首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

This paper examines the evolution and morphology of a magnetic anomaly: the appearance and disappearance of a longitudinal magnetic flux with opposite polarity at an area of about 10 arc seconds in the umbra of the following sunspot of an NOAA 12192 active region, which was observed from 21 to 26 October 2014 in the SDO/HMI and SOLIS/VSM magnetograms. Information collected by spacecraft and under on-ground observations including data from the Sun Service of the Crimean Astrophysical Observatory of the Russian Academy of Sciences are analyzed. Based on the methods of observation and determination of longitudinal magnetic fields in SDO/HMI in line FeI 6173.34 Å it was revealed, that combinations of contours appearing due to magnetic force lines inclinations relative to the line-of-sight and line-of-sight velocities can cause a significant undervalue of the magnetic field intensity in magnetograms, but polarity does not reverse. The fine spatial structure, evolution features, close correlation with ultraviolet loops system in SDO/AIA images, “moustaches”, and no temporal and spatial correlation with flares point to a connection between the detected anomaly and the new magnetic flux emergence of opposite polarity in a spot’s umbra at an earlier decay stage. We analyze magnetic force lines reconnection and show that annigilation of the magnetic fields of opposite polarities can take place for many hours at small (~30 km) scales and this fact is verified by observation results. There are additional facts in favor of the cluster model of a solar spot by Severny-Parker.

  相似文献   

2.
Geomagnetism and Aeronomy - Changes in the umbra brightness and in the magnetic field over time should occur on long-period sunspot oscillations in accordance with Birman’s idea of inhibition...  相似文献   

3.
The observed variations of the magnetic properties of sunspots during eruptive events (solar flares and coronal mass ejections (CMEs)) are discussed. Variations of the magnetic field characteristics in the umbra of the sunspots of active regions (ARs) recorded during eruptive events on August 2, 2011, March 9, 2012, April 11, 2013, January 7, 2014, and June 18, 2015, are studied. The behavior of the maximum of the total field strength Bmax, the minimum inclination angle of the field lines to the radial direction from the center of the Sun αmin (i.e., the inclination angle of the axis of the magnetic tube from the sunspot umbra), and values of these parameters Bmean and αmean mean within the umbra are analyzed. The main results of our investigation are discussed by the example of the event on August 2, 2011, but, in general, the observed features of the variation of magnetic field properties in AR sunspots are similar for all of the considered eruptive events. It is shown that, after the flare onset in six AR sunspots on August 2, 2011, the behavior of the specified magnetic field parameters changes in comparison with that observed before the flare onset.  相似文献   

4.
Geomagnetism and Aeronomy - Two main features define a sunspot as an object: a strong magnetic field and a low umbra temperature. The same can be said about a facular knot, in the center of which...  相似文献   

5.
Sunspots     
Abstract

Some examples of research on structure and formation of sunspots are briefly recollected in historical sequence. They relate to many facets of sunspots, first: magnetic inhibition of convection, the conjecture of a fiat penumbra, the stratification beneath the umbra, the observable magnetic profile, the Evershed effect as syphon flow, the concept of a magnetopause; next: cooling by Alfven waves, evolution and stability, the “bright ring”, the observed change of umbra brightness with the phase of the sunspot cycle, the hypothetical cluster of separate flux strands underneath the umbra, the profile of the magnetopause, the structure of the penumbra and the inclination of its field and finally: the concept of a deep penumbra with volume currents, exchange convection and the concept of a second current sheet separating umbra and penumbra.

Of course, the rigorous theoretical modeling of local magnetoconvection is an essential tool for our understanding of all these processes. I do not deal with it here, but the reader has a fascinating review of magnetoconvection already in his hands (Weiss, 1991).  相似文献   

6.
Summary The sunspot cycle variation of the amplitude of the solar magnetic variation has been investigated for magnetically moderate, quiet and disturbed days at Istanbul for the period 1949–1968, and fairly good linear relationship has been found forZ andD components of the earth's magnetic field. In some cases, it is rather difficult to say that there is any linear relationship between sunspot number and the amplitude of theH component of the earth's magnetic field. Meanwhile,K indices has also been considered with sunspot number by means of multiple regression analysis to overcome some uncertainties in this investigation.  相似文献   

7.
Temporal variations of the maximum (B max) and average (〈B〉) magnetic inductions, minimum (α min) and average (〈α〉) inclination angles of the field lines to the radial direction from the center of the Sun, and areas of the sunspot umbra S in the umbra of single sunspots during their passage across the solar disk are investigated. The variation of the properties of single sunspots has been considered at different stages of their existence, i.e., during formation, the “quiet” period, and the disappearance stage. It has been found that, for the majority of the selected single sunspots, there is a positive correlation between B max and S and between 〈B〉 and S defined at different times during the passage of sunspots across the solar disk. It is shown in this case that the nature of the dependence between the parameters α min and B max, α min and S, as well as between 〈α〉 and 〈B〉, 〈α〉 and S, can vary from sunspot to sunspot, but for many sunspots the inclination angle of the field lines decreases on average with the growth of the sunspot umbra area and the field strength.  相似文献   

8.
It is difficult to numerically solve steady-state equations for calcium, which are used to determine temperature and electron density in a sunspot umbra chromosphere. As a result, the coefficients of equations, obtained using inversion of the measured profiles of five Ca II lines, are to a certain degree uncertain. Never-theless, these insignificant uncertainties do not make it possible to consider that a unique solution of the set of equations, found using classical methods, is sufficiently reliable. Reasonable restrictions on desired variables are presented, which makes it possible to sufficiently accurately restore temperature variations in the specified (test) model of a sunspot umbra. Temperature variations in the studied region of the chromosphere are restored to an average relative error of ±14%.  相似文献   

9.
太阳黑子磁场极性指数时间序列   总被引:3,自引:0,他引:3       下载免费PDF全文
本文根据苏黎世天文台太阳黑子11年周期资料和太阳黑子磁场磁性变化周期特征,构建了太阳黑子磁场磁性指数IM(Magnetic Index)时间序列,用IM(i)表示.为了便于采用数学方法研究太阳黑子磁场磁性指数变化与诸多地球物理现象之间的联系,本文给出了1749~2007年月平均太阳黑子磁场磁性指数时间序列数据.  相似文献   

10.
Magnetohydrodynamic compressive fluctuations of the interplanetary plasma in the region from 0.3 to 1 AU have been characterized in terms of their polytropic index. Following Chandrasekhar’s approach to polytropic fluids, this index has been determined through a fit of the observed variations of density and temperature. At least three different classes of fluctuations have been identified: (1) variations at constant thermal pressure, in low-speed solar wind and without a significant dependence on distance, (2) adiabatic variations, mainly close to 1 AU and without a relevant dependence on wind speed, and (3) variations at nearly constant density, in fast wind close to 0.3 AU. Variations at constant thermal pressure are probably a subset of the ensemble of total-pressure balanced structures, corresponding to cases in which the magnetic field magnitude does not vary appreciably throughout the structure. In this case the pressure equilibrium has to be assured by its thermal component only. The variations may be related to small flow-tubes with approximately the same magnetic-field intensity, convected by the wind in conditions of pressure equilibrium. This feature is mainly observed in low-velocity solar wind, in agreement with the magnetic topology (small open flow-tubes emerging through an ensemble of closed structures) expected for the source region of slow wind. Variations of adiabatic type may be related to magnetosonic waves excited by pressure imbalances between contiguous flow-tubes. Such imbalances are probably built up by interactions between wind flows with different speeds in the spiral geometry induced by the solar rotation. This may account for the fact that they are mainly found at a large distance from the sun. Temperature variations at almost constant density are mostly found in fast flows close to the sun. These are the solar wind regions with the best examples of incompressible behaviour. They are characterized by very stable values for particle density and magnetic intensity, and by fluctuations of Alfvénic type. It is likely that temperature fluctuations in these regions are a remnant of thermal features in the low solar atmosphere. In conclusion, the polytropic index appears to be a useful tool to understand the nature of the compressive turbulence in the interplanetary plasma, as far as the frozen-in magnetic field does not play a crucial role.  相似文献   

11.
本文根据苏黎世天文台太阳黑子11年周期资料和太阳黑子磁场磁性变化周期特征,构建了太阳黑子磁场磁性指数MI(Magnetic Index)时间序列.分析表明:太阳活动磁性周期平均长度为222年,但是每个周期长度是不相等的;多数情况周期短时磁性指数较大,对应太阳活动水平强;周期变长时磁性指数较小,对应太阳活动水平较弱;太阳黑子磁场磁性指数序列也具有80~90年的世纪周期. 进一步研究指出,太阳黑子磁场磁性指数曲线由极小值升至极大值时期,太阳磁场南向,行星际磁场磁力线与地磁场磁力线重联,此时磁层为开磁层,太阳风将携带大量等离子体从向阳面进入地球磁层,从而使输入的动量、能量和物质大幅度增加,与北半球对流层增温时期对应;太阳黑子磁场磁性指数曲线由极大值下降至极小值时期,太阳磁场北向,与磁层顶地磁场同向,行星际磁场不会与地磁场发生重联,此时磁层为闭磁层,这种情况下,只有少数带电粒子能够穿越磁力线进入地球磁层,与北半球对流层降温时期对应.  相似文献   

12.
选取华北部分地区2016—2019年流动地磁矢量资料,分析2018年2月12日永清MW 4.3地震前后岩石圈磁场变化特征。结果表明,地震前岩石圈磁场变化异常特征显著,震后异常消失。在震前岩石圈磁场变化中,磁场的D、I、F、H、Z分量出现不同程度的异常特征,这些震前异常呈现出相同的、相似的变化趋势。在震前随着时间的不断累积,岩石圈磁场变化异常愈加显著,其中震前1.5年期各分量震磁异常显著。与震前相比,震后岩石圈磁场变化特征及趋势发生了较大改变。  相似文献   

13.
Yearly averages of geomagnetic activity indices Ap for the years 1967–1984 are compared to the respective averages of v2 · Bs, where v is the solar wind velocity and Bs is the southward interplanetary magnetic field (IMF) component. The correlation of both quantities is known to be rather good. Comparing the averages of Ap with v2 and Bs separately we find that, during the declining phase of the solar cycle, v2 and during the ascending phase Bs have more influence on Ap. According to this observation (using Fourier spectral analysis) the semiannual and 27 days, Ap variations for the years 1932–1993 were analysed separately for years before and after sunspot minima. Only those time-intervals before sunspot minima with a significant 27-day recurrent period of the IMF sector structure and those intervals after sunspot minima with a significant 28–28.5-day recurrent period of the sector structure were used. The averaged spectra of the two Ap data sets clearly show a period of 27 days before and a period of 28–29 days after sunspot minimum. Moreover, the phase of the average semiannual wave of Ap is significantly different for the two groups of data: the Ap variation maximizes near the equinoxes during the declining phase of the sunspot cycle and near the beginning of April and October during the ascending phase of the sunspot cycle, as predicted by the Russell-McPherron (R-M) mechanism. Analysing the daily variation of ap in an analogue manner, the same equinoctial and R-M mechanisms are seen, suggesting that during phases of the solar cycle, when ap depends more on the IMF-Bs component, the R-M mechanism is predominant, whereas during phases when ap increases as v increases the equinoctial mechanism is more likely to be effective.  相似文献   

14.
The presence of outer stably stratified layers in planetary cores has been suggested for Earth, Saturn and Mercury. In this study, we use a 3-D numerical dynamo model to investigate the effects of a thin stable layer surrounding a convecting interior on the produced magnetic field. We find that a stable layer can destabilize the field morphology through a thermal wind that produces unfavorable zonal flows throughout the core. The direction of these zonal flows is prograde in equatorial regions, unlike a model with no stable layer that has retrograde equatorial flows. Our models therefore suggest that the Earth does not have a stable layer since we observe a westward drift as opposed to an eastward drift. For Saturn, we find that due to coupling of the flows in the stable and unstable layers, the layer does not act to shear out the non-axisymmetry in the observed magnetic field, and therefore cannot explain Saturn’s axisymmetric magnetic field. For Mercury, we find that if the stable layer is thin, it can actively produce strong or weak surface fields and not necessarily attenuate smaller scale features through the skin effect.  相似文献   

15.
The inhomogeneity of the sunspot group longitude distribution has been determined depending on the rotation period used to determine a longitude. The statistical significance of the found active longitudes has been estimated. It has been indicated that a rather high reliability is reached only when the synodic rotation period is close to 27 and 28 days. In this case active longitudes show the long-term variation related to the north-south asymmetry of the sunspot formation. It is assumed that active longitudes are related to the relic magnetic field frozen in a uniformly rotating solar radiative zone.  相似文献   

16.
利用1900—2017年间中国大陆地区64次MS≥7.0地震资料,根据太阳黑子11年周期变化计算了它们的相位角,分析了它们的相位角分布,利用统计检验方法对它们与太阳黑子11年周期变化之间的关系进行了检验。结果是:中国大陆地区MS≥7.0地震中约66%发生在太阳黑子11年周期变化的谷值点前2年—后3年的时段内,在α=0.001显著性水平下通过显著性检验。2019年底太阳黑子11年周期变化将达谷值点,因此,2018—2022年为中国大陆地区MS7.0地震易发时段。   相似文献   

17.
Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere (‘convective collapse’) are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 105 G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.  相似文献   

18.
Why does a sunspot look the way it does? Steven Tobias and Nigel Weiss find answers to this question, by relating new high-resolution observations to recent theoretical studies of the spot's magnetic field.  相似文献   

19.
研究了格尔木地震台1996-2006年地磁模拟资料和2008-2011年的数字化资料,通过对台站磁静日低点时间、日变幅度、日变形态的分析,确认地磁z分量磁静日低点时间在地方时12时左右;日变幅月均值呈现明显的波浪式起伏变化,其年均值与太阳黑子数保持一致;地磁日变形态较为规则,有1个低点和2个高点;在前兆异常分析中,认为低点时间异常和日变形态双低点异常与周边强震具有一定的对应关系。  相似文献   

20.
There are limited homogeneous instrumental observations of the sunspot magnetic fields, but the Earth is a sort of a probe reacting to interplanetary disturbances which are manifestation of the solar magnetic fields. We find correlations between some parameters of geomagnetic activity (the geomagnetic activity “floor”—the minimum value under which the geomagnetic activity cannot fall in a sunspot cycle, and the rate of increase of the geomagnetic activity with increasing sunspot number), and sunspot magnetic fields (the sunspot magnetic field in the cycle minimum, and the rate of increase of the sunspot magnetic field from cycle minimum to cycle maximum). Based on these correlations we are able to reconstruct the sunspot magnetic fields in sunspot minima and maxima since sunspot cycle 9 (mid 19th century).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号