首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Local climate zone (LCZ) mapping is an emerging field in urban climate research. LCZs potentially provide an objective framework to assess urban form and function worldwide. The scheme is currently being used to globally map LCZs as a part of the World Urban Database and Access Portal Tools (WUDAPT) initiative. So far, most of the LCZ maps lack proper quantitative assessment, challenging the generic character of the WUDAPT workflow. Using the standard method introduced by the WUDAPT community difficulties arose concerning the built zones due to high levels of heterogeneity. To overcome this problem a contextual classifier is adopted in the mapping process. This paper quantitatively assesses the influence of neighbourhood information on the LCZ mapping result of three cities in Belgium: Antwerp, Brussels and Ghent. Overall accuracies for the maps were respectively 85.7 ± 0.5, 79.6 ± 0.9, 90.2 ± 0.4%. The approach presented here results in overall accuracies of 93.6 ± 0.2, 92.6 ± 0.3 and 95.6 ± 0.3% for Antwerp, Brussels and Ghent. The results thus indicate a positive influence of neighbourhood information for all study areas with an increase in overall accuracies of 7.9, 13.0 and 5.4%. This paper reaches two main conclusions. Firstly, evidence was introduced on the relevance of a quantitative accuracy assessment in LCZ mapping, showing that the accuracies reported in previous papers are not easily achieved. Secondly, the method presented in this paper proves to be highly effective in Belgian cities, and given its open character shows promise for application in other heterogeneous cities worldwide.  相似文献   

2.
Well-exposed eolian units of the Jurassic system on the Colorado Plateau including the Wingate Sandstone, show prominent color variations throughout southeastern Utah due to diagenetic changes that include precipitation and/or removal of iron oxide, clay, and carbonate cement. Spatially variable characteristic diagenetic changes suggest fluid-rock interactions through the sandstone. Distinctive spectral signatures of diagenetic minerals can be used to map diagenetic mineral variability and possibly fluid-flow pathways. The main objective of this work was to identify characteristic diagenetic minerals, and map their spatial variability from regional to outcrop scale in Wingate Sandstone exposures of Lisbon Valley, Utah. Laboratory reflectance spectroscopy analysis of the samples facilitated identification of diagnostic spectral characteristics of the common diagenetic minerals and their relative abundances between altered and unaltered Wingate Sandstone. Comparison of reflectance spectroscopy with satellite, airborne, and ground-based imaging spectroscopy data provided a method for mapping and evaluating spatial variations of diagenetic minerals. The Feature-oriented Principal Component Selection method was used on Advanced Spaceborne Thermal Emission and Reflection Radiometer data so as to map common mineral groups throughout the broader Wingate Sandstone exposure in the area. The Minimum Noise Fraction and Spectral Angle Mapper methods were applied on airborne HyMap and ground-based hyperspectral imaging data to identify and map mineralogical changes. The satellite and airborne data showed that out of 25.55 km2 total exposure of Wingate Sandstone in Lisbon Valley, unaltered sandstone cover 12.55 km2, and altered sandstone cover 8.90 km2 in the northwest flank and 5.09 km2 in the southern flank of the anticline. The ground-based hyperspectral data demonstrated the ability to identify and map mineral assemblages with two-dimensional lateral continuity on near-vertical rock faces. The results showed that 39.71% of the scanned outcrop is bleached and 20.60% is unbleached while 6.33% remain unclassified, and 33.36% is masked-out as vegetation. The bleached and unbleached areas are alternating throughout the vertical face of the outcrop. The relative hematite abundance observed in the unbleached areas are somewhat symmetrical. This indicates fairly similar reaction intensities along the upper and lower reaction fronts observed in the vertical section. The distribution geometry and relative abundances of diagenetic minerals not only suggest multiple paths of fluid-flow in Wingate Sandstone but also provides some insight about relative direction of past fluid-flow.  相似文献   

3.
This paper introduces PTrees, a multi-scale dynamic point cloud segmentation dedicated to forest tree extraction from lidar point clouds. The method process the point data using the raw elevation values (Z) and compute height (H = Z  ground elevation) during post-processing using an innovative procedure allowing to preserve the geometry of crown points. Multiple segmentations are done at different scales. Segmentation criteria are then applied to dynamically select the best set of apices from the tree segments extracted at the various scales. The selected set of apices is then used to generate a final segmentation. PTrees has been tested in 3 different forest types, allowing to detect 82% of the trees with under 10% of false detection rate. Future development will integrate crown profile estimation during the segmentation process in order to both maximize the detection of suppressed trees and minimize false detections.  相似文献   

4.
Modern forest management involves implementing optimal pruning regimes. These regimes aim to achieve the highest quality timber in the shortest possible rotation period. Although a valuable addition to forest management activities, tracking the application of these treatments in the field to ensure best practice management is not economically viable. This paper describes the use of Airborne Laser Scanner (ALS) data to track the rate of pruning in a Eucalyptus globulus stand. Data is obtained from an Unmanned Aerial Vehicle (UAV) and we describe automated processing routines that provide a cost-effective alternative to field sampling. We manually prune a 500 m2 plot to 2.5 m above the ground at rates of between 160 and 660 stems/ha. Utilising the high density ALS data, we first derived crown base height (CBH) with an RMSE of 0.60 m at each stage of pruning. Variability in the measurement of CBH resulted in both false positive (mean rate of 11%) and false negative detection (3.5%), however, detected rates of pruning of between 96% and 125% of the actual rate of pruning were achieved. The successful automated detection of pruning within this study highlights the suitability of UAV laser scanning as a cost-effective tool for monitoring forest management activities.  相似文献   

5.
Estimation of forest aboveground biomass (AGB) is informative of the role of forest ecosystems in local and global carbon budgets. There is a need to retrospectively estimate biomass in order to establish a historical baseline and enable reporting of change. In this research, we used temporal spectral trajectories to inform on forest successional development status in support of modelling and mapping of historic AGB for Mediterranean pines in central Spain. AGB generated with ground plot data from the Spanish National Forest Inventory (NFI), representing two collection periods (1990 and 2000), are linked with static and dynamic spectral data as captured by Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) sensors over a 25 year period (1984–2009). The importance of forest structural complexity on the relationship between AGB and spectral vegetation indices is revealed by the analysis of wavelet transforms. Two-dimensional (2D) wavelet transforms support the identification of spectral trajectory patterns of forest stands that in turn, are associated with traits of individual NFI plots, using a flexible algorithm sensitive to capturing time series similarity. Single-date spectral indices, temporal trajectories, and temporal derivatives associated with succession are used as input variables to non-parametric decision trees for modelling, estimation, and mapping of AGB and carbon sinks over the entire study area. Results indicate that patterns of change found in Normalized Difference Vegetation Index (NDVI) values are associated and relate well to classes of forest AGB. The Tasseled Cap Angle (TCA) index was found to be strongly related with forest density, although the related patterns of change had little relation with variability in historic AGB. By scaling biomass models through small (∼2.5 ha) spatial objects defined by spectral homogeneity, the AGB dynamics in the period 1990–2000 are mapped (70% accuracy when validated with plot values of change), revealing an increase of 18% in AGB irregularly distributed over 814 km2 of pines. The accumulation of C calculated in AGB was on average 0.65 t ha−1 y−1, equivalent to a fixation of 2.38 t ha−1 y−1 of carbon dioxide.  相似文献   

6.
Forest cover disturbances due to processes such as logging and forest fires are a widespread issue especially in the tropics, and have heavily affected forest biomass and functioning in the Brazilian Amazon in the past decades. Satellite remote sensing has played a key role for assessing logging activities in this region; however, there are still remaining challenges regarding the quantification and monitoring of these processes affecting forested lands. In this study, we propose a new method for monitoring areas affected by selective logging in one of the hotspots of Mato Grosso state in the Brazilian Amazon, based on a combination of object-based and pixel-based classification approaches applied on remote sensing data. Logging intensity and changes over time are assessed within grid cells of 300 m × 300 m spatial resolution. Our method encompassed three main steps: (1) mapping forest/non-forest areas through an object-based classification approach applied to a temporal series of Landsat images during the period 2000–2015, (2) mapping yearly logging activities from soil fraction images on the same Landsat data series, and (3) integrating information from previous steps within a regular grid-cell of 300 m × 300 m in order to monitor disturbance intensities over this 15-years period. The overall accuracy of the baseline forest/non-forest mask (year 2000) and of the undisturbed vs disturbed forest (for selected years) were 93% and 84% respectively. Our results indicate that annual forest disturbance rates, mainly due to logging activities, were higher than annual deforestation rates during the whole period of study. The deforested areas correspond to circa 25% of the areas affected by forest disturbances. Deforestation rates were highest from 2001 to 2005 and then decreased considerably after 2006. In contrast, the annual forest disturbance rates show high temporal variability with a slow decrease over the 15-year period, resulting in a significant increase of the ratio between disturbed and deforested areas. Although the majority of the areas, which have been affected by selective logging during the period 2000–2014, were not deforested by 2015, more than 70% of the deforested areas in 2015 had been at least once identified as disturbed forest during that period.  相似文献   

7.
In West Africa, accurate classification of land cover and land change remains a big challenge due to the patchy and heterogeneous nature of the landscape. Limited data availability, human resources and technical capacities, further exacerbate the challenge. The result is a region that is among the more understudied areas in the world, which in turn has resulted in a lack of appropriate information required for sustainable natural resources management. The objective of this paper is to explore open source software and easy-to-implement approaches to mapping and estimation of land change that are transferrable to local institutions to increase capacity in the region, and to provide updated information on the regional land surface dynamics. To achieve these objectives, stable land cover and land change between 2001 and 2013 in the Kara River Basin in Togo and Benin were mapped by direct multitemporal classification of Landsat data by parameterization and evaluation of two machine-learning algorithms. Areas of land cover and change were estimated by application of an unbiased estimator to sample data following international guidelines. A prerequisite for all tools and methods was implementation in an open source environment, and adherence to international guidelines for reporting land surface activities. Findings include a recommendation of the Random Forests algorithm as implemented in Orfeo Toolbox, and a stratified estimation protocol − all executed in the QGIS graphical use interface. It was found that despite an estimated reforestation of 10,0727 ± 3480 ha (95% confidence interval), the combined rate of forest and savannah loss amounted to 56,271 ± 9405 ha (representing a 16% loss of the forestlands present in 2001), resulting in a rather sharp net loss of forestlands in the study area. These dynamics had not been estimated prior to this study, and the results will provide useful information for decision making pertaining to natural resources management, land management planning, and the implementation of the United Nations Collaborative Programme on Reducing Emissions from Deforestation and Forest Degradation in Developing Countries (UN-REDD).  相似文献   

8.
The development of cost-effective, reliable and easy to implement crop condition monitoring methods is urgently required for perennial tree crops such as coffee (Coffea arabica), as they are grown over large areas and represent long term and higher levels of investment. These monitoring methods are useful in identifying farm areas that experience poor crop growth, pest infestation, diseases outbreaks and/or to monitor response to management interventions. This study compares field level coffee mean NDVI and LSWI anomalies and age-adjusted coffee mean NDVI and LSWI anomalies in identifying and mapping incongruous patches across perennial coffee plantations. To achieve this objective, we first derived deviation of coffee pixels from the global coffee mean NDVI and LSWI values of nine sequential Landsat 8 OLI image scenes. We then evaluated the influence of coffee age class (young, mature and old) on Landsat-scale NDVI and LSWI values using a one-way ANOVA and since results showed significant differences, we adjusted NDVI and LSWI anomalies for age-class. We then used the cumulative inverse distribution function (α  0.05) to identify fields and within field areas with excessive deviation of NDVI and LSWI from the global and the age-expected mean for each of the Landsat 8 OLI scene dates spanning three seasons. Results from accuracy assessment indicated that it was possible to separate incongruous and healthy patches using these anomalies and that using NDVI performed better than using LSWI for both global and age-adjusted mean anomalies. Using the age-adjusted anomalies performed better in separating incongruous and healthy patches than using the global mean for both NDVI (Overall accuracy = 80.9% and 68.1% respectively) and for LSWI (Overall accuracy = 68.1% and 48.9% respectively). When applied to other Landsat 8 OLI scenes, the results showed that the proportions of coffee fields that were modelled incongruent decreased with time for the young age category and while it increased for the mature and old age classes with time. We concluded that the method could be useful for the identification of anomalous patches using Landsat scale time series data to monitor large coffee plantations and provide an indication of areas requiring particular field attention.  相似文献   

9.
This paper presents a technique developed for the retrieval of the orientation of crop rows, over anthropic lands dedicated to agriculture in order to further improve estimate of crop production and soil erosion management. Five crop types are considered: wheat, barley, rapeseed, sunflower, corn and hemp. The study is part of the multi-sensor crop-monitoring experiment, conducted in 2010 throughout the agricultural season (MCM’10) over an area located in southwestern France, near Toulouse. The proposed methodology is based on the use of satellite images acquired by Formosat-2, at high spatial resolution in panchromatic and multispectral modes (with spatial resolution of 2 and 8 m, respectively). Orientations are derived and evaluated for each image and for each plot, using directional spatial filters (45° and 135°) and mathematical morphology algorithms. “Single-date” and “multi-temporal” approaches are considered. The single-date analyses confirm the good performances of the proposed method, but emphasize the limitation of the approach for estimating the crop row orientation over the whole landscape with only one date. The multi-date analyses allow (1) determining the most suitable agricultural period for the detection of the row orientations, and (2) extending the estimation to the entire footprint of the study area. For the winter crops (wheat, barley and rapeseed), best results are obtained with images acquired just after harvest, when surfaces are covered by stubbles or during the period of deep tillage (0.27 > R2 > 0.99 and 7.15° > RMSE > 43.02°). For the summer crops (sunflower, corn and hemp), results are strongly crop and date dependents (0 > R2 > 0.96, 10.22° > RMSE > 80°), with a well-marked impact of flowering, irrigation equipment and/or maximum crop development. Last, the extent of the method to the whole studied zone allows mapping 90% of the crop row orientations (more than 45,000 ha) with an error inferior to 40°, associated to a confidence index ranging from 1 to 5 for each agricultural plot.  相似文献   

10.
Invasive plants pose significant threats to biodiversity and ecosystem function globally, leading to costly monitoring and management effort. While remote sensing promises cost-effective, robust and repeatable monitoring tools to support intervention, it has been largely restricted to airborne platforms that have higher spatial and spectral resolutions, but which lack the coverage and versatility of satellite-based platforms. This study tests the ability of the WorldView-2 (WV2) eight-band satellite sensor for detecting the invasive shrub mesquite (Prosopis spp.) in the north-west Pilbara region of Australia. Detectability was challenged by the target taxa being largely defoliated by a leaf-tying biological control agent (Gelechiidae: Evippe sp. #1) and the presence of other shrubs and trees. Variable importance in the projection (VIP) scores identified bands offering greatest capacity for discrimination were those covering the near-infrared, red, and red-edge wavelengths. Wavelengths between 400 nm and 630 nm (coastal blue, blue, green, yellow) were not useful for species level discrimination in this case. Classification accuracy was tested on three band sets (simulated standard multispectral, all bands, and bands with VIP scores ≥1). Overall accuracies were comparable amongst all band-sets (Kappa = 0.71–0.77). However, mesquite omission rates were unacceptably high (21.3%) when using all eight bands relative to the simulated standard multispectral band-set (9.5%) and the band-set informed by VIP scores (11.9%). An incremental cover evaluation on the latter identified most omissions to be for objects <16 m2. Mesquite omissions reduced to 2.6% and overall accuracy significantly improved (Kappa = 0.88) when these objects were left out of the confusion matrix calculations. Very high mapping accuracy of objects >16 m2 allows application for mapping mesquite shrubs and coalesced stands, the former not previously possible, even with 3 m resolution hyperspectral imagery. WV2 imagery offers excellent portability potential for detecting other species where spectral/spatial resolution or coverage has been an impediment. New generation satellite sensors are removing barriers previously preventing widespread adoption of remote sensing technologies in natural resource management.  相似文献   

11.
The spectral detection of vegetation pigment concentrations has a high potential value, but it is still underdeveloped, especially for pigments other than chlorophylls. In this study, the seasonal pigment dynamics of two Tecticornia species (samphires; halophytic shrubs) from north-western Australia were correlated with spectral indices that best document the pigment changes over time. Pigment dynamics were assessed by analysing betacyanin, chlorophyll and carotenoid concentrations at plant level and by measuring reflectance at contrasting seasonal dates. Plant reflectance was used to define a new reflectance index that was most sensitive to the seasonal shifts in Tecticornia pigment concentrations. The two Tecticornia species turned from green to red-pinkish for the period March–August 2012 when betacyanins increased almost nine times in both species. Chlorophyll levels showed the opposite pattern to that of betacyanins, whereas carotenoid levels were relatively stable. Normalised difference indices correlated well with betacyanin (r = 0.805, using bands at 600 and 620 nm) and chlorophyll (r = 0.809, using bands at 737 and 726 nm). Using knowledge of chlorophyll concentrations slightly improved the ability of the spectral index to predict betacyanin concentration (r = 0.822 at bands 606 and 620 nm, in the case of chemically determined chlorophyll, r = 0.809 when using remotely sensed chlorophyll). Our results suggest that this new spectral index can reliably detect changes in betacyanin concentrations in vegetation, with potential applications in ecological studies and environmental impact monitoring.  相似文献   

12.
Defining critical source areas (CSAs) of diffuse pollution in agricultural catchments depends upon the accurate delineation of hydrologically sensitive areas (HSAs) at highest risk of generating surface runoff pathways. In topographically complex landscapes, this delineation is constrained by digital elevation model (DEM) resolution and the influence of microtopographic features. To address this, optimal DEM resolutions and point densities for spatially modelling HSAs were investigated, for onward use in delineating CSAs. The surface runoff framework was modelled using the Topographic Wetness Index (TWI) and maps were derived from 0.25 m LiDAR DEMs (40 bare-earth points m−2), resampled 1 m and 2 m LiDAR DEMs, and a radar generated 5 m DEM. Furthermore, the resampled 1 m and 2 m LiDAR DEMs were regenerated with reduced bare-earth point densities (5, 2, 1, 0.5, 0.25 and 0.125 points m−2) to analyse effects on elevation accuracy and important microtopographic features. Results were compared to surface runoff field observations in two 10 km2 agricultural catchments for evaluation. Analysis showed that the accuracy of modelled HSAs using different thresholds (5%, 10% and 15% of the catchment area with the highest TWI values) was much higher using LiDAR data compared to the 5 m DEM (70–100% and 10–84%, respectively). This was attributed to the DEM capturing microtopographic features such as hedgerow banks, roads, tramlines and open agricultural drains, which acted as topographic barriers or channels that diverted runoff away from the hillslope scale flow direction. Furthermore, the identification of ‘breakthrough’ and ‘delivery’ points along runoff pathways where runoff and mobilised pollutants could be potentially transported between fields or delivered to the drainage channel network was much higher using LiDAR data compared to the 5 m DEM (75–100% and 0–100%, respectively). Optimal DEM resolutions of 1–2 m were identified for modelling HSAs, which balanced the need for microtopographic detail as well as surface generalisations required to model the natural hillslope scale movement of flow. Little loss of vertical accuracy was observed in 1–2 m LiDAR DEMs with reduced bare-earth point densities of 2–5 points m−2, even at hedgerows. Further improvements in HSA models could be achieved if soil hydrological properties and the effects of flow sinks (filtered out in TWI models) on hydrological connectivity are also considered.  相似文献   

13.
Remote sensing-based timber volume estimation is key for modelling the regional potential, accessibility and price of lignocellulosic raw material for an emerging bioeconomy. We used a unique wall-to-wall airborne LiDAR dataset and Landsat 7 satellite images in combination with terrestrial inventory data derived from the National Forest Inventory (NFI), and applied generalized additive models (GAM) to estimate spatially explicit timber distribution and volume in forested areas. Since the NFI data showed an underlying structure regarding size and ownership, we additionally constructed a socio-economic predictor to enhance the accuracy of the analysis. Furthermore, we balanced the training dataset with a bootstrap method to achieve unbiased regression weights for interpolating timber volume. Finally, we compared and discussed the model performance of the original approach (r2 = 0.56, NRMSE = 9.65%), the approach with balanced training data (r2 = 0.69, NRMSE = 12.43%) and the final approach with balanced training data and the additional socio-economic predictor (r2 = 0.72, NRMSE = 12.17%). The results demonstrate the usefulness of remote sensing techniques for mapping timber volume for a future lignocellulose-based bioeconomy.  相似文献   

14.
Grass nitrogen (N) and phosphorus (P) concentrations are direct indicators of rangeland quality and provide imperative information for sound management of wildlife and livestock. It is challenging to estimate grass N and P concentrations using remote sensing in the savanna ecosystems. These areas are diverse and heterogeneous in soil and plant moisture, soil nutrients, grazing pressures, and human activities. The objective of the study is to test the performance of non-linear partial least squares regression (PLSR) for predicting grass N and P concentrations through integrating in situ hyperspectral remote sensing and environmental variables (climatic, edaphic and topographic). Data were collected along a land use gradient in the greater Kruger National Park region. The data consisted of: (i) in situ-measured hyperspectral spectra, (ii) environmental variables and measured grass N and P concentrations. The hyperspectral variables included published starch, N and protein spectral absorption features, red edge position, narrow-band indices such as simple ratio (SR) and normalized difference vegetation index (NDVI). The results of the non-linear PLSR were compared to those of conventional linear PLSR. Using non-linear PLSR, integrating in situ hyperspectral and environmental variables yielded the highest grass N and P estimation accuracy (R2 = 0.81, root mean square error (RMSE) = 0.08, and R2 = 0.80, RMSE = 0.03, respectively) as compared to using remote sensing variables only, and conventional PLSR. The study demonstrates the importance of an integrated modeling approach for estimating grass quality which is a crucial effort towards effective management and planning of protected and communal savanna ecosystems.  相似文献   

15.
Fire detection using satellites is an important source of information for fire management, ecological studies and emission estimates. However, little is known about the minimum sizes of fires that are being detected. This paper presents an approach using fire radiative power estimated from MODIS satellite data to determine the detection threshold for fire-prone savannas in Northern Australia. The results indicate that fires with an active flaming area 100–300 m2 can be detected in the study region. It is also shown that the algorithm is slightly more sensitive at night. As expected the detection threshold shows strong view angle dependence. While this study has been undertaken in the savannas of Northern Australia, the results should be transferable to other savanna regions worldwide and other areas where fires are not obscured by a dense tree canopy.  相似文献   

16.
Heavy metals contaminated soils and water will become a major environmental issue in the mining areas. This paper intends to use field hyper-spectra to estimate the heavy metals in the soil and water in Wan-sheng mining area in Chongqing. With analyzing the spectra of soil and water, the spectral features deriving from the spectral of the soils and water can be found to build the models between these features and the contents of Al, Cu and Cr in the soil and water by using the Stepwise Multiple Linear Regression (SMLR). The spectral features of Al are: 480 nm, 500 nm, 565 nm, 610 nm, 680 nm, 750 nm, 1000 nm, 1430 nm, 1755 nm, 1887 nm, 1920 nm, 1950 nm, 2210 nm, 2260 nm; The spectral features of Cu are: 480 nm, 500 nm, 610 nm, 750 nm, 860 nm, 1300 nm, 1430 nm, 1920 nm, 2150 nm, 2260 nm; And the spectral features of Cr are: 480 nm, 500 nm, 610 nm, 715 nm, 750 nm, 860 nm, 1300 nm, 1430 nm, 1755 nm, 1920 nm, 1950 nm. With these features, the best models to estimate the heavy metals in the study area were built according to the maximal R2. The R2 of the models of estimating Al, Cu and Cr in the soil and water are 0.813, 0.638, 0.604 and 0.742, 0.584, 0.513 respectively. And the gradient maps of these three types of heavy metals’ concentrations can be created by using the Inverse distance weighted (IDW).The gradient maps indicate that the heavy metals in the soil have similar patterns, but in the North-west of the streams in the study area, the contents are of great differences. These results show that it is feasible to predict contaminated heavy metals in the soils and streams due to mining activities by using the rapid and cost-effective field spectroscopy.  相似文献   

17.
Soil organic carbon (SOC) plays an important role in climate change regulation notably through release of CO2 following land use change such a deforestation, but data on stock change levels are lacking. This study aims to empirically assess SOC stocks change between 1991 and 2011 at the landscape scale using easy-to-access spatially-explicit environmental factors. The study area was located in southeast Madagascar, in a region that exhibits very high rate of deforestation and which is characterized by both humid and dry climates. We estimated SOC stock on 0.1 ha plots for 95 different locations in a 43,000 ha reference area covering both dry and humid conditions and representing different land cover including natural forest, cropland, pasture and fallows. We used the Random Forest algorithm to find out the environmental factors explaining the spatial distribution of SOC. We then predicted SOC stocks for two soil layers at 30 cm and 100 cm over a wider area of 395,000 ha. By changing the soil and vegetation indices derived from remote sensing images we were able to produce SOC maps for 1991 and 2011. Those estimates and their related uncertainties where combined in a post-processing step to map estimates of significant SOC variations and we finally compared the SOC change map with published deforestation maps. Results show that the geologic variables, precipitation, temperature, and soil-vegetation status were strong predictors of SOC distribution at regional scale. We estimated an average net loss of 10.7% and 5.2% for the 30 cm and the 100 cm layers respectively for deforested areas in the humid area. Our results also suggest that these losses occur within the first five years following deforestation. No significant variations were observed for the dry region. This study provides new solutions and knowledge for a better integration of soil threats and opportunities in land management policies.  相似文献   

18.
This paper presents an application of Airborne Laser Scanning (ALS) data in conjunction with an IRS LISS-III image for mapping forest fuel types. For two study areas of 165 km2 and 487 km2 in Sicily (Italy), 16,761 plots of size 30-m × 30-m were distributed using a tessellation-based stratified sampling scheme. ALS metrics and spectral signatures from IRS extracted for each plot were used as predictors to classify forest fuel types observed and identified by photointerpretation and fieldwork. Following use of traditional parametric methods that produced unsatisfactory results, three non-parametric classification approaches were tested: (i) classification and regression tree (CART), (ii) the CART bagging method called Random Forests, and (iii) the CART bagging/boosting stochastic gradient boosting (SGB) approach. This contribution summarizes previous experiences using ALS data for estimating forest variables useful for fire management in general and for fuel type mapping, in particular. It summarizes characteristics of classification and regression trees, presents the pre-processing operation, the classification algorithms, and the achieved results. The results demonstrated superiority of the SGB method with overall accuracy of 84%. The most relevant ALS metric was canopy cover, defined as the percent of non-ground returns. Other relevant metrics included the spectral information from IRS and several other ALS metrics such as percentiles of the height distribution, the mean height of all returns, and the number of returns.  相似文献   

19.
Land cover change is increasingly affecting the biophysics, biogeochemistry, and biogeography of the Earth's surface and the atmosphere, with far-reaching consequences to human well-being. However, our scientific understanding of the distribution and dynamics of land cover and land cover change (LCLCC) is limited. Previous global land cover assessments performed using coarse spatial resolution (300 m–1 km) satellite data did not provide enough thematic detail or change information for global change studies and for resource management. High resolution (∼30 m) land cover characterization and monitoring is needed that permits detection of land change at the scale of most human activity and offers the increased flexibility of environmental model parameterization needed for global change studies. However, there are a number of challenges to overcome before producing such data sets including unavailability of consistent global coverage of satellite data, sheer volume of data, unavailability of timely and accurate training and validation data, difficulties in preparing image mosaics, and high performance computing requirements. Integration of remote sensing and information technology is needed for process automation and high-performance computing needs. Recent developments in these areas have created an opportunity for operational high resolution land cover mapping, and monitoring of the world. Here, we report and discuss these advancements and opportunities in producing the next generations of global land cover characterization, mapping, and monitoring at 30-m spatial resolution primarily in the context of United States, Group on Earth Observations Global 30 m land cover initiative (UGLC).  相似文献   

20.
The accurate detection of heavy metal-induced stress on crop growth is important for food security and agricultural, ecological and environmental protection. Spectral sensing offers an efficient and undamaged observation tool to monitor soil and vegetation contamination. This study proposed a methodology for dynamically estimating the total cadmium (Cd) accumulation in rice tissues by assimilating spectral information into WOFOST (World Food Study) model. Based on the differences among ground hyperspectral data of rice in three experiments fields under different Cd concentration levels, the spectral indices MCARI1, NREP and RH were selected to reflect the rice stress condition and dry matter production of rice. With assimilating these sensitive spectral indices into the WOFOST + PROSPECT + SAIL model to optimize the Cd pollution stress factor fwi, the dynamic dry matter production processes of rice were adjusted. Based on the relation between dry matter production and Cd accumulation, we dynamically simulating the Cd accumulation in rice tissues. The results showed that the method performed well in dynamically estimating the total amount of Cd accumulation in rice tissues with R2 over 85%. This study suggests that the proposed method of integrating the spectral information and the crop growth model could successfully dynamically simulate the Cd accumulation in rice tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号