首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Land cover types of Hustai National Park (HNP) in Mongolia, a hotspot area with rare species, were classified and their temporal changes were evaluated using Landsat MSS TM/ETM data between 1994 and 2000. Maximum-likelihood classification analysis showed an overall accuracy of 88.0% and 85.0% for the 1994 and 2000 images, respectively. Kappa coefficients associated with the classification were resulted to 0.85 for 1994 and 0.82 for 2000 image. Land cover types revealed significant temporal changes in the classification maps between 1994 and 2000. The area has increased considerably by 166.5 km2 for mountain steppe and by 12 km2 for a sand dune. By contrast, agricultural areas and degraded areas affected by human being activity were decreased by 46.1 km2 and 194.8 km2 over the 6-year span, respectively. These areas were replaced by mountain steppe area. Specifically, forest area was noticeably fragmented, accompanied by the decrease of ∼400 ha. The forest area revealed a pattern with systematic gain and loss associated with the specific phenomenon called as ‘forest free-south slope’. We discussed the potential environmental conditions responsible for the systematic pattern and addressed other biological impacts by outbreaks of forest pests and ungulates.  相似文献   

2.
To prevent soil loss and achieve better ecological environments, soil conservation measures have been taken during the past decades in the western Loess Plateau of China. In this paper, a case study was taken in Luoyu valley and Lver valley, two sub-watersheds of Xihe watershed and comparison was carried out between them. The main object of this study is to monitor land use/cover changes in the two similar small watersheds utilizing SPOT5 imageries by object-oriented human–computer interactive classification method, further develop the method of spatio-temporal analysis of land use/cover change by using pattern metrics of change trajectories and relative land use suitability index (R) in smaller watersheds, and make comparisons between the two similar small watersheds, taking water and soil conservation measures into consideration. Results show that combining GIS and RS, this method can be perfectly applied to make comparisons between different small watersheds with similar geographical backgrounds. And land use/cover spatiotemporal dynamic change characteristics can be preferably expressed by pattern metrics of change trajectories and R values based on topographical data. Different emphases have been laid according to their own geological backgrounds in the two watersheds and human activities have different effects on the landscapes of the two watersheds. The main change pattern is from slope farmland to terrace (322, the largest in Luoyu valley) or to economic fruit forest (344, the largest in Lver valley). R value of every slope grade in both of the two watersheds drops with the rising of slope degree on the whole and it shows that there is still much to do for people in the two watersheds in consideration that all the R values are still lower than 0.7.  相似文献   

3.
The eco-environment in the Three Gorges Reservoir Area (TGRA) in China has received much attention due to the construction of the Three Gorges Hydropower Station. Land use/land cover changes (LUCC) are a major cause of ecological environmental changes. In this paper, the spatial landscape dynamics from 1978 to 2005 in this area are monitored and recent changes are analyzed, using the Landsat TM (MSS) images of 1978, 1988, 1995, 2000 and 2005. Vegetation cover fractions for a vegetation cover analysis are retrieved from MODIS/Terra imagery from 2000 to 2006, being the period before and after the rising water level of the reservoir. Several analytical indices have been used to analyze spatial and temporal changes. Results indicate that cropland, woodland, and grassland areas reduced continuously over the past 30 years, while river and built-up area increased by 2.79% and 4.45% from 2000 to 2005, respectively. The built-up area increased at the cost of decreased cropland, woodland and grassland. The vegetation cover fraction increased slightly. We conclude that significant changes in land use/land cover have occurred in the Three Gorges Reservoir Area. The main cause is a continuous economic and urban/rural development, followed by environmental management policies after construction of the Three Gorges Dam.  相似文献   

4.
Tongyu County in Northeast China is highly prone to land degradation due to its fragile physical settings characterized by a flat topography, a semi-arid climate, and a shallow groundwater table. This study aims to determine the causes of land degradation through detecting the long-term trend of land cover changes. Degraded lands were mapped from satellite images recorded in 1992 and 2002. These land cover maps revealed that the area subject to land degradation in the form of soil salinization, waterlogging and desertification increased from 2400 to 4214 km2, in sharp contrast to most severely degraded land that decreased by 122.5 km2. Newly degraded land stems from productive farmland (263 km2), harvested farmland (551 km2), and grassland (468 km2). Therefore, the worsened degradation situation is attributed to excessive reclamation of grassland for farming, over cultivation, overgrazing, and deforestation. Mechanical, biological, ecological and engineering means should be adopted to rehabilitate the degraded land.  相似文献   

5.
Accelerated soil erosion, high sediment yields, floods and debris flow are serious problems in many areas of Iran, and in particular in the Golestan dam watershed, which is the area that was investigated in this study. Accurate land use and land cover (LULC) maps can be effective tools to help soil erosion control efforts. The principal objective of this research was to propose a new protocol for LULC classification for large areas based on readily available ancillary information and analysis of three single date Landsat ETM+ images, and to demonstrate that successful mapping depends on more than just analysis of reflectance values. In this research, it was found that incorporating climatic and topographic conditions helped delineate what was otherwise overlapping information. This study determined that a late summer Landsat ETM+ image yields the best results with an overall accuracy of 95%, while a spring image yields the poorest accuracy (82%). A summer image yields an intermediate accuracy of 92%. In future studies where funding is limited to obtaining one image, late summer images would be most suitable for LULC mapping. The analysis as presented in this paper could also be done with satellite images taken at different times of the season. It may be, particularly for other climatic zones, that there is a better time of season for image acquisition that would present more information.  相似文献   

6.
LiDAR has been an effective technology for acquiring urban land cover data in recent decades. Previous studies indicate that geometric features have a strong impact on land cover classification. Here, we analyzed an urban LiDAR dataset to explore the optimal feature subset from 25 geometric features incorporating 25 scales under 6 definitions for urban land cover classification. We performed a feature selection strategy to remove irrelevant or redundant features based on the correlation coefficient between features and classification accuracy of each features. The neighborhood scales were divided into small (0.5–1.5 m), medium (1.5–6 m) and large (>6 m) scale. Combining features with lower correlation coefficient and better classification performance would improve classification accuracy. The feature depicting homogeneity or heterogeneity of points would be calculated at a small scale, and the features to smooth points at a medium scale and the features of height different at large scale. As to the neighborhood definition, cuboid and cylinder were recommended. This study can guide the selection of optimal geometric features with adaptive neighborhood scale for urban land cover classification.  相似文献   

7.
The analysis and classification of land cover is one of the principal applications in terrestrial remote sensing. Due to the seasonal variability of different vegetation types and land surface characteristics, the ability to discriminate land cover types changes over time. Multi-temporal classification can help to improve the classification accuracies, but different constraints, such as financial restrictions or atmospheric conditions, may impede their application. The optimisation of image acquisition timing and frequencies can help to increase the effectiveness of the classification process. For this purpose, the Feature Importance (FI) measure of the state-of-the art machine learning method Random Forest was used to determine the optimal image acquisition periods for a general (Grassland, Forest, Water, Settlement, Peatland) and Grassland specific (Improved Grassland, Semi-Improved Grassland) land cover classification in central Ireland based on a 9-year time-series of MODIS Terra 16 day composite data (MOD13Q1). Feature Importances for each acquisition period of the Enhanced Vegetation Index (EVI) and Normalised Difference Vegetation Index (NDVI) were calculated for both classification scenarios. In the general land cover classification, the months December and January showed the highest, and July and August the lowest separability for both VIs over the entire nine-year period. This temporal separability was reflected in the classification accuracies, where the optimal choice of image dates outperformed the worst image date by 13% using NDVI and 5% using EVI on a mono-temporal analysis. With the addition of the next best image periods to the data input the classification accuracies converged quickly to their limit at around 8–10 images. The binary classification schemes, using two classes only, showed a stronger seasonal dependency with a higher intra-annual, but lower inter-annual variation. Nonetheless anomalous weather conditions, such as the cold winter of 2009/2010 can alter the temporal separability pattern significantly. Due to the extensive use of the NDVI for land cover discrimination, the findings of this study should be transferrable to data from other optical sensors with a higher spatial resolution. However, the high impact of outliers from the general climatic pattern highlights the limitation of spatial transferability to locations with different climatic and land cover conditions. The use of high-temporal, moderate resolution data such as MODIS in conjunction with machine-learning techniques proved to be a good base for the prediction of image acquisition timing for optimal land cover classification results.  相似文献   

8.
Considerable efforts have recently resulted in the development of global land cover data at large spatial scales. The main objective of this study is a comparison of different AVHRR- and MODIS-based forest and land cover products at the scale of the European Alps: a large natural ecosystem that is exposed to both natural environmental threats and human impacts and exploitation. In a first test, the accuracy of land cover products in predicting the overall amount of forest across national boundaries was assessed using national forest inventory statistics. Both variants of forest class combinations resulted in a general overestimation of the forest area. The IGBP 2.0 cover performed best with an overall mean absolute error of 13% and a bias of 0%. In a second test, large-area land cover products were tested for accuracy in predicting 13 aggregated land cover types in a spatially explicit manner using CORINE land cover as reference dataset. Due to data inconsistencies, partly insufficient spatial resolution, steep terrain and land use heterogeneity of the European Alps, only partly satisfactory results were obtained.  相似文献   

9.
This paper presents a land use and land cover (LULC) classification approach that accounts landscape heterogeneity. We addressed this challenge by subdividing the study area into more homogeneous segments using several biophysical and socio-economic factors as well as spectral information. This was followed by unsupervised clustering within each homogeneous segment and supervised class assignment. Two classification schemes differing in their level of detail were successfully applied to four landscape types of distinct LULC composition. The resulting LULC map fulfills two major requirements: (1) differentiation and identification of several LULC classes that are of interest at the local, regional, and national scales, and (2) high accuracy of classification. The approach overcomes commonly encountered difficulties of classifying second-level classes in large and heterogeneous landscapes. The output of the study responds to the need for comprehensive LULC data to support ecosystem assessment, policy formulation, and decision-making towards sustainable land resources management.  相似文献   

10.
The spatial differentiation of socioeconomic classes in a city can deliver insight into the nexus of urban development and the environment. The purpose of this paper is to identify poor and rich regions in large cities according to the predominant physical characteristics of the regions. Meaningful spatial information from urban systems can be derived using remote sensing and GIS tools, especially in large difficult-to-manage cities where the dynamics of development results in rapid changes to urban patterns. We use here very high resolution imagery data for the identification of homogeneous socioeconomic zones in a city. We formulate the categorization task as a GIS analysis of an image classified with conventional techniques. Experiments are conducted using a QuickBird image of a study area in Lima, Peru. We provide accuracy assessment of results compared to ground truth data. Results show an approximated allocation of socioeconomic zones within Lima. The methodology described could also be applied to other urban centers, particularly large cities of Latin America, which have characteristics similar to those of the study area.  相似文献   

11.
In this study, we test the use of Land Use and Coverage Area frame Survey (LUCAS) in-situ reference data for classifying high-resolution Sentinel-2 imagery at a large scale. We compare several pre-processing schemes (PS) for LUCAS data and propose a new PS for a fully automated classification of satellite imagery on the national level. The image data utilizes a high-dimensional Sentinel-2-based image feature space. Key elements of LUCAS data pre-processing include two positioning approaches and three semantic selection approaches. The latter approaches differ in the applied quality measures for identifying valid reference points and by the number of LU/LC classes (7–12). In an iterative training process, the impact of the chosen PS on a Random Forest image classifier is evaluated. The results are compared to LUCAS reference points that are not pre-processed, which act as a benchmark, and the classification quality is evaluated by independent sets of validation points. The classification results show that the positional correction of LUCAS points has an especially positive effect on the overall classification accuracy. On average, this improves the accuracy by 3.7%. This improvement is lowest for the most rigid sample selection approach, PS2, and highest for the benchmark data set, PS0. The highest overall accuracy is 93.1% which is achieved by using the newly developed PS3; all PS achieve overall accuracies of 80% and higher on average. While the difference in overall accuracy between the PS is likely to be influenced by the respective number of LU/LC classes, we conclude that, overall, LUCAS in-situ data is a suitable source for reference information for large scale high resolution LC mapping using Sentinel-2 imagery. Existing sample selection approaches developed for Landsat imagery can be transferred to Sentinel-2 imagery, achieving comparable semantic accuracies while increasing the spatial resolution. The resulting LC classification product that uses the newly developed PS is available for Germany via DOI: https://doi.org/10.15489/1ccmlap3mn39.  相似文献   

12.
Human-induced land use/cover change has been considered to be one of the most important parts of global environmental changes. In loess hilly and gully regions, to prevent soil loss and achieve better ecological environments, soil conservation measures have been taken during the past decades. The main objective of this study is to quantify the spatio-temporal variability of land use/cover change spatial patterns and make preliminary estimation of the role of human activity in the environmental change in Xihe watershed, Gansu Province, China. To achieve this objective, the methodology was developed in two different aspects, that is, (1) analysis of change patterns by binary image of change trajectories overlaid with different natural geographic factors, in which Relative Change Intensity (RCI) metric was established and used to make comparisons, and (2) analysis based on pattern metrics of main trajectories in the study area. Multi-source and multi-temporal Remote Sensing (RS) images (including Landsat ETM+ (30 June 2001), SPOT imagery (21 November 2003 and 5 May 2008) and CBERS02 CCD (5 June 2006)) were used due to the constraints of the availability of remotely sensed data. First, they were used to extract land use/cover types of each time node by object-oriented classification method. Classification results were then utilized in the trajectory analysis of land use/cover changes through the given four time nodes. Trajectories at every pixel were acquired to trace the history of land use/cover change for every location in the study area. Landscape metrics of trajectories were then analyzed to detect the change characteristics in time and space through the given time series. Analysis showed that most land use/cover changes were caused by human activities, most of which, under the direction of local government, had mainly led to virtuous change on the ecological environments. While, on the contrary, about one quarter of human-induced changes were vicious ones. Analysis through overlaying binary image of change trajectories with natural factors can efficiently show the spatio-temporal distribution characteristics of land use/cover change patterns. It is found that in the study area RCI of land use/cover changes is related to the distance to the river line. And there is a certain correlation between RCI and slope grades. However, no obvious correlation exists between RCI and aspect grades.  相似文献   

13.
粤港澳大湾区已成为世界级城市群为目标的特大城市群.本文利用多期遥感数据,并结合景观格局指数研究大湾区2000—2020年的发展规律.结果表明:①大湾区主要的土地覆盖类型为林地、耕地与居住及建设用地,3种地类总占比多年来均在80%以上;②大湾区的居住及建设用地在20年间增长了115.21%,面积达到9183.47 km2...  相似文献   

14.
Global land cover (LC) maps have been widely employed as the base layer for a number of applications including climate change, food security, water quality, biodiversity, change detection, and environmental planning. Due to the importance of LC, there is a pressing need to increase the temporal and spatial resolution of global LC maps. A recent advance in this direction has been the GlobeLand30 dataset derived from Landsat imagery, which has been developed by the National Geomatics Center of China (NGCC). Although overall accuracy is greater than 80%, the NGCC would like help in assessing the accuracy of the product in different regions of the world. To assist in this process, this study compares the GlobeLand30 product with existing public and online datasets, that is, CORINE, Urban Atlas (UA), OpenStreetMap, and ATKIS for Germany in order to assess overall and per class agreement. The results of the analysis reveal high agreement of up to 92% between these datasets and GlobeLand30 but that large disagreements for certain classes are evident, in particular wetlands. However, overall, GlobeLand30 is shown to be a useful product for characterizing LC in Germany, and paves the way for further regional and national validation efforts.  相似文献   

15.
The world’s largest mangrove ecosystem, the Sunderbans is experiencing multidimensional threats of degradation. The present study was aimed to understand these problems and search for proper remedies by applying suitable remote sensing technologies. South-western parts of Indian Sunderbans Biosphere Reserve had been chosen for assessment of land use/land cover changes in between 1975 and 2006 by using multitemporal Landsat data. Results indicated considerable reduction of open mangrove stands and associated biodiversity mainly in the forest-habitation interference zones of Sunderbans. On the contrary, increase in the coverage of dense mangroves in the reserved forests had been observed indicating the existence of proper centralized management regimes. Overall, a cumulative loss of approximately 0.42% of its original mangrove cover in between 1975 and 2006 had been estimated for this part of the Sunderbans which was at parity with the findings of other studies in the Sunderbans or similar mangrove ecosystems of the tropics. Expansion of non agricultural lands in the last two decades was found to be related with the growth of new settlements, tourism infrastructure, and facilities. This transformation was attributed to the shifting of local peoples’ interest from traditional forestry and subsistence farming towards alternative occupations like shrimp culture, coastal tourism, and commercial fishing although environmentally hazardous livelihood activities like collection of prawn seeds along the riverbanks were still persistent.  相似文献   

16.
17.
ABSTRACT

In recent years, the data science and remote sensing communities have started to align due to user-friendly programming tools, access to high-end consumer computing power, and the availability of free satellite data. In particular, publicly available data from the European Space Agency’s Sentinel missions have been used in various remote sensing applications. However, there is a lack of studies that utilize these data to assess the performance of machine learning algorithms in complex boreal landscapes. In this article, I compare the classification performance of four non-parametric algorithms: support vector machines (SVM), random forests (RF), extreme gradient boosting (Xgboost), and deep learning (DL). The study area chosen is a complex mixed-use landscape in south-central Sweden with eight land-cover and land-use (LCLU) classes. The satellite imagery used for the classification were multi-temporal scenes from Sentinel-2 covering spring, summer, autumn and winter conditions. Using stratified random sampling, each LCLU class was allocated 1477 samples, which were divided into training (70%) and evaluation (30%) subsets. Accuracy was assessed through metrics derived from an error matrix, but primarily overall accuracy was used in allocating algorithm hierarchy. A two-proportion Z-test was used to compare the proportions of correctly classified pixels of the algorithms and a McNemar’s chi-square test was used to compare class-wise predictions. The results show that the highest overall accuracy was produced by support vector machines (0.758 ± 0.017), closely followed by extreme gradient boosting (0.751 ± 0.017), random forests (0.739 ± 0.018), and finally deep learning (0.733 ± 0.0023). The Z-test comparison of classifiers showed that a third of algorithm pairings were statistically different. On a class-wise basis, McNemar’s test results showed that 62% of class-wise predictions were significant from one another at the 5% level or less. Variable importance metrics show that nearly half of the top twenty Sentinel-2 bands belonged to the red edge (25%) and shortwave infrared (23%) portions of the electromagnetic spectrum, and were dominated by scenes from spring (38%) and summer (40%). The results are discussed within the scope of recent studies involving machine learning and Sentinel-2 data and key knowledge gaps identified. The article concludes with recommendations for future research.  相似文献   

18.
以岷江上游流域为对象,选取3期9景TM/+ETM遥感影像,通过多步骤最大似然监督分类、变化检测,结合空间动态分析测算模型,分析近20年土地利用/覆被变化情况。结果表明:从整个流域分析,林地面积减少,主要转化为未利用地、建设用地和耕地;未利用地在前8年以每年3.7%、后8年以每年0.4%的速度增加;建设用地在1994—2002年以每年34%的速度增加,到2002—2010年增长速度减缓;耕地总面积减少54 431hm2;从县域分析,1994—2002年间,松潘和黑水县大面积林地转为未利用地;2002—2010年间,松潘县未利用地转为林地和建设用地,茂县和汶川县未利用地面积大幅增加。该研究结论不仅为国土资源管理部门优化土地利用结构提供依据,亦为当地政府实现生态资源可持续发展提供数据支撑。  相似文献   

19.
Synthetic aperture radar (SAR) is an important alternative to optical remote sensing due to its ability to acquire data regardless of weather conditions and day/night cycle. The Phased Array type L-band SAR (PALSAR) onboard the Advanced Land Observing Satellite (ALOS) provided new opportunities for vegetation and land cover mapping. Most previous studies employing PALSAR investigated the use of one or two feature types (e.g. intensity, coherence); however, little effort has been devoted to assessing the simultaneous integration of multiple types of features. In this study, we bridged this gap by evaluating the potential of using numerous metrics expressing four feature types: intensity, polarimetric scattering, interferometric coherence and spatial texture. Our case study was conducted in Central New York State, USA using multitemporal PALSAR imagery from 2010. The land cover classification implemented an ensemble learning algorithm, namely random forest. Accuracies of each classified map produced from different combinations of features were assessed on a pixel-by-pixel basis using validation data obtained from a stratified random sample. Among the different combinations of feature types evaluated, intensity was the most indispensable because intensity was included in all of the highest accuracy scenarios. However, relative to using only intensity metrics, combining all four feature types increased overall accuracy by 7%. Producer’s and user’s accuracies of the four vegetation classes improved considerably for the best performing combination of features when compared to classifications using only a single feature type.  相似文献   

20.
In this study, we explored the spatial and temporal patterns of land cover and land use (LCLU) and population change dynamics in the St. Louis Metropolitan Statistical Area. The goal of this paper was to quantify the drivers of LCLU using long-term Landsat data from 1972 to 2010. First, we produced LCLU maps by using Landsat images from 1972, 1982, 1990, 2000, and 2010. Next, tract level population data of 1970, 1980, 1990, 2000, and 2010 were converted to 1-km square grid cells. Then, the LCLU maps were integrated with basic grid cell data to represent the proportion of each land cover category within a grid cell area. Finally, the proportional land cover maps and population census data were combined to investigate the relationship between land cover and population change based on grid cells using Pearson's correlation coefficient, ordinary least square (OLS), and local level geographically weighted regression (GWR). Land cover changes in terms of the percentage of area affected and rates of change were compared with population census data with a focus on the analysis of the spatial-temporal dynamics of urban growth patterns. The correlation coefficients of land cover categories and population changes were calculated for two decadal intervals between 1970 and 2010. Our results showed a causal relationship between LCLU changes and population dynamics over the last 40 years. Urban sprawl was positively correlated with population change. However, the relationship was not linear over space and time. Spatial heterogeneity and variations in the relationship demonstrate that urban sprawl was positively correlated with population changes in suburban area and negatively correlated in urban core and inner suburban area of the St. Louis Metropolitan Statistical Area. These results suggest that the imagery reflects processes of urban growth, inner-city decline, population migration, and social spatial inequality. The implications provide guidance for sustainable urban planning and development. We also demonstrate that grid cells allow robust synthesis of remote sensing and socioeconomic data to advance our knowledge of urban growth dynamics from both spatial and temporal scales and its association with population change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号