首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Utility of Hyperspectral Data for Potato Late Blight Disease Detection   总被引:1,自引:0,他引:1  
The study was carried out to investigate the utility of hyperspectral reflectance data for potato late blight disease detection. The hyperspectral data was collected for potato crop at different level of disease infestation using hand-held spectroradiometer over the spectral range of 325–1075 nm. The data was averaged into 10-nm wide wavebands, resulting in 75 narrowbands. The reflectance curve was partitioned into five regions, viz. 400–500 nm, 520–590 nm, 620–680 nm, 770–860 nm and 920–1050 nm. The notable differences in healthy and diseased potato plants were noticed in 770–860 nm and 920–1050 nm range. Vegetation indices, namely NDVI, SR, SAVI and red edge were calculated using reflectance values. The differences between the vegetation indices for plants at different levels of disease infestation were found highly significant. The optimal hyperspectral wavebands to discriminate the healthy plants from disease infested plants were 540, 610, 620, 700, 710, 730, 780 and 1040 nm whereas upto 25% infestation could be discriminated using reflectance at 710, 720 and 750 nm.  相似文献   

2.
In the present study, The Landsat 7 ETM satellite data was collected for the Sittampundi anorthosites complex and digital image analysis was carried out. The anorthositic rocks available at Sittampundi complex is considered as an equivalent of lunar highland rocks. Hence, a remote sensing study comprises of image analysis and spectral profile analysis was carried out. The satellite data was digitally processed and generated various outputs like band combinations, color composites, stretched outputs, and PCA. The suitable processed outputs were identified for delineating the anorthosite complex. The diagnostic absorption features of reflectance spectra are the sensitive indicators of mineralogy and chemical composition of rocks, which are interest to the planetary scientists. The spectral profile of Landsat ETM plotted for pure and mixed anorthosite pixels and compared with the field and lab reflectance spectra. The percentages of image spectra vary from 30% to 60% for Sittampundi anorthosite. The spectral bands 2, 4 and 6 have low reflectance and bands 3 and 5 have high reflectance. The spectral range of bands 2,3,4,5 and 6 are 525 nm–605 nm, 630 nm–690 nm, 750 nm–900 nm, 1550 nm–1750 nm and 10400 nm–12500 nm respectively. The field spectral curve has weak absorptions at 650 nm and 1000 nm due to the iron transition absorption and low ca- pyroxene respectively available in the anorthosite, matching with the image spectra. However, hyperspectal image with narrow bandwidth could be more useful in selecting the suitable spectrum for remotely mapping the anorthosite region, as equivalent test site for lunar highland region.  相似文献   

3.
This paper examines the hyperspectral signatures (in the Visible Near Infrared (VNIR)-Shortwave Infrared (SWIR) regions) of soil samples with varying colour and minerals. 36 samples of sands (from river and beach) with differing clay contents were examined using a hyperspectral radiometer operating in the 350–2,500 nm range, and the spectral curves were obtained. Analysis of the spectra indicates that there is an overall increase in the reflectance in the VNIR-SWIR region with an increase in the content of kaolinite clay in the sand samples. As regards the red and black clays and sand mixtures, the overall reflectance increases with decreasing clay content. Several spectral parameters such as depth of absorption at 1,400 nm and 1,900 nm regions, radius of curvature of the absorption troughs, slope at a particular wavelength region and the peak reflectance values were derived. There exists a correlation between certain of these spectral parameters (depth, slope, position, peak reflectance, area under the curve and radius of the curve) and the compositional and textural parameters of the soils. Based on these well-defined relations, it is inferred that hyperspectral radiometry in the VNIR and SWIR regions can be used to identify the type of clay and estimate the clay content in a given soil and thus define its geotechnical category.  相似文献   

4.
The influence of morphophysiological variation at different growth stages on the performance of vegetation indices for estimating plant N status has been confirmed. However, the underlying mechanisms explaining how this variation impacts hyperspectral measures and canopy N status are poorly understood. In this study, four field experiments involving different N rates were conducted to optimize the selection of sensitive bands and evaluate their performance for modeling canopy N status of rice at various growth stages in 2007 and 2008. The results indicate that growth stages negatively affect hyperspectral indices in different ways in modeling leaf N concentration (LNC), plant N concentration (PNC) and plant N uptake (PNU). Published hyperspectral indices showed serious limitations in estimating LNC, PNC and PNU. The newly proposed best 2-band indices significantly improved the accuracy for modeling PNU (R2 = 0.75–0.85) by using the lambda by lambda band-optimized algorithm. However, the newly proposed 2-band indices still have limitations in modeling LNC and PNC because the use of only 2-band indices is not fully adequate to provide the maximum N-related information. The optimum multiple narrow band reflectance (OMNBR) models significantly increase the accuracy for estimating the LNC (R2 = 0.67–0.71) and PNC (R2 = 0.57–0.78) with six bands. Results suggest the combinations of center of red-edge (735 nm) with longer red-edge bands (730–760 nm) are very efficient for estimating PNC after heading, whereas the combinations of blue with green bands are more efficient for modeling PNC across all stages. The center of red-edge (730–735 nm) paired with early NIR bands (775–808 nm) are predominant in estimating PNU before heading, whereas the longer red-edge (750 nm) paired with the center of “NIR shoulder” (840–850 nm) are dominant in estimating PNU after heading and across all stages. The OMNBR models have the advantage of modeling canopy N status for the entire growth period. However, the best 2-band indices are much easier to use. Alternatively, it is also possible to use the best 2-band indices to monitor PNU before heading and PNC after heading. This study systematically explains the influences of N dilution effect on hyperspectral band combinations in relating to the different N variables and further recommends the best band combinations which may provide an insight for developing new hyperspectral vegetation indices.  相似文献   

5.
Vegetation spectral features can detect chlorophyll concentrations. Two key spectral features evident in the first derivative (FD) of reflectance constitute the two main peaks: one located around 685-705 nm and the other near 710-725 nm. We propose that the area between peaks (ABP) can be used as a sensitive indicator of changes in the photosynthetic pigments at leaf level and demonstrate it using a high-spectral-resolution dataset of maize leaves collected by Gitelson and coworkers (2005). We find significant high positive correlations (r 2 > 0.90) between chlorophyll concentrations and both the ABP and its continuum length feature.  相似文献   

6.
 对河北省昌黎县闫庄铁矿床的磁铁石英岩型铁矿石261件样品进行了光谱反射率测量,并与其铁含量进行了相关关系研究,目 的是对钻孔岩芯编录的新方法即高光谱岩芯编录在此类矿床中的可行性进行分析。研究结果表明,铁矿石反射率较低,一般为5%~20% ,铁离子的吸收峰主要表现在400~1 100 nm范围内,铁矿石中铁含量与850~900 nm的反射率均值呈现显著指数负相关关系,为高光谱 岩芯编录在此类矿床中的可行性提供了理论依据和技术途径。  相似文献   

7.
This paper discusses a statistical and band transformation based approach to select bands for hyperspectral image analysis. Hyperspectral images contain large number of spectral bands with redundant information about the spectral classes in the image scene. It is necessary to reduce the high dimensionality of the data for the processing of hyperspectral data. We report a feature selection technique that removes correlated spectral bands using band decorrelation technique and obtains maximum variance image bands based on factor analysis. Factor analysis method of band selection technique is also validated against existing methods of band selection. The study is carried out for the agriculturally rich area of Musiri region of South India that has varied landcover types. Evaluation of the band selection procedure is done using signature separability measures such as Euclidean distance, Divergence, Transformed divergence and Jeffries Matusita distance. Results indicated that selected bands exhibited maximum separability and also occurred predominantly at wavelength 700 nm, 850, 1000 nm, 1200 nm, 1648 nm and 2200 nm.  相似文献   

8.
A field experiment was conducted on wheat crop during rabi seasons of 1995–96, 1996–97 and 1997–98 to study the spectral response of wheat crop (between 490 to 1080 nm) under water and nutrient stress condition. An indigenously developed ground truth radiometer having narrow band in visible and near infrared region (490 – 1080 nm) was used. Vegetation indices derived using different band combinations and related to crop growth parameters. The near infrared spectral region of 710 – 1025 nm was found most important for monitoring stress condition. Relationship has been developed between crop growth parameters and vegetation indices. Leaf Area Index (LAI) and chlorophyll could be predicted by knowing different reflectance ratios at milking stage of crop with R2 value of 0.78 and 0.89, respectively. Dry biomass (DBM), Plant Water Content (PWC) and grain yield are also significantly related with reflectance ratios at flowering stage of crop with R2 value of 0.90, 0.98 and 0.74, respectively.  相似文献   

9.
This work reports the results of insitu surveys, hyperspectral-radiometry and geochemistry for dunite-alteration and magnesite mapping in the Salem, southern India. Spectral parameters such as the strength of absorption in the 865 nm and 2,300 nm range for Fe2+ and CO32- respectively, and the position of absorption trough were derived from the laboratory spectra for 13 samples. It is observed that dunite alteration and conversion to magnesite produce measurable changes in the VIS-NIR-SWIR spectra due to a transition from the silicate-dominated rocky composition to carbonate-dominated industrial mineral composition. Relationship between the spectra and mineralogy suggests that we can identify the varieties of magnesite using hyperspectral radiometry.  相似文献   

10.
The Normalized Area Over reflectance Curve (NAOC) is proposed as a new index for remote sensing estimation of the leaf chlorophyll content of heterogeneous areas with different crops, different canopies and different types of bare soil. This index is based on the calculation of the area over the reflectance curve obtained by high spectral resolution reflectance measurements, determined, from the integral of the red–near-infrared interval, divided by the maximum reflectance in that spectral region. For this, use has been made of the experimental data of the SPARC campaigns, where in situ measurements were made of leaf chlorophyll content, LAI and fCOVER of 9 different crops – thus, yielding 300 different values with broad variability of these biophysical parameters. In addition, Proba/CHRIS hyperspectral images were obtained simultaneously to the ground measurements. By comparing the spectra of each pixel with its experimental leaf chlorophyll value, the NAOC was proven to exhibit a linear correlation to chlorophyll content. Calculating the correlation between these variables in the 600–800 nm interval, the best correlation was obtained by computing the integral of the spectral reflectance curve between 643 and 795 nm, which practically covers the spectral range of maximum chlorophyll absorption (at around 670 nm) and maximum leaf reflectance in the infrared (750–800 nm). Based on a Proba/CHRIS image, a chlorophyll map was generated using NAOC and compared with the land-use (crops classification) map. The method yielded a leaf chlorophyll content map of the study area, comprising a large heterogeneous zone. An analysis was made to determine whether the method also serves to estimate the total chlorophyll content of a canopy, multiplying the leaf chlorophyll content by the LAI. To validate the method, use was made of the data from another campaign ((SEN2FLEX), in which measurements were made of different biophysical parameters of 7 crops, and hyperspectral images were obtained with the CASI imaging radiometer from an aircraft. Applying the method to a CASI image, a map of leaf chlorophyll content was obtained, which on, establishing comparisons with the experimental data allowed us to estimate chlorophyll with a root mean square error of 4.2 μg/cm2, similar or smaller than other methods but with the improvement of applicability to a large set of different crop types.  相似文献   

11.
The remote sensing community in geology is widely using the Multispectral Landsat Thematic Mapper (TM) data which has a wider choice of spectral bands (six between 0.45 and 2.35 μm, plus a thermal infrared channel 10.4-12.5 urn). These were evaluated for low-grade magnetite ores mapping over the high-grade granulite region of Kanjamalai area of Tamil Nadu state, India. The Fourier Transform Infrared (FTIR) spectroscopy data (0.4-4.0 μm) for powders of the magnetite ores exposed with granulite rock and published spectral reflectance data were used as guides in selecting TM band reflectance ratios, which maximize discrimination of magnetite ores on the basis of their respective mineralogies. The study shows that the weathering mineralogy of magnetite ores causes absorption features in their reflectance spectra which are particularly characteristic of the near infrared. Comparison of TM data with field and petrographic observations shows the presence of magnetite and aluminosilicate minerals & show strong absorption at 0.7-1 μ.m wavelength spectral region & increase in the product of two TM band ratios: band 5 (1.55-1.75 μm) to band 4 (0.76-0.9 μm) and band 3 (0.63-0.69 μm) to band 4 (0.76-0.9 μm). Various computer image enhancement and data extraction techniques such as interactive digital image classification techniques using color compositing stretched ratio, maximum likelihood and thresholding statistical approaches using Landsat TM data are used to map the low-grade magnetite ores of the granulite region. The field traverses and local verification enhanced to map the other rock types namely granulites and gneisses of the study area.  相似文献   

12.
This paper assesses the capability of hyperspectral remote sensing to detect hydrocarbon leakages in pipelines using vegetation status as an indicator of contamination. A field experiment in real scale and in tropical weather was conducted in which Brachiaria brizantha H.S. pasture plants were grown over soils contaminated with small volumes of liquid hydrocarbons (HCs). The contaminations involved volumes of hydrocarbons that ranged between 2 L and 12.7 L of gasoline and diesel per m3 of soil, which were applied to the crop parcels over the course of 30 days. The leaf and canopy reflectance spectra of contaminated and control plants were acquired within 350–2500 nm wavelengths. The leaf and canopy reflectance spectra were mathematically transformed by means of first derivative (FD) and continuum removal (CR) techniques. Using principal component analysis (PCA), the spectral measurements could be grouped into either two or three contamination groups. Wavelengths in the red edge were found to contain the largest spectral differences between plants at distinct, evolving contamination stages. Wavelengths centred on water absorption bands were also important to differentiating contaminated from healthy plants. The red edge position of contaminated plants, calculated on the basis of FD spectra, shifted substantially to shorter wavelengths with increasing contamination, whereas non-contaminated plants displayed a red shift (in leaf spectra) or small blue shift (in canopy spectra). At leaf scale, contaminated plants were differentiated from healthy plants between 550–750 nm, 1380–1550 nm, 1850–2000 nm and 2006–2196 nm. At canopy scale, differences were substantial between 470–518 nm, 550–750 nm, 910–1081 nm, 1116–1284 nm, 1736–1786 nm, 2006–2196 nm and 2222–2378 nm. The results of this study suggests that remote sensing of B. brizantha H.S. at both leaf and canopy scales can be used as an indicator of gasoline and diesel contaminations for the detection of small leakages in pipelines.  相似文献   

13.
利用超平面最小方案,针对高光谱数据在空间维和光谱维建立能量函数,通过两个权重系数调节空间维数据曲面光滑程度和光谱曲线光滑程度,达到联合抑制噪声的目的。实验中,对Hamamatsu相机和AVIRIS采集的高光谱影像数据中比较严重的噪声污染,该方法有效地降低了噪声的影响,在AVIRIS水吸收带处的去噪效果尤为明显。  相似文献   

14.
Hyperspectral sensing can provide an effective means for fast and non-destructive estimation of leaf nitrogen (N) status in crop plants. The objectives of this study were to design a new method to extract hyperspectral spectrum information, to explore sensitive spectral bands, suitable bandwidth and best vegetation indices based on precise analysis of ground-based hyperspectral information, and to develop regression models for estimating leaf N accumulation per unit soil area (LNA, g N m−2) in winter wheat (Triticum aestivum L.). Three field experiments were conducted with different N rates and cultivar types in three consecutive growing seasons, and time-course measurements were taken on canopy hyperspectral reflectance and LNA under the various treatments. Then, normalized difference spectral indices (NDSI) and ratio spectral indices (RSI) based on the original spectrum and the first derivative spectrum were constructed within the range of 350–2500 nm, and their relationships with LNA were quantified. The results showed that both LNA and canopy hyperspectral reflectance in wheat changed with varied N rates, with consistent patterns across different cultivars and seasons. The sensitive spectral bands for LNA existed mainly within visible and near infrared regions. The best spectral indices for estimating LNA in wheat were found to be NDSI (R860, R720), RSI (R990, R720), NDSI (FD736, FD526) and RSI (FD725, FD516), and the regression models based on the above four spectral indices were formulated as Y = 26.34x1.887, Y = 5.095x − 6.040, Y = 0.609 e3.008x and Y = 0.388x1.260, respectively, with R2 greater than 0.81. Furthermore, expanding the bandwidth of NDSI (R860, R720) and RSI (R990, R720) from 1 nm to 100 nm at 1 nm interval produced the LNA monitoring models with similar performance within about 33 nm and 23 nm bandwidth, respectively, over which the statistical parameters of the models became less stable. From testing of the derived equations, the model for LNA estimation on NDSI (R860, R720), RSI (R990, R720), NDSI (FD736, FD526) and RSI (FD725, FD516) gave R2 over 0.79 with more satisfactory performance than previously reported models and physical models in wheat. It can be concluded that the present hyperspectral parameters of NDSI (R860, R720), RSI (R990, R720), NDSI (FD736, FD526) and RSI (FD725, FD516) can be reliably used for estimating LNA in winter wheat.  相似文献   

15.
Hyperspectral remote sensing, because of its large number of narrow bands, has shown possibility of discriminating the crops. Current study was carried out to select the optimum bands for discrimination among pulses, cole crops and ornamental plants using the ground-based Hyperspectral data in Patha village, Lalitpur district, Uttar Pradesh state and Kolkata, West Bengal state. The field observations of reflectance were taken using a 512-channel spectroradiometer with a range of 325–1075 nm. The stepwise discriminant analysis was carried out and separability measures, such as Wilks’ lambda and F-Value were used as criteria for identifying the narrow bands. The analysis showed that, the best four bands for pulse crop discrimination lie mostly in NIR and early MIR regions i.e. 750, 800, 940 and 960 nm. Within cole crops discrimination is primarily determined by the green, red and NIR bands of 550, 690, 740, 770 and 980 nm. The separability study showed the bands 420,470,480,570,730,740, 940, 950, 970, 1030 nm are useful for discriminating flowers.  相似文献   

16.
In this study, hyperspectral reflectance (HySR) data derived from a handheld spectroradiometer were used to assess the water status of three grapevine cultivars in two sub-regions of Douro wine region during two consecutive years. A large set of potential predictors derived from the HySR data were considered for modelling/predicting the predawn leaf water potential (Ψpd) through different statistical and machine learning techniques. Three HySR vegetation indices were selected as final predictors for the computation of the models and the in-season time trend was removed from data by using a time predictor. The vegetation indices selected were the Normalized Reflectance Index for the wavelengths 554 nm and 561 nm (NRI554;561), the water index (WI) for the wavelengths 900 nm and 970 nm, and the D1 index which is associated with the rate of reflectance increase in the wavelengths of 706 nm and 730 nm. These vegetation indices covered the green, red edge and the near infrared domains of the electromagnetic spectrum. A large set of state-of-the-art analysis and statistical and machine-learning modelling techniques were tested. Predictive modelling techniques based on generalized boosted model (GBM), bagged multivariate adaptive regression splines (B-MARS), generalized additive model (GAM), and Bayesian regularized neural networks (BRNN) showed the best performance for predicting Ψpd, with an average determination coefficient (R2) ranging between 0.78 and 0.80 and RMSE varying between 0.11 and 0.12 MPa. When cultivar Touriga Nacional was used for training the models and the cultivars Touriga Franca and Tinta Barroca for testing (independent validation), the models performance was good, particularly for GBM (R2 = 0.85; RMSE = 0.09 MPa). Additionally, the comparison of Ψpd observed and predicted showed an equitable dispersion of data from the various cultivars. The results achieved show a good potential of these predictive models based on vegetation indices to support irrigation scheduling in vineyard.  相似文献   

17.
Leaf and canopy nitrogen (N) status relates strongly to leaf and canopy chlorophyll (Chl) content. Remote sensing is a tool that has the potential to assess N content at leaf, plant, field, regional and global scales. In this study, remote sensing techniques were applied to estimate N and Chl contents of irrigated maize (Zea mays L.) fertilized at five N rates. Leaf N and Chl contents were determined using the red-edge chlorophyll index with R2 of 0.74 and 0.94, respectively. Results showed that at the canopy level, Chl and N contents can be accurately retrieved using green and red-edge Chl indices using near infrared (780–800 nm) and either green (540–560 nm) or red-edge (730–750 nm) spectral bands. Spectral bands that were found optimal for Chl and N estimations coincide well with the red-edge band of the MSI sensor onboard the near future Sentinel-2 satellite. The coefficient of determination for the relationships between the red-edge chlorophyll index, simulated in Sentinel-2 bands, and Chl and N content was 0.90 and 0.87, respectively.  相似文献   

18.
提出了一种基于可变步长(即基于不同采样率)的高光谱图像响应曲线分形维计算方法.该方法在不同的采样率下对光谱响应曲线进行采样,计算相邻点的光谱响应差值,统计采样点的差值总和,利用最小二乘法求出分形维.为了提高计算效率,运用多线程的技术将高光谱图像分成几个部分,各部分的分形维由多核计算机同时并行计算.实验结果表明,该方法能...  相似文献   

19.
Heavy metals contaminated soils and water will become a major environmental issue in the mining areas. This paper intends to use field hyper-spectra to estimate the heavy metals in the soil and water in Wan-sheng mining area in Chongqing. With analyzing the spectra of soil and water, the spectral features deriving from the spectral of the soils and water can be found to build the models between these features and the contents of Al, Cu and Cr in the soil and water by using the Stepwise Multiple Linear Regression (SMLR). The spectral features of Al are: 480 nm, 500 nm, 565 nm, 610 nm, 680 nm, 750 nm, 1000 nm, 1430 nm, 1755 nm, 1887 nm, 1920 nm, 1950 nm, 2210 nm, 2260 nm; The spectral features of Cu are: 480 nm, 500 nm, 610 nm, 750 nm, 860 nm, 1300 nm, 1430 nm, 1920 nm, 2150 nm, 2260 nm; And the spectral features of Cr are: 480 nm, 500 nm, 610 nm, 715 nm, 750 nm, 860 nm, 1300 nm, 1430 nm, 1755 nm, 1920 nm, 1950 nm. With these features, the best models to estimate the heavy metals in the study area were built according to the maximal R2. The R2 of the models of estimating Al, Cu and Cr in the soil and water are 0.813, 0.638, 0.604 and 0.742, 0.584, 0.513 respectively. And the gradient maps of these three types of heavy metals’ concentrations can be created by using the Inverse distance weighted (IDW).The gradient maps indicate that the heavy metals in the soil have similar patterns, but in the North-west of the streams in the study area, the contents are of great differences. These results show that it is feasible to predict contaminated heavy metals in the soils and streams due to mining activities by using the rapid and cost-effective field spectroscopy.  相似文献   

20.
Discriminating commercial tree species using hyperspectral remote sensing techniques is critical in monitoring the spatial distributions and compositions of commercial forests. However, issues related to data dimensionality and multicollinearity limit the successful application of the technology. The aim of this study was to examine the utility of the partial least squares discriminant analysis (PLS-DA) technique in accurately classifying six exotic commercial forest species (Eucalyptus grandis, Eucalyptus nitens, Eucalyptus smithii, Pinus patula, Pinus elliotii and Acacia mearnsii) using airborne AISA Eagle hyperspectral imagery (393–900 nm). Additionally, the variable importance in the projection (VIP) method was used to identify subsets of bands that could successfully discriminate the forest species. Results indicated that the PLS-DA model that used all the AISA Eagle bands (n = 230) produced an overall accuracy of 80.61% and a kappa value of 0.77, with user’s and producer’s accuracies ranging from 50% to 100%. In comparison, incorporating the optimal subset of VIP selected wavebands (n = 78) in the PLS-DA model resulted in an improved overall accuracy of 88.78% and a kappa value of 0.87, with user’s and producer’s accuracies ranging from 70% to 100%. Bands located predominantly within the visible region of the electromagnetic spectrum (393–723 nm) showed the most capability in terms of discriminating between the six commercial forest species. Overall, the research has demonstrated the potential of using PLS-DA for reducing the dimensionality of hyperspectral datasets as well as determining the optimal subset of bands to produce the highest classification accuracies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号