首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

This study examined the complementarity of radar and optical data for feature identification. Spaceborne radar and Landsat Thematic Mapper (TM ) multispectral data sets were assessed independently and in combination to classify a site near Wad Medani, Sudan. Radar processing procedures included speckle reduction, texture extraction and post‐processing smoothing. Relative accuracy of the resultant classifications was established by comparison to ground truth information derived from field visitation. Neither speckle filtering nor post‐classification smoothing were improvements over the poor results obtained with the unfiltered, original radar data. Texture measures were significant improvements over the original data (20 percent overall accuracy increase) and several, but not all, individual classes had excellent results. Landsat TM had good overall results (80 percent correct) but considerable spectral confusion between urban and bare soil. Combination of radar with Landsat TM greatly improved results, achieving near perfect classification of all individual classes. The systematic strategy of this study, determination of the best individual method before introducing the next procedure, was effective in managing a complex set of analysis possibilities.  相似文献   

2.
LANDSAT-TM has been evaluated for forest cover type and landuse classification in subtropical forests of Kumaon Himalaya (U.P.) Comparative evaluation of false colour composite generated by using various band combinations has been made. Digital image processing of Landsat-TM data on VIPS-32 RRSSC computer system has been carried out to stratify vegetation types. Conventional band combination in false colour composite is Bands 2, 3 and 4 in Red/Green/Blue sequence of Landsat TM for landuse classification. The present study however suggests that false colour combination using Landsat TM bands viz., 4, 5 and 3 in Red/Green/Blue sequence is the most suitable for visual interpretation of various forest cover types and landuse classes. It is felt that to extract full information from increased spatial and spectral resolution of Landsat TM, it is necessary to process the data digitally to classify land cover features like vegetation. Supervised classification using maximum likelihood algorithm has been attemped to stratify the forest vegetation. Only four bands are sufficient enough to classify vegetaton types. These bands are 2,3,4 and 5. The classification results were smoothed digitaly to increase the readiability of the map. Finally, the classification carred out using digital technique were evaluated using systematic sampling design. It is observed that forest cover type mapping can be achieved upto 80% overall mapping accuracy. Monospecies stand Chirpine can be mapped in two density classes viz., dense pine (<40%) with more than 90% accuracy. Poor accuracy (66%) was observed while mapping pine medium dense areas. The digital smoothening reduced the overall mapping accuracy. Conclusively, Landsat-TM can be used as operatonal sensor for forest cover type mapping even in complex landuse-terrain of Kumaon Himalaya (U.P.)  相似文献   

3.
简要介绍了基于LANDSAT7 ETM+影像,采用计算机非监督分类、监督分类与人工解译相结合的方法制作土地利用覆盖图的过程和所采用的关键技术,给出了适用于规模化生产土地利用覆盖数据的工艺流程图。使用该方法制作的十一种分类要素的北京地区1:5万土地利用覆盖图,平均分类精度为84.85%,可以满足一般用户对土地利用覆盖图的要求。  相似文献   

4.
Ranikhet tahsil being situated in mountaineous region of the Himalaya has been influenced by fast changes in forest cover and landuse during the recent past. Remote sensing technique has been employed to monitor the changes in forest cover and imporant landuse classes. Landsat MSS (FCC) and Landsat TM (FCC) of 1972 and 1986 respectively has been visually interpreted. The study highlights the potential of remote sensing techniques for monitoring the changes in forest cover and land use classes.  相似文献   

5.
Maximum likelihood (ML) and artificial neural network (ANN) classifiers were applied to three Landsat Thematic Mapper (TM) image sub-scenes (termed urban, agricultural and semi-natural) of Cukurova, Turkey. Inputs to the classifications comprised (i) spectral data and (ii) spectral data in combination with texture measures derived on a per-pixel basis. The texture measures used were: the standard deviation and variance and statistics derived from the co-occurrence matrix and the variogram. The addition of texture measures increased classification accuracy for the urban sub-scene but decreased classification accuracy for agricultural and semi-natural sub-scenes. Classification accuracy was dependent on the nature of the spatial variation in the image sub-scene and, in particular, the relation between the frequency of spatial variation and the spatial resolution of the imagery. For Mediterranean land, texture classification applied to Landsat TM imagery may be appropriate for the classification of urban areas only.  相似文献   

6.
卫星遥感技术可用于海岛资源调查。Sentinel-2A与Landsat 8两颗卫星都可免费提供空间分辨率较高的多光谱遥感影像,在海岛调查中的应用潜力较大。本文以浙江舟山普陀山岛为例开展了针对这两种影像在海岛植被分类中的应用效果的研究,分别利用Sentinel-2A多光谱成像仪(MSI)和Landsat 8陆地成像仪(OLI)影像基于最大似然法分类获得了该岛阔叶林、针阔混交林、针叶林、灌丛、草丛等植被及其他地物的分布情况,并进行了精度检验,结果表明MSI的总体分类精度略高于OLI。  相似文献   

7.
以克拉玛依市独山子区为例,采用1989年、1999年、2006年三期Landsat TM遥感图像数据为基础数据源,在遥感和GIS技术的支持下,阐述了提取研究时段内城镇用地扩展数据的技术路线,并结合城市地理学方法,进一步对城镇空间扩展进行了定量分析,结合社会经济统计数据,对独山子区城市用地扩展驱动力进行了尝试性分析,并对以后城市扩展提出对策,以期探讨遥感与GIS技术用于城市地理学的方法和过程。  相似文献   

8.

Forest vegetation of Vindhyan range located in the north of G.B. Pant Sagar (dam) has been subjected to degradation due to high biotic pressure caused by the installation of thermal power plants, coal mining, heavy cattle grazing etc. In the present study Landsat TM FCC of 1∶250,000 scale was visually analysed with respect to forest vegetation types, crown density and structure along with other landuse/land cover classes. ExceptShorea robusta (Sal) andLagerstroemia parviflora (Lendia) all forest vegetation types show higher percentage of degradation and under-stocked condition with respect to their areal extent under study. Overall classification accuracy of the forest types has been found to be 88.94%. This indicates that for obtaining reliable mapping accuracy in dry deciduous areas, satellite remote sensing data of appropriate season is essential.

  相似文献   

9.
Very high resolution hyperspectral data should be very useful to provide detailed maps of urban land cover. In order to provide such maps, both accurate and precise classification tools need, however, to be developed. In this letter, new methods for classification of hyperspectral remote sensing data are investigated, with the primary focus on multiple classifications and spatial analysis to improve mapping accuracy in urban areas. In particular, we compare spatial reclassification and mathematical morphology approaches. We show results for classification of DAIS data over the town of Pavia, in northern Italy. Classification maps of two test areas are given, and the overall and individual class accuracies are analyzed with respect to the parameters of the proposed classification procedures.  相似文献   

10.
基于SFIM算法的融合影像分类研究   总被引:3,自引:1,他引:2  
以福州市城乡结合部的Landsat7 ETM+影像为例,就该融合算法的自动分类精度作进一步研究,并藉此对该算法作全面评价。研究结果表明,SFIM融合影像的分类精度高于原始未融合影像的分类精度,但选择不同尺寸的均值滤波器会影响融合影像的分类精度。试验表明,太大尺寸的滤波器虽然能提高高分辨率影像的信息融入度,但会降低融合影像的分类精度和光谱的保真度。  相似文献   

11.
Abstract

This study examined the complementarity of spaceborne radar and optical data for surface feature identification. RADARSAT data sets were assessed independently and in combination with Landsat Thematic Mapper (TM) multispectral data. The primary methodology was spectral signature extraction and the application of a statistical decision rule to classify the surface features for a site near Kericho, Kenya. Relative accuracy of the resultant classifications was established by digital integration and comparison to reference information derived from field visitation. Speckle filtering was a great improvement over the poor results achieved with the unfiltered, original radar data but still not adequate for accurate land cover classification. The extraction and use of Variance texture measures was found to be very advantageous. The overall results were not significant improvements over speckle removal (6% increase) but several individual classes, forest and urban, had excellent results with texture. Combinations of radar with Landsat TM greatly improved results, achieving near perfect classification of all individual classes. The highest overall accuracy was achieved with a merger that included the best individual texture image and six reflectance bands of the TM data. The systematic strategy of this study, determination of the best individual method before introducing the next procedure, was effective in managing a very complex, almost infinite set of analysis possibilities.  相似文献   

12.
An image dataset from the Landsat OLI spaceborne sensor is compared with the Landsat TM in order to evaluate the excellence of the new imagery in urban landcover classification. Widely known pixel-based and object-based image analysis methods have been implemented in this work like Maximum Likelihood, Support Vector Machine, k-Nearest Neighbor, Feature Analyst and Sub-pixel. Classification results from Landsat OLI provide more accurate results comparing to the Landsat TM. Object-based classifications produced a more uniform result, but suffer from the absorption of small rare classes into large homogenous areas, as a consequence of the segmentation, merging and the spatial parameters in the spatial resolution (30 m) of Landsat images. Based exclusively on the overall accuracy reports, the SVM pixel-based classification from Landsat 8 proved to be the most accurate for the purpose of mapping urban land cover, using medium spatial resolution imagery.  相似文献   

13.
This paper seeks a synthesis of Bayesian and geostatistical approaches to combining categorical data in the context of remote sensing classification. By experiment with aerial photographs and Landsat TM data, accuracy of spectral, spatial, and combined classification results was evaluated. It was confirmed that the incorporation of spatial information in spectral classification increases accuracy significantly. Secondly, through test with a 5-class and a 3-class classification schemes, it was revealed that setting a proper semantic framework for classification is fundamental to any endeavors of categorical mapping and the most important factor affecting accuracy. Lastly, this paper promotes non-parametric methods for both definition of class membership profiling based on band-specific histograms of image intensities and derivation of spatial probability via indicator kriging, a non-parametric geostatistical technique.  相似文献   

14.
This paper seeks a synthesis of Bayesian and geostatistical approaches to combining categorical data in the context of remote sensing classification. By experiment with aerial photographs and Landsat TM data, accuracy of spectral, spatial, and combined classification results was evaluated. It was confirmed that the incorporation of spatial information in spectral classification increases accuracy significantly. Secondly, through test with a 5-class and a 3-class classification schemes, it was revealed that setting a proper semantic framework for classification is fundamental to any endeavors of categorical mapping and the most important factor affecting accuracy. Lastly, this paper promotes non-parametric methods for both definition of class membership profiling based on band-specific histograms of image intensities and derivation of spatial probability via indicator kriging, a non-parametric geostatistical technique.  相似文献   

15.
Abstract

A methodology is presented for estimating percent coverage of impervious surface (IS) and forest cover (FC) within Landsat thematic mapper (TM) pixels of urban areas. High-resolution multi-spectral images from Quickbird (QB) play a key role in the sub-pixel mapping process by providing information on the spatial distributions of ISs and FCs at 2.4 m ground sampling intervals. Thematic classifications, also derived from the Landsat imagery, have then been employed to define relationships between 30 m Landsat-derived greenness values and percent IS and FC. By also utilizing land cover/land use classification derived from Landsat and defining unique relationships for urban sub-classes (i.e. residential, commercial/industrial, open land), confusion between impervious and fallow agricultural lands has been overcome. Test results are presented for Ottawa-Gatineau, an urban area that encompasses many aspects typical of the North American urban landscape. Multiple QB scenes have been acquired for this urban centre, thereby allowing us to undertake an in-depth study of the error budgets associated with the fractional inference process.  相似文献   

16.
The Mumbai-Navi Mumbai cities (Bombay and New Bombay) are among the highest populated cities in the country. The population pressure has caused drastic landuse change in the last seventy years. Multi-date data from SOI topographical maps and Landsat TM digital data have been used to study the landuse change. The change has been quantified using A GIS It was observed that 55% reduction in forest/agricultural land, while a 300% increase in built-up land has taken place in the last seventy years. This has affected the natural drainage system of the cities, causing flooding during monsoons. The quantum of draînage basin area and stream length, in the ten basins which drain the area, under influence of built-up land was found by using a map overlay of the drainage network map and landuse map of 1994. The results shed light on the extent of drainage network disruption within these two neighbouring cities.  相似文献   

17.
Forest cover plays a key role in climate change by influencing the carbon stocks, the hydrological cycle and the energy balance. Forest cover information can be determined from fine-resolution data, such as Landsat Enhanced Thematic Mapper Plus (ETM+). However, forest cover classification with fine-resolution data usually uses only one temporal data because successive data acquirement is difficult. It may achieve mis-classification result without involving vegetation growth information, because different vegetation types may have the similar spectral features in the fine-resolution data. To overcome these issues, a forest cover classification method using Landsat ETM+ data appending with time series Moderate-resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data was proposed. The objective was to investigate the potential of temporal features extracted from coarse-resolution time series vegetation index data on improving the forest cover classification accuracy using fine-resolution remote sensing data. This method firstly fused Landsat ETM+ NDVI and MODIS NDVI data to obtain time series fine-resolution NDVI data, and then the temporal features were extracted from the fused NDVI data. Finally, temporal features combined with Landsat ETM+ spectral data was used to improve forest cover classification accuracy using supervised classifier. The study in North China region confirmed that time series NDVI features had significant effects on improving forest cover classification accuracy of fine resolution remote sensing data. The NDVI features extracted from time series fused NDVI data could improve the overall classification accuracy approximately 5% from 88.99% to 93.88% compared to only using single Landsat ETM+ data.  相似文献   

18.
This paper presents a new approach to improving land use/cover mapping accuracy in an urban environment. Bi-temporal Landsat TM images (1987 and 1997) were initially classified using the ISODATA method. An NDVI difference image was derived and classified, with each class indicating certain land use/cover changes. Temporal logical reasoning was then performed on the classified NDVI difference map and the initial land use/cover maps. The procedure successfully resolved the confusion between forest clear-cuts/fallow cropland and urban, as well as between forest clear-cuts and cropland. The kappa analysis test led to a Z value of 1.837 with the p-value of 0.026 for the year 1987, and a Z value of 1.924 with the p-value of 0.014 for 1997, indicating significant enhancement at the 95% confidence level.  相似文献   

19.
20.
Visual interpretation of satellite data products coupled with field checking is a very useful technique of finding out the physical growth of urban centres. The expansion of urban centres is very fast and conventional ground methods are slow and in-accurate because by these methods, delineation of built-up area is difficult. Mapping and monitoring the urban sprawl, as a result of urban decay of city centre, at regular intervals is very essential for urban planners to understand the trend of development on the urban periphery and subsequently to regulate it. In this study, various data products like Landsat MSS, TM, Toposheets were used to find out the growth of Delhi urban area since 1975 to 1988. Thematic Mapper imagery was used to prepare a broad landuse/land cover map of Delhi and environs. This study was very useful in finding out the potential, as well as shortcomings of satellite data products in the study of various urban aspects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号