首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Solid bitumen can arise from several reservoir processes acting on migrated petroleum. Insoluble solid organic residues can form by oxidative processes associated with thermochemical sulfate reduction (TSR) as well as by thermal chemical alteration (TCA) of petroleum. TCA may follow non-thermal processes, such as biodegradation and asphaltene precipitation, that produce viscous fluids enriched in polar compounds that are then altered into solid bitumens. It is difficult to distinguish solid bitumen formed by TCA from TSR since both processes occur under relatively high temperatures. The focus of the present work is to characterize solid bitumen samples associated with TSR- or TCA-processes using a combination of solid-state X-ray Photoelectron Spectroscopy (XPS), Sulfur X-ray Absorption Near Edge Structure Spectroscopy (S-XANES), and 13C NMR. Naturally occurring solid bitumens from three locations, Nisku Formation, Brazeau River area (TSR-related); La Barge Field, Madison Formation (TSR-related); and, the Alaskan North Slope, Brooks Range (TCA-related), are compared to solid bitumens generated in laboratory simulations of TSR and TCA.The chemical nature of solid bitumens with respect to organic nitrogen and sulfur can be understood in terms of (1) the nature of hydrocarbon precursor molecules, (2) the mode of sulfur incorporation, and (3) their concentration during thermal stress. TSR-solid bitumen is highly aromatic, sulfur-rich, and nitrogen-poor. These heteroatom distributions are attributed to the ability of TSR to incorporate copious amounts of inorganic sulfur (S/C atomic ratio >0.035) into aromatic structures and to initial low levels of nitrogen in the unaltered petroleum. In contrast, TCA-solid bitumen is derived from polar materials that are initially rich in sulfur and nitrogen. Aromaticity and nitrogen increase as thermal stress cleaves aliphatic moieties and condensation reactions take place. TCA-bitumens from the Brooks Range have <75% aromatic carbon. TCA-bitumens exposed to greater thermal stress can have a higher aromaticity, like that observed in TSR-bitumens. Organic sulfur in TCA-organic solids remains relatively constant with increasing maturation (S/C atomic ratio <0.035) due to offsetting preservation and H2S elimination reactions. Although S-XANES and 13C NMR provide information needed to understand changes in structure and reactivity that occur in the formation of petroleum solids, in some cases XPS analysis is sufficient to determine whether a solid bitumen is formed by TCA or TSR.  相似文献   

2.
Unusually high dibenzothiophene (DBT) concentrations are present in the oils from the Tazhong-4 Oilfield in the Tazhong Uplift, Tarim Basin. Positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used in combination with conventional geochemical approaches to unravel the enrichment mechanisms. Significant amounts of S1 species with relatively low DBE values (0–8), i.e., sulfur ethers, mercaptans, thiophenes and benzothiophenes, were detected in three Lower Ordovician oils with high thermal maturity, which were suggested to be the products of thermochemical sulfate reduction (TSR) in the reservoir. The occurrence of TSR was also supported by the coexistence of thiadiamondoids and abundant H2S in the gases associated with the oils. Obviously low concentrations of the DBE = 9 S1 species (mainly equivalent to C0–C35 DBTs) compared to its homologues were observed for the three oils which were probably altered by TSR, indicating that no positive relationship existed between TSR and DBTs in this study. The sulfur compounds in the Tazhong-4 oils are quite similar to those in the majority of Lower Ordovician oils characterized by high concentrations of DBTs and dominant DBE = 9 S1 species with only small amounts of sulfur compounds with low thermal stability (DBE = 0–8), suggesting only a small proportion of sulfur compounds were derived from TSR. It is thermal maturity rather than TSR that has caused the unusually high DBT concentrations in most of the Lower Ordovician oils. We suggest that the unusually high DBT oils in the Tazhong-4 Oilfield are caused by oil mixing from the later charged Lower Ordovician (or perhaps even deeper), with high DBT abundances from the earlier less mature oils, which was supported by our oil mixing experiments and previous relevant investigations as well as abundant authigenic pyrite of hydrothermal origin. We believe that TSR should have occurred in the Tazhong Uplift based on our FT-ICR MS results. However, normal sulfur compounds were detected in most oils and no increase of δ13C2H6–δ13C4H10 was observed for the gas hydrocarbons, suggesting only a slight alteration of the oils by TSR currently and/or recently. We suspect that the abnormal sulfur compounds in the Lower Ordovician oils might also be a result of deep oil mixing, which might imply a deeper petroliferous horizon, i.e., Cambrian, with a high petroleum potential. This study is important to further deep petroleum exploration in the area.  相似文献   

3.
Thiadiamondoids have been analyzed in a suite of Smackover-derived oils from the US Gulf Coast to determine whether their abundance and distribution reflect alteration by thermochemical sulfate reduction (TSR). The sample suite includes oils and condensates having various thermal maturities that are characterized as being unaltered by TSR, altered by TSR, or of uncertain affinities due to inconsistencies between conventional geochemical indicators of TSR. Nearly all samples contain thiadiamondoids, indicating that small amounts of these compounds can be generated from sulfur rich kerogen. TSR results in the generation of H2S, sulfides and thiophenic aromatic hydrocarbons, either by reaction with sulfate or by back reactions with the evolved H2S. Evidence shows that thiadiamondoids originate exclusively from reactions involving TSR. Once generated, their high thermal stability permits thiadiamondoids to accumulate with little further reaction and their abundance reflects not only the occurrence of TSR, but the extent of the alteration. The abundance of thiaadamantanes (1-cage structures) is particularly diagnostic of the onset of TSR. Examination of condensates from reservoirs >180 °C indicates that the thiadiamondoids can be thermally degraded. They are more thermally stable than the dibenzothiophenes, but are less stable than diamondoid hydrocarbons. Their stability appears to increase with increasing cage number, suggesting that the thiatriamantanes are the best proxy for the extent of TSR alteration in very high temperature reservoirs. Polythiadiamondoids (diamondoids with multiple sulfur substitutions) were detected in trace amounts and are also indicators of TSR.  相似文献   

4.
硫酸盐热化学还原作用的启动机制研究   总被引:1,自引:0,他引:1  
硫酸盐热化学还原作用(TSR)是导致高含硫化氢天然气生成和聚集、碳酸岩盐储层酸化和溶蚀的重要因素,是地质盆地内烃-水-岩三者之间的复杂反应。本文利用黄金管热模拟实验,对TSR反应的可能启动机制及控制因素进行了研究。通过不同盐溶液与原油的热解实验,证实了硫酸盐的存在是启动TSR反应的必要因素,MgSO4比CaSO4和Na2SO4更容易启动TSR反应,体系中盐度的增加会加速H2S的生成。实验结果表明,不同水介质条件下,TSR反应的程度与溶液的离子强度呈正相关,弱酸性环境并不足以启动TSR反应;原油中不稳定含硫化合物的含量越高越有利于TSR反应的发生,饱和链烷烃比原油中其它组分更容易引发TSR反应,且大分子烷烃比小分子烷烃更容易被硫酸盐氧化。  相似文献   

5.
The role of labile sulfur compounds in thermochemical sulfate reduction   总被引:1,自引:0,他引:1  
The reduction of sulfate to sulfide coupled with the oxidation of hydrocarbons to carbon dioxide, commonly referred to as thermochemical sulfate reduction (TSR), is an important abiotic alteration process that most commonly occurs in hot carbonate petroleum reservoirs. In the present study we focus on the role that organic labile sulfur compounds play in increasing the rate of TSR. A series of gold-tube hydrous pyrolysis experiments were conducted with n-octane and CaSO4 in the presence of reduced sulfur (e.g. H2S, S°, organic S) at temperatures of 330 and 356 °C under a constant confining pressure. The in-situ pH was buffered to 3.5 (∼6.3 at room temperature) with talc and silica. For comparison, three types of oil with different total S and labile S contents were reacted under similar conditions. The results show that the initial presence of organic or inorganic sulfur compounds increases the rate of TSR. However, organic sulfur compounds, such as 1-pentanethiol or diethyldisulfide, were significantly more effective in increasing the rate of TSR than H2S or elemental sulfur (on a mole S basis). The increase in rate is achieved at relatively low concentrations of 1-pentanethiol, less than 1 wt% of the total n-octane, which is comparable to the concentration of organic S that is common in many oils (∼0.3 wt%). We examined several potential reaction mechanisms to explain the observed reactivity of organic LSC. First, the release of H2S from the thermal degradation of thiols was discounted as an important mechanism due to the significantly greater reactivity of thiol compared to an equivalent amount of H2S. Second, we considered the generation of olefines in association with the elimination of H2S during thermal degradation of thiols because olefines are much more reactive than n-alkanes during TSR. In our experiments, olefines increased the rate of TSR, but were less effective than 1-pentanethiol and other organic LSC. Third, the thermal decomposition of organic LSC creates free-radicals that in turn might initiate a radical chain-reaction that creates more reactive species. Experiments involving radical initiators, such as diethyldisulfide and benzyldisulfide, did not show an increase in reactivity compared to 1-pentanethiol. Therefore, we conclude that none of these can sufficiently explain our observations of the initial stages of TSR; they may, however, be important in the later stages. In order to gain greater insight into the potential mechanism for the observed reactivity of these organic sulfur compounds during TSR, we applied density functional theory-based molecular modeling techniques to our system. The results of these calculations indicate that 1-pentanethiol or its thermal degradation products may directly react with sulfate and reduce the activation energy required to rupture the first S-O bond through the formation of a sulfate ester. This study demonstrates the importance of labile sulfur compounds in reducing the onset timing and temperature of TSR. It is therefore essential that labile sulfur concentrations are taken into consideration when trying to make accurate predictions of TSR kinetics and the potential for H2S accumulation in petroleum reservoirs.  相似文献   

6.
沉积盆地热化学硫酸盐还原作用评述   总被引:28,自引:1,他引:28  
蔡春芳  李宏涛 《地球科学进展》2005,20(10):1100-1105
川东天然气藏H2S 气体泄露而导致重大伤亡事故后,热化学硫酸盐还原作用(TSR)成为了国内研究的热点。在油气储层条件下,尽管甲烷是最稳定的烃类,但TSR被诱发后,因为甲烷浓度远高于其它烃类,水溶甲烷能与硫酸根离子反应产生H2S 气体。同时,发现在参与TSR反应的有机质、起始温度、硫同位素分馏效应等方面,实验模拟结果均与地质实例观察结果有较大的差异,可能与TSR反应的催化剂等方面认识不足有关。并认为,TSR成因的H2S或元素硫可以在晚成岩期合并入有机质中,形成新的有机含硫化合物。但在自然界中,这类化合物很少被鉴别出来。  相似文献   

7.
Experimental studies of the effects of thermochemical sulfate reduction (TSR) on light hydrocarbons were conducted in sealed gold tubes for 72 h at 400 °C and 50 MPa. A variety of pyrolysis experiments were carried out, including anhydrous, hydrous without MgSO4 (hydrous experiments) and hydrous with MgSO4 (TSR experiments). Common reservoir minerals including montmorillonite, illite, calcite and quartz were added to various experiments. Measurements of the quantities of n-C9+ normal alkanes (high molecular weight, HMW), n-C6-8 normal alkanes (low molecular weight, LMW), C7-8 isoalkanes, C6-7 cycloalkanes and C6-9 monoaromatics and compound specific carbon isotope analyses were made. The results indicate that TSR decreases hydrocarbon thermal stability significantly as indicated by chemically lower concentrations and isotopically heavier LMW saturated hydrocarbons in the TSR experiments compared to the hydrous and anhydrous experiments. In the LMW saturated hydrocarbon fraction, cycloalkanes tend to be more resistant to TSR than n-alkanes and isoalkanes. TSR promotes aromatization reactions and favors the generation of monoaromatics, resulting in higher chemical concentrations and isotopically equivalent compositions of monoaromatics in the anhydrous, hydrous and TSR experiments. This indicates that LMW monoaromatics are thermally stable during the pyrolysis experiments. Acid rather than basic catalyzed ionic reactions probably play a major role in TSR. This is suggested by the promotion effects of acid-clay minerals including illite and particularly montmorillonite. The basic mineral calcite retards the destruction of n-C9+ normal alkanes within the TSR experiments. Furthermore, clay minerals have a minor influence on the generation of LMW monoaromatics and play a negative role in regulating the concentrations of LMW saturated hydrocarbons; calcite does not favor the generation of LMW monoaromatics and plays a positive role in controlling the concentrations of LMW saturates relative to clay minerals. Quartz has a negligible role in the TSR experiments.Due to their differential responses to TSR, LMW hydrocarbon parameters, such as Schaefer [Schaefer, R.G., Littke, R., 1988. Maturity-related compositional changes in the low-molecular-weight hydrocarbon fraction of Toarcian Shale. Organic Geochemistry 13, 887-892], Thompson [Thompson, K.F.M., 1988. Gas-condensate migration and oil fractionation in deltaic systems. Marine and Petroleum Geology 5, 237-246], Halpern [Halpern, H., 1995. Development and application of light-hydrocarbon-based star diagrams. American Association of Petroleum Geologists Bulletin 79, 801-815] and Mango [Mango, F.D., 1997. The light hydrocarbons in petroleum: a critical review. Organic Geochemistry 26, 417-440] parameters and stable carbon isotopic compositions of individual LMW saturated hydrocarbons in TSR affected oils should be used with caution. In addition, water promotes thermal cracking of n-C9+ normal alkanes and favors the generation of LMW cycloalkanes and monoaromatics. The result is lower concentrations of n-C9+ HMW normal alkanes and higher concentrations of LMW cycloalkanes and monoaromatics in hydrous experiments relative to anhydrous experiments with or without minerals.This investigation provides a better understanding of the effects of TSR on LMW hydrocarbons and the influence of reservoir minerals on TSR in natural systems. The paper shows how LMW hydrocarbon indicators in TSR altered oils improve understanding of the processes of hydrocarbon generation, migration and secondary alteration in subsurface petroleum reservoirs.  相似文献   

8.
Natural gases and associated condensate oils from the Zhongba gas field in the western Sichuan Basin, China were investigated for gas genetic types and origin of H2S by integrating gaseous and light hydrocarbon geochemistry, formation water compositions, S isotopes (δ34S) and geological data. There are two types of natural gas accumulations in the studied area. Gases from the third member of the Middle Triassic Leikoupo Formation (T2l3) are reservoired in a marine carbonate sequence and are characterized by high gas dryness, high H2S and CO2 contents, slightly heavy C isotopic values of CH4 and widely variable C isotopic values of wet gases. They are highly mature thermogenic gases mainly derived from the Permian type II kerogens mixed with a small proportion of the Triassic coal-type gases. Gases from the second member of the Upper Triassic Xujiahe Formation (T3x2) are reservoired in continental sandstones and characterized by low gas dryness, free of H2S, slightly light C isotopic values of CH4, and heavy and less variable C isotopic values of wet gases. They are coal-type gases derived from coal in the Triassic Xujiahe Formation.The H2S from the Leikoupo Formation is most likely formed by thermochemical SO4 reduction (TSR) even though other possibilities cannot be fully ruled out. The proposed TSR origin of H2S is supported by geochemical compositions and geological interpretations. The reservoir in the Leikoupo Formation is dolomite dominated carbonate that contains gypsum and anhydrite. Petroleum compounds dissolved in water react with aqueous SO4 species, which are derived from the dissolution of anhydrite. Burial history analysis reveals that from the temperature at which TSR occurred it was in the Late Jurassic to Early Cretaceous and TSR ceased due to uplift and cooling thereafter. TSR alteration is incomplete and mainly occurs in wet gas components as indicated by near constant CH4 δ13C values, wide range variations of ethane, propane and butane δ13C values, and moderately high gas dryness. The δ34S values in SO4, elemental S and H2S fall within the fractionation scope of TSR-derived H2S. High organo-S compound concentrations together with the occurrence of 2-thiaadamantanes in the T2l reservoir provide supplementary evidence for TSR related alteration.  相似文献   

9.
Up until now, it has been assumed that oil in the Palaeozoic reservoirs of the Tazhong Uplift was derived from Upper Ordovician source rocks. Oils recently produced from the Middle and Lower Cambrian in wells ZS1 and ZS5 provide clues concerning the source rocks of the oils in the Tazhong Uplift, Tarim Basin, China. For this study, molecular composition, bulk and individual n-alkane δ13C and individual alkyl-dibenzothiophene δ34S values were determined for the potential source rocks and for oils from Cambrian and Ordovician reservoirs to determine the sources of the oils and to address whether δ13C and δ34S values can be used effectively for oil–source rock correlation purposes. The ZS1 and ZS5 Cambrian oils, and six other oils from Ordovician reservoirs, were not significantly altered by TSR. The ZS1 oils and most of the other oils, have a “V” shape in the distribution of C27–C29 steranes, bulk and individual n-alkane δ13C values predominantly between −31‰ to −35‰ VPDB, and bulk and individual alkyldibenzothiophene δ34S values between 15‰ to 23‰ VCDT. These characteristics are similar to those for some Cambrian source rocks with kerogen δ13C values between −34.1‰ and −35.3‰ and δ34S values between 10.4‰ and 21.6‰. The oil produced from the Lower Ordovician in well YM2 has similar features to the ZS1 Cambrian oils. These new lines of evidence indicate that most of the oils in the Tazhong Uplift, contrary to previous interpretations, were probably derived from the Cambrian source rocks, and not from the Upper Ordovician. Conversely, the δ13C and δ34S values of ZS1C Cambrian oils have been shown to shift to more positive values due to thermochemical sulfate reduction (TSR). Thus, δ13C and δ34S values can be used as effective tools to demonstrate oil–source rock correlation, but only because there has been little or no TSR in this part of the section.  相似文献   

10.
Permian Khuff reservoirs along the east coast of Saudi Arabia and in the Arabian Gulf produce dry sour gas with highly variable nitrogen concentrations. Rough correlations between N2/CH4, CO2/CH4 and H2S/CH4 suggest that non-hydrocarbon gas abundances are controlled by thermochemical sulfate reduction (TSR). In Khuff gases judged to be unaltered by TSR, methane δ13C generally falls between −40‰ and −35‰ VPDB and carbon dioxide δ13C between −3‰ and 0‰ VPDB. As H2S/CH4 increases, methane δ13C increases to as much as −3‰ and carbon dioxide δ13C decreases to as little as −28‰. These changes are interpreted to reflect the oxidation of methane to carbon dioxide.Khuff reservoir temperatures, which locally exceed 150 °C, appear high enough to drive the reduction of sulfate by methane. Anhydrite is abundant in the Khuff and fine grained nodules are commonly rimmed with secondary calcite cement. Some cores contain abundant pyrite, sphalerite and galena. Assuming that nitrogen is inert, loss of methane by TSR should increase N2/CH4 of the residual gas and leave δ15N unaltered. δ15N of Paleozoic gases in Saudi Arabia varies from −7‰ to 1‰ vs. air and supports the TSR hypothesis. N2/CH4 in gases from stacked Khuff reservoirs varies by a factor of 19 yet the variation in δ15N (0.3–0.5‰) is trivial.Because the relative abundance of hydrogen sulfide is not a fully reliable extent of reaction parameter, we have attempted to assess the extent of TSR using plots of methane δ13C versus log(N2/CH4). Observed variations in these parameters can be fitted using simple Rayleigh models with kinetic carbon isotope fractionation factors between 0.98 and 0.99. We calculate that TSR may have destroyed more than 90% of the original methane charge in the most extreme instance. The possibility that methane may be completely destroyed by TSR has important implications for deep gas exploration and the origin of gases rich in nitrogen as well as hydrogen sulfide.  相似文献   

11.
《Applied Geochemistry》2005,20(7):1427-1444
Very high S oils (up to 14.7%) with H2S contents of up to 92% in the associated gas have been found in the Tertiary in the Jinxian Sag, Bohai Bay Basin, PR China. Several oil samples were analyzed for C and S stable isotopes and biomarkers to try to understand the origin of these unusual oil samples.The high S oils occur in relatively shallow reservoirs in the northern part of the Jinxian Sag in anhydrite-rich reservoirs, and are characteristic of oils derived from S-rich source rocks deposited in an enclosed and productive stratified hypersaline water body. In contrast, low S oils (as low as 0.03%) in the southern part of the Jinxian Sag occur in Tertiary lacustrine reservoirs with minimal anhydrite. These southern oils were probably derived from less S-rich source rocks deposited under a relatively open and freshwater to brackish lake environment that had larger amounts of higher plant inputs.The extremely high S oil samples (>10%) underwent biodegradation of normal alkanes resulting in a degree of concentration of S in the residual petroleum, although isoprenoid alkanes remain showing that biodegradation was not extreme. Interestingly, the high S oils occur in H2S-rich reservoirs (H2S up to 92% by volume) where the H2S was derived from bacterial SO4 reduction, most likely in the source rock prior to migration. Three oils in the Jinxian Sag have δ34S values from +0.3‰ to +16.2‰ and the oil with the highest S content shows the lightest δ34S value. This δ34S value for that oil is close to the δ34S value for H2S (∼0‰). It is possible that H2S was incorporated into functionalized compounds within the residual petroleum during biodegradation at depth in the reservoir thus accounting for the very high concentrations of S in petroleum.  相似文献   

12.
张水昌  朱光有  何坤 《岩石学报》2011,27(3):809-826
硫酸盐热化学还原作用(Thermochemical sulfate reduction, TSR)是发生在油气藏中复杂的有机-无机相互作用,它不仅会引起含H2S天然气的富集,其产生的酸性气体对碳酸盐岩储层还具有明显的溶蚀改造作用。本文基于黄金管热模拟实验,研究了TSR反应对原油裂解气的生成的影响,发现这种氧化还原反应的存在能明显降低原油的稳定性,促进具高干燥系数的含H2S天然气的生成。结合原位激光拉曼实验结果,证实了实际油藏中启动TSR反应的最可行的氧化剂应该是硫酸盐接触离子对(CIP)。全面探讨了影响TSR反应的地质和地球化学因素,提出除了初始原油的组分特征、不稳定含硫化合物(LSC)的含量外,地层水的含盐类型及盐度同样是控制TSR反应的关键因素。同时,基于大量地质分析,发现TSR对碳酸盐岩储层具有明显的溶蚀改造作用。结合溶蚀模拟实验,提出了酸性流体对碳酸盐储层溶蚀改造的机制,且深层碳酸盐岩层存在一个由TSR作用形成的次生孔隙发育带。研究认为,烃类与硫酸盐矿物的氧化还原反应与其产物对碳酸盐岩储层的改造是TSR作用的两个不可分割的部分,它们相互依存和制约。  相似文献   

13.
Organic sulfur compounds are ubiquitous in natural oil and gas fields and moderate-low temperature sulfide ore deposits. Previous studies have shown that organic sulfur compounds are important in enhancing the rates of thermochemical sulfate reduction (TSR) reactions, but the details of these reaction mechanisms remain unclear. In order to assess the extent of sulfate reduction in the presence of labile sulfur species at temperature conditions near to those where TSR occurs in nature, we conducted a series of experiments using the fused silica capillary capsule (FCSS) method. The tested systems containing labile sulfur species are MgSO4 + 1-pentanethiol (C5H11SH) + 1-octene (C8H16), MgSO4 + 1-octene (C8H16), MgSO4 + 1-pentanethiol (C5H11SH), 1-pentanethiol (C5H11SH)+H2O, and MgSO4 + 1-pentanethiol (C5H11SH) + ZnBr2 systems. Our results show that: (1) intermediate oxidized carbon species (ethanol and acetic acid) are formed during TSR simulation experiments when 1-pentanethiol is present; (2) in the presence of ZnBr2, 1-pentanethiol can be oxidized by sulfate to CO2 at 200 °C, which is within the temperature range observed in natural TSR; and (3) the precipitation of sulfide minerals may significantly promote the rate of TSR, indicating that the rates of in situ TSR reactions in ore deposits could be much faster than previously thought. This may be important for understanding the possibility of in situ TSR as a mechanism for the precipitation of metal sulfides in some ore deposits. These findings provide important experimental evidence for understanding the role of organic sulfur compounds in TSR reactions and the pathway of TSR reactions initiated by organic sulfur compounds under natural conditions.  相似文献   

14.
目前在川东北地区长兴组—飞仙关组已发现普光、渡口河、铁山坡、罗家寨等多个高含H2S的大、中型气田。通过天然气地球化学特征、流体包裹体盐度和岩心及薄片的镜下详细观察后认为,川东北地区长兴组—飞仙关组的大多数气藏遭受了热化学硫酸盐还原作用(TSR)的化学改造,TSR的改造主要表现在3个方面:1使C2 重烃相对于CH4、12C相对于13C优先被消耗,造成天然气干燥系数变大和碳同位素变重;2由于TSR产生的大量淡水的加入,使气藏的原生地层水被稀释,造成地层水盐度降低;3TSR相关流体(烃类和H2S等)与储层岩石之间的相互作用使储层被溶蚀和硬石膏发生蚀变,造成储层孔隙度增大,从而对改善其物性具有重要意义。  相似文献   

15.
This paper deals with natural temperature records in the heavy (asphaltenes) and the light fractions (C7—light hydrocarbons) of petroleum. Two sets of marine oils formed from different source rocks and petroleum systems were studied using asphaltene kinetics and light hydrocarbon analysis. Both fractions have been reported to contain information about the temperature the respective oils have been exposed to in the subsurface. These indicated temperatures generally correspond to the conditions in the source rock when expulsion occurred. Bulk kinetic analysis of reservoir oil asphaltenes as well as light hydrocarbon (LH) analysis (of dimethylpentanes) were used here in order to evaluate the expulsion temperatures. Surprisingly, when considering information coming from both fractions, an inverse trend between LHs expulsion temperatures (Ctemp) and asphaltenes (Tasph.) can be observed—high Tasph (asphaltene temperatures) occur with low LH Ctemp (light hydrocarbon expulsion temperatures) and low Tasph can be observed when Ctemp is high. These differences are of fundamental importance for the use of such geochemical data in calibrating numerical basin models. The reason for this inverse behaviour is possibly due to the different expulsion behaviour of light hydrocarbons and the heavy fraction of oils, especially when the source rocks contain only moderate amounts of organic matter. In addition it has to be considered that the temperature predictions obtained using asphaltene kinetic analysis are related to the onset temperature of petroleum expulsion, while light hydrocarbons provide, at best, average expulsion temperatures.  相似文献   

16.
Theoretical study on the reactivity of sulfate species with hydrocarbons   总被引:2,自引:0,他引:2  
The abiotic, thermochemically controlled reduction of sulfate to hydrogen sulfide coupled with the oxidation of hydrocarbons, is termed thermochemical sulfate reduction (TSR), and is an important alteration process that affects petroleum accumulations in nature. Although TSR is commonly observed in high-temperature carbonate reservoirs, it has proven difficult to simulate in the laboratory under conditions resembling nature. The present study was designed to evaluate the relative reactivities of various sulfate species in order to provide greater insight into the mechanism of TSR and potentially to fill the gap between laboratory experimental data and geological observations. Accordingly, quantum mechanics density functional theory (DFT) was used to determine the activation energy required to reach a potential transition state for various aqueous systems involving simple hydrocarbons and different sulfate species. The entire reaction process that results in the reduction of sulfate to sulfide is far too complex to be modeled entirely; therefore, we examined what is believed to be the rate limiting step, namely, the reduction of sulfate S(VI) to sulfite S(IV). The results of the study show that water-solvated sulfate anions are very stable due to their symmetrical molecular structure and spherical electronic distributions. Consequently, in the absence of catalysis, the reactivity of is expected to be extremely low. However, both the protonation of sulfate to form bisulfate anions () and the formation of metal-sulfate contact ion-pairs could effectively destabilize the sulfate molecular structure, thereby making it more reactive.Previous reports of experimental simulations of TSR generally have involved the use of acidic solutions that contain elevated concentrations of relative to . However, in formation waters typically encountered in petroleum reservoirs, the concentration of is likely to be significantly lower than the levels used in the laboratory, with most of the dissolved sulfate occurring as , aqueous calcium sulfate ([CaSO4](aq)), and aqueous magnesium sulfate ([MgSO4](aq)). Our calculations indicate that TSR reactions that occur in natural environments are most likely to involve bisulfate ions () and/or magnesium sulfate contact ion-pairs ([MgSO4]CIP) rather than ‘free’ sulfate ions () or solvated sulfate ion-pairs, and that water chemistry likely plays a significant role in controlling the rate of TSR.  相似文献   

17.
A large amount of deep oil has been discovered in the Tazhong Uplift, Tarim Basin whereas the oil source is still controversial. An integrated geochemical approach was utilized to unravel the characteristics, origin and alteration of the deep oils. This study showed that the Lower Cambrian oil from well ZS1C (
1x) was featured by small or trace amounts of biomarkers, unusually high concentration of dibenzothiophenes (DBTs), high δ34S of DBTs and high δ13C value of n-alkanes. These suggest a close genetic relationship with the Cambrian source rocks and TSR alteration. On the contrary, the Middle Cambrian oils from well ZS1 (
2a) were characterized by low δ13C of n-alkanes and relatively high δ34S of individual sulfur compounds and a general “V” shape of steranes, indicating a good genetic affinity with the Middle–Upper Ordovician source rocks. The middle Cambrian salt rock separating the oils was suggested to be one of the factors responsible for the differentiation. It was suggested that most of the deep oils in the Tazhong Uplift were mixed source based on biomarkers and carbon isotope, which contain TSR altered oil in varied degree. The percentage of the oils contributed by the Cambrian–Lower Ordovician was in the range of 19–100% (average 57%) controlled by several geological and geochemical events. Significant variations in the δ34S values for individual compounds in the oils were observed suggesting a combination of different extent of TSR and thermal maturation alterations. The unusually high DBTs concentrations in the Tazhong-4 oilfield suggested as a result of mixing with the ZS1C oil (
1x) and Lower Ordovician oils based on δ34S values of DBT. This study will enhance our understanding of both deep and shallow oil sources in the Tazhong Uplift and clarify the formation mechanisms of the unusually high DBTs oils in the region.  相似文献   

18.
Hydrogen sulfide (H2S) is known to catalyze thermochemical sulfate reduction (TSR) by hydrocarbons (HC), but the reaction mechanism remains unclear. To understand the mechanism of this catalytic reaction, a series of isothermal gold-tube hydrous pyrolysis experiments were conducted at 330 °C for 24 h under a constant confining pressure of 24.1 MPa. The reactants used were saturated HC (sulfur-free) and CaSO4 in the presence of variable H2S partial pressures at three different pH conditions. The experimental results showed that the in-situ pH of the aqueous solution (herein, in-situ pH refers to the calculated pH of aqueous solution under the experimental conditions) can significantly affect the rate of the TSR reaction. A substantial increase in the TSR reaction rate was recorded with a decrease in the in-situ pH value of the aqueous solution involved. A positive correlation between the rate of TSR and the initial partial pressure of H2S occurred under acidic conditions (at pH ∼3-3.5). However, sulfate reduction at pH ∼5.0 was undetectable even at high initial H2S concentrations. To investigate whether the reaction of H2S(aq) and occurs at pH ∼3, an additional series of isothermal hydrous pyrolysis experiments was conducted with CaSO4 and variable H2S partial pressures in the absence of HC at the same experimental temperature and pressure conditions. CaSO4 reduction was not measurable in the absence of paraffin even with high H2S pressure and acidic conditions. These experimental observations indicate that the formation of organosulfur intermediates from H2S reacting with hydrocarbons may play a significant role in sulfate reduction under our experimental conditions rather than the formation of elemental sulfur from H2S reacting with sulfate as has been suggested previously (Toland W. G. (1960) Oxidation of organic compounds with aqueous sulphate. J. Am. Chem. Soc.82, 1911-1916).Quantification of labile organosulfur compounds (LSC), such as thiols and sulfides, was performed on the products of the reaction of H2S and HC from a series of gold-tube non-isothermal hydrous pyrolysis experiments conducted at about pH 3 from 300 to 370 °C and a 0.1-°C/h heating rate. Incorporation of sulfur into HC resulted in an appreciable amount of thiol and sulfide formation. The rate of LSC formation positively correlated with the initial H2S pressure. Thus, we propose that the LSC produced from H2S reaction with HC are most likely the reactive intermediates for H2S initiation of sulfate reduction. We further propose a three-step reaction scheme of sulfate reduction by HC under reservoir conditions, and discuss the geological implications of our experimental findings with regard to the effect of formation water and oil chemistry, in particular LSC content.  相似文献   

19.
TSR(硫酸盐热化学还原反应)是高含硫化氢天然气形成的重要途径,是指烃类在高温条件下将硫酸盐还原生成H2S、CO2等酸性气体的过程。由于硫化氢的剧毒和强腐蚀性,在石油天然气行业的钻井、完井、修井、净化加工以及运输等各个方面的危害一直备受人们的关注,对硫化氢和TSR的评价一直是负面的,在油气勘探中更多是在回避。最近研究发现,TSR作用对石油天然气工业具有重要的积极作用。TSR的发生,首先需要硫酸盐类溶解提供SO42-,储集空间得到初步改善;其次TSR反应形成的硫化氢,溶于水后显示出较强的酸性溶蚀作用,对白云岩储层具有最佳的溶蚀效果。在高温条件和储层中地层水的作用下,硫化氢与白云岩发生较强烈的酸性流体-岩石相互作用(水岩反应),促进了白云岩次生孔洞的发育和高孔高渗优质储集层的形成,使油气储层保存下限增大和深部天然气聚集成藏成为可能。而目前飞仙关组高含硫化氢气藏普遍压力系数小、充满度低,这与TSR及硫化氢对储层溶蚀导致储集空间增容有关。四川盆地油气勘探结果证实,所有高含硫化氢天然气藏均对应了次生孔隙十分发育的优质储层,岩性主要以白云岩为主,储层埋藏深度超过8 000 m时依然发育优质储层。  相似文献   

20.
Significant natural gas reserves have recently been discovered in the Lower Triassic oolitic reservoirs from northeastern Sichuan Basin, SW China. In the wake of the December 2003 sour gas well blow-out, this study presents an overview on the petroleum geology and geochemistry of the sour gas accumulations in the study area. Two types of natural gas accumulations were identified in the Lower Triassic oolitic reservoirs, both containing highly mature thermogenic gases, with their hydrocarbon source rocks in Upper Permian strata. Natural gases from the area south of the ancient Kaijiang-Liangping Seaway are generally sweet gases formed as the result of thermal maturation, whereas those discovered from north of the Seaway are products of both thermal maturation and thermochemical sulfate reduction of early accumulated oils in the Feixianguan Formation reservoirs. The proposed origins of the gases are supported by their chemical and stable carbon isotope compositions, as well as the presence or absence of pyrobitumens in the reservoir. The distribution of gas accumulations is controlled predominantly by the combination of lithologic and structural factors. The regional variation in the concentrations of H2S in the gases appears related to the presence and thickness of anhydrite-bearing evaporitic rocks interbedded or intercalated with the oolitic reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号