponds to trees with similar heights. As such, we developed a new method that embraces two steps: first, a refined Levenberg–Marquardt (LM) algorithm is proposed to decompose raw GLAS waveform into multiple Gaussian signals, within which it is hypothesized that each vegetation signal corresponds to a particular tree height layer. Second, for each layer, three parameters were first defined: Canopy Top Height (CTH), Crown Length (CL), and Cover Proportion (CP). Then we extracted the three parameters from each Gaussian signal through a defined model. In order to test our developed method, we set up a study site in Ejina, China where the dominant specie is Populus euphratica. Both simulated and field tree height data were adopted. With regard to the simulation data, results presented a very high agreement for the three predefined parameters between our results and simulation data. When our methods were applied to the field data, the respective R2 become 0.78 (CTH), CL (R2 = 0.76), CP (R2 = 0.74). Overall, our studies revealed that large footprint GLAS waveform data have the potentials for obtaining detailed forest height variation.  相似文献   

4.
利用激光雷达和多角度频谱成像仪数据估测森林垂直参数   总被引:7,自引:0,他引:7  
植被的结构参数如植被高度、生物量、水平和垂直分布等,是影响陆地与大气能量交换乃至生物圈多样性的重要因素。多数遥感系统虽然可以提供植被水平结构的图像,但是不能提供植被成分垂直分布的信息。大尺度激光雷达仪器如LVIS产生的激光雷达信号,已成功地用于估计树高和森林生物量,然而大多数激光雷达仪器不具备图像能力,只能提供一个区域内的采样数据。其他的遥感数据如多角度高光谱、多频率多时相辐射计或雷达数据,可根据GLAS(Geoscience Laser Altimeter System)采样的测量用来推断出连续的森林结构区域覆盖参数。 MISR(Multi-angle Imaging Spectrometer)对陆表多角度的成像能力,可以通过BRDF的各向异性提供植被的结构信息。结合激光雷达的垂直采样和MISR的图像,区域内乃至全球性的森林空间参数的成像是可能的。ICESat卫星上的GLAS数据、Terra卫星上的MISR数据为区域或全球性森林结构参数提供了可能。本文的研究目的是评估GLAS数据,分析类似于MISR的数据对森林结构参数的估计能力。本文中使用了LVIS、AirMISR和GLAS数据。通过对GLAS树高的测量与GLAS像元内来自LVIS的平均树高对比,发现它们是高度相关的。同时还探讨了多角度频谱成像仪数据预测树高信息的能力,这将在今后区域内森林结构参数映射加以研究。  相似文献   

5.
王显威  程晓  黄华兵  李展 《遥感学报》2013,17(2):439-451
详细阐述了利用GLAS数据和GPS数据生成Dome-A地区DEM的方法。首先进行GLAS数据转化, 便于与GPS数据结合, 提出一种快速搜索GLAS和其光斑(Footprint)覆盖GPS点的算法, 比较GLAS数据和GPS数据发现, 均值差异最大为1.118 m, 最小为0.997 m, 而标准差稳定为5-6 cm, 在进行椭球变换修正之后, 差值最大为0.405 m, 最小为0.284 m;之后利用改进的角度限差法沿测线对GPS数据进行特征点提取, 得到抽稀之后的数据;再利用抽稀之后的GPS数据和处理后的GLAS数据使用克里金插值方法生成研究区DEM。利用1199个GPS点和53个GLAS检验点对最后生成的DEM进行了精度分析, 残差中误差为5 cm, 最大残差绝对值为12 cm。利用原始GPS数据, 原始GPS数据和GLAS数据, 处理后GPS数据利用克立金插值方法分别生成了研究区的DEM, 通过等高线提取分析以及检验点的误差分析, 处理后的GPS数据生成的DEM要优于原始GPS数据的, 证明GPS处理的必要性。  相似文献   

6.
Spaceborne light detection and ranging (LiDAR) enables us to obtain information about vertical forest structure directly, and it has often been used to measure forest canopy height or above-ground biomass. However, little attention has been given to comparisons of the accuracy of the different estimation methods of canopy height or to the evaluation of the error factors in canopy height estimation. In this study, we tested three methods of estimating canopy height using the Geoscience Laser Altimeter System (GLAS) onboard NASA’s Ice, Cloud, and land Elevation Satellite (ICESat), and evaluated several factors that affected accuracy. Our study areas were Tomakomai and Kushiro, two forested areas on Hokkaido in Japan. The accuracy of the canopy height estimates was verified by ground-based measurements. We also conducted a multivariate analysis using quantification theory type I (multiple-regression analysis of qualitative data) and identified the observation conditions that had a large influence on estimation accuracy. The method using the digital elevation model was the most accurate, with a root-mean-square error (RMSE) of 3.2 m. However, GLAS data with a low signal-to-noise ratio (⩽10.0) and that taken from September to October 2009 had to be excluded from the analysis because the estimation accuracy of canopy height was remarkably low. After these data were excluded, the multivariate analysis showed that surface slope had the greatest effect on estimation accuracy, and the accuracy dropped the most in steeply sloped areas. We developed a second model with two equations to estimate canopy height depending on the surface slope, which improved estimation accuracy (RMSE = 2.8 m). These results should prove useful and provide practical suggestions for estimating forest canopy height using spaceborne LiDAR.  相似文献   

7.
The estimation of above ground biomass in forests is critical for carbon cycle modeling and climate change mitigation programs. Small footprint lidar provides accurate biomass estimates, but its application in tropical forests has been limited, particularly in Africa. Hyperspectral data record canopy spectral information that is potentially related to forest biomass. To assess lidar ability to retrieve biomass in an African forest and the usefulness of including hyperspectral information, we modeled biomass using small footprint lidar metrics as well as airborne hyperspectral bands and derived vegetation indexes. Partial Least Square Regression (PLSR) was adopted to cope with multiple inputs and multicollinearity issues; the Variable of Importance in the Projection was calculated to evaluate importance of individual predictors for biomass. Our findings showed that the integration of hyperspectral bands (R2 = 0.70) improved the model based on lidar alone (R2 = 0.64), this encouraging result call for additional research to clarify the possible role of hyperspectral data in tropical regions. Replacing the hyperspectral bands with vegetation indexes resulted in a smaller improvement (R2 = 0.67). Hyperspectral bands had limited predictive power (R2 = 0.36) when used alone. This analysis proves the efficiency of using PLSR with small-footprint lidar and high resolution hyperspectral data in tropical forests for biomass estimation. Results also suggest that high quality ground truth data is crucial for lidar-based AGB estimates in tropical African forests, especially if airborne lidar is used as an intermediate step of upscaling field-measured AGB to a larger area.  相似文献   

8.
This paper presents a method for individual tree crown extraction and characterisation from a canopy surface model (CSM). The method is based on a conventional algorithm used for localising LM on a smoothed version of the CSM and subsequently for modelling the tree crowns around each maximum at the plot level. The novelty of the approach lies in the introduction of controls on both the degree of CSM filtering and the shape of elliptic crowns, in addition to a multi-filtering level crown fusion approach to balance omission and commission errors. The algorithm derives the total tree height and the mean crown diameter from the elliptic tree crowns generated. The method was tested and validated on a mountainous forested area mainly covered by mature and even-aged black pine (Pinus nigra ssp. nigra [Arn.]) stands. Mean stem detection per plot, using this method, was 73.97%. Algorithm performance was affected slightly by both stand density and heterogeneity (i.e. tree diameter classes’ distribution). The total tree height and the mean crown diameter were estimated with root mean squared error values of 1.83 m and 1.48 m respectively. Tree heights were slightly underestimated in flat areas and overestimated on slopes. The average crown diameter was underestimated by 17.46% on average.  相似文献   

9.
This paper introduces PTrees, a multi-scale dynamic point cloud segmentation dedicated to forest tree extraction from lidar point clouds. The method process the point data using the raw elevation values (Z) and compute height (H = Z  ground elevation) during post-processing using an innovative procedure allowing to preserve the geometry of crown points. Multiple segmentations are done at different scales. Segmentation criteria are then applied to dynamically select the best set of apices from the tree segments extracted at the various scales. The selected set of apices is then used to generate a final segmentation. PTrees has been tested in 3 different forest types, allowing to detect 82% of the trees with under 10% of false detection rate. Future development will integrate crown profile estimation during the segmentation process in order to both maximize the detection of suppressed trees and minimize false detections.  相似文献   

10.
大光斑激光雷达数据已广泛应用于森林冠层高度提取,但通常仅限于地形坡度小于20°的平缓地区。在地形坡度大于20°的陡峭山区,地形引起的波形展宽使得地面回波和植被回波信息混合在一起,给森林冠层高度提取带来巨大挑战。本文利用激光雷达回波模型和地形信息,提出了一种模型辅助的坡地森林冠层高度反演算法。该方法以激光雷达回波信号截止点为参考,定义了波形高度指数H50和H75,使用激光雷达回波模型与已知地形信息模拟裸地的激光雷达回波,将裸地回波信号截止点与森林激光雷达回波信号截止点对齐,利用裸地回波计算常用的波形相对高度指数RH50和RH75,对森林冠层高度进行反演。并与高斯波形分解法和波形参数法的反演结果进行了比较。研究结果表明:(1)利用所提取的波形指数RH50和RH75对胸高断面积加权平均高(Lorey’s height)进行了估算,在坡度小于20°时,高斯波形分解法、波形参数法和模型辅助法的估算结果与实测值线性拟合的相关系数(R2)分别为0.70,0.78和0.98,对应的均方根误差(RMSE)分别为2.90 m,2.48 m和0.60 m,模型辅助法略优于其他两种方法;(2)在坡度大于20°时,高斯波形分解法、波形参数法和模型辅助法的R2分别为0.14,0.28和0.97,相应的RMSE分别为4.93 m,4.53 m和0.81 m,模型辅助法明显优于其他两种方法;(3)在0°—40°时,模型辅助法对Lorey’s height估算结果与实测值的R2为0.97,RMSE为0.80 m。本研究提出的模型辅助法具有更好的地形适应性,在0°—40°的坡度范围内具备对坡地森林冠层高度反演的潜力。  相似文献   

11.
吉林长白山森林冠顶高度激光雷达与MERSI联合反演   总被引:1,自引:0,他引:1  
将激光雷达与光学遥感相结合进行区域林分冠顶高度联合反演,提出了大脚印激光雷达GLAS脚点波形数据处理和不同地形条件下的森林冠顶高度反演算法,并建立了区域尺度不同森林类型林分冠顶高度GLAS+MERSI联合反演模型,制作了长白山地区森林冠顶高度图。  相似文献   

12.
ICESAT/GLAS激光测高原理及其应用   总被引:4,自引:0,他引:4  
本文介绍了ICESAT卫星的基本工作原理,对该卫星上的地学激光测高系统GLAS的测量原理和精度进行了分析,通过GLAS可获得冰原地形及其时变,同时也可对云及大气层的特征有更深入地了解。对GLAS的适用于冰原、冰面、陆地以及海面波形的算法进行了分析,简单介绍了对GLAS测高数据进行检核和校准,并对ICESAT数据在地学研究中的应用进行了探讨。  相似文献   

13.
南极数字高程模型DEMs(Digital Elevation Models)是研究极区大气环流模式,南极冰盖动态变化和南极科学考察非常重要的基础数据。目前,科学家已经发布了五种不同的南极数字表面高程模型。这些数据都是由卫星雷达高度计,激光雷达和部分地面实测数据等制作而成。尽管如此,由于海洋与冰盖交接的南极冰盖边缘区随时间的快速变化,有必要根据新的卫星数据及时更新南极冰盖表面高程数据。因此,我们利用雷达高度计数据(Envisat RA-2)和激光雷达数据(ICESat/GLAS)制作了最新的南极冰盖高程数据。为提高ICESat/GLAS数据的精度,本文采用了五种不同的质量控制指标对GLAS数据进行处理,滤除了8.36%的不合格数据。这五种质量控制指标分别针对卫星定位误差、大气前向散射、饱和度及云的影响。同时,对Envisat RA-2数据进行干湿对流层纠正、电离层纠正、固体潮汐纠正和极潮纠正。针对两种不同的测高数据,提出了一种基于Envisat RA-2和GLAS数据光斑脚印几何相交的高程相对纠正方法,即通过分析GLAS脚印点与Envisat RA-2数据中心点重叠的点对,建立这些相交点对的高度差(GLAS-RA-2)与表征地形起伏的粗糙度之间的相关关系,对具有稳定相关关系的点对进行Envisat RA-2数据的相对纠正。通过分析南极冰盖不同区域的测高点密度,确定最终DEM的分辨率为1000 m。考虑到南极普里兹湾和内陆地区的差异性,将南极冰盖分为16个区,利用半方差分析确定最佳插值模型和参数,采用克吕金插值方法生成了1000 m分辨率的南极冰盖高程数据。利用两种机载激光雷达数据和我国多次南极科考实测的GPS数据对新的南极DEM进行了验证。结果显示,新的DEM与实测数据的差值范围为3.21—27.84 m,其误差分布与坡度密切关系。与国际上发布的南极DEM数据相比,新的DEM在坡度较大地区和快速变化的冰盖边缘地区精度有较大改进。  相似文献   

14.
Estimating forest structural attributes using multispectral remote sensing is challenging because of the saturation of multispectral indices at high canopy cover. The objective of this study was to assess the utility of hyperspectral data in estimating and mapping forest structural parameters including mean diameter-at-breast height (DBH), mean tree height and tree density of a closed canopy beech forest (Fagus sylvatica L.). Airborne HyMap images and data on forest structural attributes were collected from the Majella National Park, Italy in July 2004. The predictive performances of vegetation indices (VI) derived from all possible two-band combinations (VI(i,j) = (Ri − Rj)/(Ri + Rj), where Ri and Rj = reflectance in any two bands) were evaluated using calibration (n = 33) and test (n = 20) data sets. The potential of partial least squares (PLS) regression, a multivariate technique involving several bands was also assessed. New VIs based on the contrast between reflectance in the red-edge shoulder (756–820 nm) and the water absorption feature centred at 1200 nm (1172–1320 nm) were found to show higher correlations with the forest structural parameters than standard VIs derived from NIR and visible reflectance (i.e. the normalised difference vegetation index, NDVI). PLS regression showed a slight improvement in estimating the beech forest structural attributes (prediction errors of 27.6%, 32.6% and 46.4% for mean DBH, height and tree density, respectively) compared to VIs using linear regression models (prediction errors of 27.8%, 35.8% and 48.3% for mean DBH, height and tree density, respectively). Mean DBH was the best predicted variable among the stand parameters (calibration R2 = 0.62 for an exponential model fit and standard error of prediction = 5.12 cm, i.e. 25% of the mean). The predicted map of mean DBH revealed high heterogeneity in the beech forest structure in the study area. The spatial variability of mean DBH occurs at less than 450 m. The DBH map could be useful to forest management in many ways, e.g. thinning of coppice to promote diameter growth, to assess the effects of management on forest structure or to detect changes in the forest structure caused by anthropogenic and natural factors.  相似文献   

15.
In the present study, we aimed to map canopy heights in the Brazilian Amazon mainly on the basis of spaceborne LiDAR and cloud-free MODIS imagery with a new method (the Self-Organizing Relationships method) for spatial modeling of the LiDAR footprint. To evaluate the general versatility, we compared the created canopy height map with two different canopy height estimates on the basis of our original field study plots (799 plots located in eight study sites) and a previously developed canopy height map. The compared canopy height estimates were obtained by: (1) a stem diameter at breast height (D) – tree height (H) relationship specific to each site on the basis of our original field study, (2) a previously developed DH model involving environmental and structural factors as explanatory variables (Feldpausch et al., 2011), and (3) a previously developed canopy height map derived from the spaceborne LiDAR data with different spatial modeling method and explanatory variables (Simard et al., 2011). As a result, our canopy height map successfully detected a spatial distribution pattern in canopy height estimates based on our original field study data (r = 0.845, p = 8.31 × 10−3) though our canopy height map showed a poor correlation (r = 0.563, p = 0.146) with the canopy height estimate based on a previously developed model by Feldpausch et al. (2011). We also confirmed that the created canopy height map showed a similar pattern with the previously developed canopy height map by Simard et al. (2011). It was concluded that the use of the spaceborne LiDAR data provides a sufficient accuracy in estimating the canopy height at regional scale.  相似文献   

16.
马利群  李理  刘俊杰  孙九林  秦奋 《测绘科学》2021,46(3):80-86,95
针对GLAS地学激光测高系统是冰、云和陆地高程卫星(ICESat)的唯一监测工具,能够记录地表光斑内的地物信息,是否能应用于黄土高原土地覆盖分类的问题进行了研究。利用粒子群和最小二乘法相结合的方法对GLAS波形数据进行高斯分解,获取高斯波个数、波形总能量、波形信号起始和信号结束位置4个波形参数;基于波形自动分类方法对黄土高原水体、森林、城市用地、其他地类(裸地、低矮植被等)进行分类。通过基于覆盖相同研究区域的30 m地表覆盖数据(Globe Land30),验证分类的准确性。结果表明,GLAS大光斑波形数据对黄土高原的4种地类能够很好地进行区分,总分类精度高达87.68%,Kappa系数为65.79%。研究表明,GLAS波形数据可以作为获取土地覆盖信息的有效数据源,为研究黄土高原土地覆盖变化提供更丰富的数据支持。  相似文献   

17.
为全面了解航天飞机雷达测图计划(shuttle Radar topography mission,SRTM)高程数据的精度及误差特征,利用精度更高的ICESat/GLAS激光高度计数据(简称ICESat高度计数据)为参照数据,以具有多种地貌类型的中国青藏高原地区为实验区,采用双线性插值算法分析了SRTM在中国青藏高原地区的高程精度,以及SRTM高程数据与地形因子(坡度和坡向)间的关系。实验结果表明:在青藏高原地区,ICESat高度计数据与相对应的SRTM高程数据高度相关,相关系数高达0.999 8;SRTM的系统误差为2.36±16.48 m,中误差(RMSE)为16.65 m;当坡度低于25°时,SRTM高程数据精度随坡度增大而显著降低。此外,相对于ICESat高度计数据,SRTM在青藏高原地区N,NW和NE方向的测量值偏高,在S,SE和SW方向的测量值偏低。  相似文献   

18.
Estimation of forest structural parameters by field-based data collection methods is both expensive and time consuming. Satellite remote sensing is a low-cost alternative in modeling and mapping structural parameters in large forest areas. The current study investigates the potential of using WordView-2 multispectral satellite imagery for predicting forest structural parameters in a dryland plantation forest in Israel. The relationships between image texture features and the several structural parameters such as Number of Trees (NT), Basal Area (BA), Stem Volume (SV), Clark-Evans Index (CEI), Diameter Differentiation Index (DDI), Contagion Index (CI), Gini Coefficient (GC), and Standard Deviation of Diameters at Breast Heights (SDDBH) were examined using correlation analyses. These variables were obtained from 30 m × 30 m square-shaped plots. The Standard Deviation of Gray Levels (SDGL) as a first order texture feature and the second order texture variables based on Gray Level Co-occurrence Matrix (GLCM) were calculated for the pixels that corresponds to field plots. The results of the correlation analysis indicate that the forest structural parameters are significantly correlated with the image texture features. The highest correlation coefficients were calculated for the relationships between the SDDBH and the contrast of red band (r = 0.75, p < 0.01), the BA and the entropy of blue band (r = 0.73, p < 0.01), and the GC and the contrast of blue band (r = 0.71, p < 0.01). Each forest structural parameter was modeled as a function of texture measures derived from the satellite image using stepwise multi linear regression analyses. The determination coefficient (R2) and root mean square error (RMSE) values of the best fitting models, respectively, are 0.38 and 109.56 ha−1 for the NT; 0.54 and 1.79 m2 ha−1 for the BA; 0.42 and 27.18 m3 ha−1 for the SV; 0.23 and 0.16 for the CEI; 0.32 and 0.05 for the DDI; 0.25 and 0.06 for the CI; 0.50 and 0.05 for the GC; and 0.67 and 0.70 for the SDDBH. The leave-one-out cross-validation technique was applied for validation of the best-fitted models (R2 > 0.50). In conclusion, cross-validated statistics confirmed that the structural parameters including the BA, SDDBH, and GC can be predicted and mapped with a reasonable accuracy using the texture features extracted from the spectral bands of WorldView-2 image.  相似文献   

19.
P波段极化干涉SAR森林高度反演研究   总被引:1,自引:0,他引:1  
森林高度信息是森林研究必不可少的内容之一,对全球碳循环、森林资源管理以及获取精确的林下地形等具有重要意义。极化干涉SAR技术(PolInSAR)是目前提取森林高度的一种热门的方法,其中,P波段极化干涉SAR由于电磁波的强穿透力使其相比其他波段具有一些独有的特征。文中首先分析P波段极化干涉SAR森林高度反演的优势与不足,然后结合目前主流的森林高度反演算法,提出一种适用于P波段极化干涉SAR高度反演的新方法。该方法通过对非线性迭代算法的初始值进行有效约束,从而解算出相对可靠的消光系数,同时考虑地体幅度比对森林高度的影响,最终得到相对准确的森林高度。最后,将该方法与现有的经典算法及优化算法进行对比,通过对实验结果定性和定量分析,得出在P波段条件下该方法相比三阶段算法精度提高67.5%,相比固定消光系数法精度提高29.8%,验证了该方法的可靠性和优越性。  相似文献   

20.
Mapping forest aboveground biomass (AGB) has become an important task, particularly for the reporting of carbon stocks and changes. AGB can be mapped using synthetic aperture radar data (SAR) or passive optical data. However, these data are insensitive to high AGB levels (>150 Mg/ha, and >300 Mg/ha for P-band), which are commonly found in tropical forests. Studies have mapped the rough variations in AGB by combining optical and environmental data at regional and global scales. Nevertheless, these maps cannot represent local variations in AGB in tropical forests. In this paper, we hypothesize that the problem of misrepresenting local variations in AGB and AGB estimation with good precision occurs because of both methodological limits (signal saturation or dilution bias) and a lack of adequate calibration data in this range of AGB values. We test this hypothesis by developing a calibrated regression model to predict variations in high AGB values (mean >300 Mg/ha) in French Guiana by a methodological approach for spatial extrapolation with data from the optical geoscience laser altimeter system (GLAS), forest inventories, radar, optics, and environmental variables for spatial inter- and extrapolation. Given their higher point count, GLAS data allow a wider coverage of AGB values. We find that the metrics from GLAS footprints are correlated with field AGB estimations (R2 = 0.54, RMSE = 48.3 Mg/ha) with no bias for high values. First, predictive models, including remote-sensing, environmental variables and spatial correlation functions, allow us to obtain “wall-to-wall” AGB maps over French Guiana with an RMSE for the in situ AGB estimates of ∼50 Mg/ha and R2 = 0.66 at a 1-km grid size. We conclude that a calibrated regression model based on GLAS with dependent environmental data can produce good AGB predictions even for high AGB values if the calibration data fit the AGB range. We also demonstrate that small temporal and spatial mismatches between field data and GLAS footprints are not a problem for regional and global calibrated regression models because field data aim to predict large and deep tendencies in AGB variations from environmental gradients and do not aim to represent high but stochastic and temporally limited variations from forest dynamics. Thus, we advocate including a greater variety of data, even if less precise and shifted, to better represent high AGB values in global models and to improve the fitting of these models for high values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号