首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Microbial and photochemical decomposition are two major processes regulating organic matter (OM) transformation in the global carbon cycle. However, photo-oxidation is not as well understood as biodegradation in terms of its impact on OM alteration in terrigenous environments. We examined microbial and photochemical transformation of OM and lignin derived phenols in two plant litters (corn leaves and pine needles). Plant litter was incubated in the laboratory over 3 months and compositional changes to OM were measured using nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry. We also examined the susceptibility of soil organic matter (SOM) to ultraviolet (UV) radiation. Solid-state 13C NMR spectra showed that O-alkyl type structures (mainly from carbohydrates) decreased during biodegradation and the loss of small carbohydrates and aliphatic molecules was observed by solution-state 1H NMR spectra of water extractable OM from biodegraded litters. Photochemical products were detected in the aliphatic regions of NaOH extracts from both litter samples by solution-state 1H NMR. Photo-oxidation also increased the solubility of SOM, which was attributed to the enhanced oxidation of lignin derived phenols and photochemical degradation of macromolecular SOM species (as observed by diffusion edited 1H NMR). Overall, our data collectively suggests that while biodegradation predominates in litter decomposition, photo-oxidation alters litter OM chemistry and plays a role in destabilizing SOM in soils exposed to UV radiation.  相似文献   

2.
N has a controlling effect on litter biodegradation in the forest floor, while stabilization of organic matter in the mineral soil may be influenced by physical parameters related to soil texture. In this study, in order to understand the processes involved in soil organic matter (SOM) formation, the chemical composition of SOM was followed and evaluated with regards to N contents and soil texture. Samples were taken on sites covered with Norway spruce and displaying contrasting values of C/N ratios in the forest floor. The chemical structure of OM was characterized using solid-state CPMAS 13C and 15N nuclear magnetic resonance (NMR) spectroscopy, along with Proton Spin Relaxation Editing (PSRE) sequences. Four groups of sampling sites were defined based on the NMR spectra of Oh and A horizons. In each group displaying similar NMR characteristics, N content and soil texture could be highly different among sites. Some Oh horizons with similar NMR spectra had very different N contents. Highly humified OM in Oh horizons were observed mainly on sites with low N contents. Some A horizons with different soil texture displayed similar OM chemical structure. High contents of O-alkyl C in some A horizons could originate from higher fresh root material input.  相似文献   

3.
The purpose of this study was to assess the effect of agricultural practices on the characteristics of soil organic carbon (SOC). The study area is located in the Central Volcanic Belt (Michoacán) in Mexico. The soil is an Acrisol, acidic and rich in clays and sesquioxides. Experimental plots were treated with four different agronomic management systems between 2002 and 2003: traditional, improved traditional, organic and fallow. Each treatment was replicated twice. Samples were taken at depths of 0–10 and 10–20 cm and were subjected to a physical fractionation process by way of particle size. SOC was fractionated into fulvic acids, humic acids and humin. After two years of cultivation, the SOC content increased significantly with the organic management (2.2 mg g−1 at 0–10 cm and 5.8 mg g−1 at 10–20 cm). The C content of the soil fine particle fraction increased with the traditional and organic managements. The organic C and N contents of the silt + clay particle-size fraction were mainly concentrated as humin, indicating that this SOM should be stable and have a low risk of mineralization. The humin C content only decreased significantly under the traditional and fallow treatments. The N content of the humin fraction decreased significantly under the traditional management system (from 69% to 54%), indicating the low sustainability of this soil management. The C/N ratio of the soil increased significantly under all treatments, but mainly under the traditional and organic treatments (from 12.1 and 12.8 to 13.7 and 14.0, respectively). This indicates a decrease in humus quality. In addition, the C/N of the humin increased significantly (from 13.3 and 12.7 to 19.2 and 16.0, respectively).  相似文献   

4.
Radiocarbon (14C) dating of total soil organic matter (SOM) often yields results inconsistent with the stratigraphic sequence. The onerous chemical extractions for SOM fractions do not always produce satisfactory 14C dates. In an effort to develop an alternative method, the pyrolysis-combustion technique was investigated to partition SOM into pyrolysis volatile (Py-V) and pyrolysis residue (Py-R) fractions. The Py-V fractions obtained from a thick glacigenic loess succession in Illinois yielded 14C dates much younger but more reasonable than the counterpart Py-R fractions for the soil residence time. Carbon isotopic composition (δ13C) was heavier in the Py-V fractions, suggesting a greater abundance of carbohydrate- and protein-related constituents, and δ13C was lighter in the Py-R fractions, suggesting more lignin- and lipid-related constituents. The combination of 14C dates and δ13C values indicates that the Py-V fractions are less biodegradation resistant and the Py-R fractions are more biodegradation resistant. The pyrolysis-combustion method provides a less cumbersome approach for 14C dating of SOM fractions. With further study, this method may become a useful tool for analyzing unlithified terrestrial sediments when macrofossils are absent.  相似文献   

5.
This study dealt with the distribution characteristics of soil organic carbon (SOC) and the variation of stable carbon isotopic composition (δ^13C values) with depth in six soil profiles, including two soil types and three vegetation forms in the karst areas of Southwest China. The δ^13C values of plant-dominant species, leaf litter and soils were measured using the sealed-tube high-temperature combustion method. Soil organic carbon contents of the limestone soil profiles are all above 11.4 g/kg, with the highest value of 71.1 g/kg in the surface soil. However, the contents vary between 2.9 g/kg and 46.0 g/kg in three yellow soil profiles. The difference between the maximum and minimum δ^13C values of soil organic matter (SOM) changes from 2.2‰ to 2.9‰ for the three yellow soil profiles. But it changes from 0.8‰ to 1.6‰ for the limestone soil profiles. The contrast research indicated that there existed significant difference in vertical pattems of organic carbon and δ^13C values of SOM between yellow soil and limestone soil. This difference may reflect site-specific factors, such as soil type, vegetation form, soil pH value, and clay content, etc., which control the contents of different organic components comprising SOM and soil carbon turnover rates in the profiles. The vertical variation patterns of stable carbon isotope in SOM have a distinct regional character in the karst areas.  相似文献   

6.
Isotopic analysis by compound specific gas chromatography–isotope ratio mass spectrometry (GC–IRMS) is used to detect and characterize petroleum pollution in surficial sediments along the St Lawrence River, near Quebec City. Unusually mature n-alkane distributions have been found in some recent intertidal sediments in the region. GC–IRMS results suggest that the n-alkanes are not derived from indigenous organic sources because they carry δ13C values between −30.0 and −27.0‰, as well as very small isotopic differences between odd and even numbered n-alkanes, which are both typically associated with petroleum products. Comparison of these sediments with bunker fuel, an oil used in the shipping industry, has shown a close isotopic correlation in some sites, which is further supported by biomarkers. Overall, the contamination has been dispersed along the river but is generally localized around the industrial region where hydrocarbon transfer from shore storage to ships takes place. This study illustrates how GC–IRMS can be used effectively in the detection and characterization of petroleum pollutants in sediments.  相似文献   

7.
Understanding the responses of soil organic carbon to an increase in global temperature is crucial to estimate potential feedbacks on global warming. In such a context, Rock-Eval pyrolysis has been recently proposed as a screening tool to investigate soil organic matter (SOM) chemistry and vulnerability. In order to test the validity of Rock-Eval as an indicator of SOM chemistry and of OM transformations, we compared classical Rock-Eval derived parameters (total organic carbon [TOC], Hydrogen Index [HI] and Oxygen Index [OI]) to Fourier infrared (FTIR) spectroscopy measured on peat sampled in two contrasting moisture conditions. The increase of TOC in the peat record depicted OM enrichment in aromatic moieties and lipids, whereas HI and OI, respectively, depicted the decomposition of carbohydrates and decarboxylation during early decay processes. Thought to be complementary to the classical parameters, other indicators based on the pyrolysis curve (S2) gave redundant or contradictory results. As an example, SOM cracking around 450 °C (namely the F3 component) was linked with carboxylic acids only in the dryer site. In the wetter one, no correlation was found between the F3 component and any FTIR absorption bands. This study underlined the current limitations of deconvolution derived parameters for the characterization of the biochemistry of OM. Finally, our work suggested that the routine use of Rock-Eval pyrolysis must be always associated with another characterization tool of OM, such as FTIR, to avoid misunderstanding.  相似文献   

8.
Although rates and mechanisms of early diagenesis have been well studied, the effects of microbial metabolism on the molecular composition of the sedimentary organic matter (SOM) over long periods of time need more investigation. In this study, we characterize the early diagenesis of marine SOM from organic rich sediments of the Ocean Drilling Program site 1082 located off Namibia, in the vicinity of the Benguela coastal upwelling system. We used both Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (13C NMR) to assess the quantitative partitioning of the organic carbon into major compound classes (aliphatic, aromatic, ester, carboxylic, amide and carbons from carbohydrates). Then, we calculate the SOM composition in the main biomolecules (proteins, carbohydrates, lipids and lignin) on the basis of previous 13C NMR based estimates of the molecular composition of the organic mixtures. Results show that the SOM is still labile at 7 m below the seafloor (mbsf) and composed of about 25% proteins and 15% carbohydrates. With increasing depth, the protein content exponentially decreases to 13% at 367 mbsf, whereas the carbohydrate content decreases linearly to 11%. The lignin and lipid content consistently represent around 10% and 40% of the SOM, respectively, and show an increase with depth, due mostly to selective enrichment as the more labile components are lost by degradation. Thus, these components of the SOM are considered refractory at the depth scale considered. The calculated remineralization rates are extremely slow ranging from 5.6 mol C m−3 ky−1 at the top of the core to 0.2 mol C m−3 ky−1 according to the organic carbon flux to the seafloor. Knowing the labile carbon losses, we propose a method to calculate the initial TOC before the diagenesis took place.  相似文献   

9.
It is widely believed that minerals of the huminite and vitrinite groups in coals consist to an important extent of a cross-linked macromolecular network, but in spite of debate that has extended over 60 years or more, the nature of the starting materials for this network, and the manner in which it is formed, are still not satisfactorily settled, though some advances resulting from the use of cross-polarization, magic-angle spinning, 13C nuclear magnetic resonance and pyrolysis techniques have been made recently. In a preliminary study peats in two cores from the Florida Everglades were fractionated by procedures adapted from those used in soil science. Measurements of optical rotation and viscometric molecular weights show that the plant polysaccharides are already altered in surface litter. Acid hydrolysates of whole peat and the humic acid and humin fractions gave distributions of sugars different from what is expected from plant polysaccharides; that is, hemicelluloses and α-cellulose seem to have been at least partly destroyed and various bacterial and/or fungal polysaccharides added. Better procedures for the fractionation and analysis of peat are needed.  相似文献   

10.
Cutin and suberin structural units might be stabilized in subsoils and contribute to the aliphatic structures observed in stabilized soil organic matter (SOM). We studied their dynamics in subsoils by measuring the concentrations and 13C contents of cutin and suberin markers in soil profiles under wheat (C3) and after 9 years of maize cropping (C4 plant). Alkandioic acids were considered as markers for roots, mid-chain hydroxy acids were only present in shoots and ω-hydroxy acids were identified in both roots and shoots. The diacid concentrations greatly increased below the ploughed layer after 9 years of maize cropping, possibly due to a higher root density of maize compared to wheat or to a faster turnover of fine roots and increased exudation of maize compared to wheat. From 0-75 cm, 9 years of maize cropping did not affect the distribution of shoot biomarkers but increased their concentrations. By contrast, below 75 cm, the shoot marker concentrations drastically decreased from the wheat control to the 9 year maize soil. The difference of δ13C observed for shoot markers was always lower than that observed for ω-hydroxy acids, and below 15 cm, it was close to that observed for SOC. The difference in δ13C of diacids was much more variable along the profile. Since the concentrations of the different markers were not at equilibrium, it was not possible to estimate their turnover. This study suggests several caveats for the use of molecular markers of roots and shoots to study the dynamics of SOM in deep soils: the higher heterogeneity compared to the ploughed layer, the presence of long history record of past vegetation that may hinder the short time scale changes tracked with the 13C isotope technique, and the difficulty in evaluating root inputs in the soil systems.  相似文献   

11.
《Applied Geochemistry》2006,21(1):166-183
The composition of organic matter (OM) in pine vegetation and soil samples from a pine forest which was charred by a wildfire was analyzed using solid-state nuclear magnetic resonance (13C NMR) and gas chromatography–mass spectrometry (GC–MS) of solvent extracts to study the effects of thermal alteration on soil organic matter (SOM). The NMR data revealed the presence of unaltered biomolecules (cellulose, proteins) and low contents of aromatic C (15%) in the charred pine wood and cones while the charred soil samples exhibited higher contents of aromatic C (39–56%). The solvent extraction of charred and uncharred plant and soil samples yielded diterpenoids, triterpenoids, steroids, a series of aliphatic lipids, phenols and carbohydrates indicating the predominant input of higher plant OM and minor contributions from microorganisms and/or fauna. The lower yield of solvent extractable aliphatic lipids in the charred samples versus the uncharred samples suggests that these compounds are thermally degraded during a wildfire. Molecular markers for the burning of cellulose (levoglucosan, mannosan, galactosan) were detected in all charred samples. The comparison of charred and uncharred samples allowed the identification of unaltered pine derived biomolecules and their thermal alteration products in the charred samples. Terpenoid and steroid biomolecules were in part altered during incomplete combustion to aromatic, unsaturated and polar derivatives (“pyromolecules”) that still retained the characteristic skeleton of their precursors. Since some of the polar degradation products found in the charred soils can be generated either from thermal or microbial degradation, the aromatic and unsaturated hydrocarbon products are preferred as molecular markers for SOM burning. Ratios of biological precursors to aromatic (diterpenoids) or unsaturated products (steroids) indicate that the cyclic lipids in the pine wood and the soil surface horizon were highly altered. In conclusion, the solvent extractable lipids and carbohydrates in charred SOM are valuable, source-specific molecular markers for the burning of plant biomass and for tracing the biogeochemistry of charred residues in soils.  相似文献   

12.
Soil organic matter (SOM) is a major pool of the global C cycle and determines soil fertility. The stability of SOM strongly depends on the molecular precursors and structures. Plant residues have been regarded as the dominant precursors, but recent results showed a major contribution of microbial biomass. The fate of microbial biomass constituents has not yet been explored; therefore, we investigated the fate of fatty acids (FA) from 13C labeled Gram-negative bacteria (Escherichia coli) in a model soil study [Kindler, R., Miltner, A., Richnow, H.H., Kästner, M., 2006. Fate of gram negative bacterial biomass in soil—mineralization and contribution to SOM. Soil Biology & Biochemistry 38, 2860–2870]. After 224 days of incubation, the label in the total fatty acids (t-FA) in the soil decreased to 24% and in the phospholipid fatty acids (PLFA) of living microbes to 11% of the initially added amount. Since the bulk C decreased only to 44% in this period, the turnover of FA is clearly higher indicating that other compounds must have a lower turnover. The 13C label in the t-FA reached a stable level after 50 days but the label of the PLFA of the living microbial biomass declined until the end of the experiment. The isotopic enrichment of individual PLFA shows that the biomass derived C was spread across the microbial food web. Modelling of the C fluxes in this experiment indicated that microbial biomass is continuously mineralized after cell death and recycled by other organisms down to the 10% level, whereas the majority of biomass derived residual bulk C (~33%) was stabilized in the non-living SOM pool.  相似文献   

13.
The microbial recalcitrance of char accumulated after vegetation fires was studied using pyrogenic organic material (PyOM) with increasing degrees of charring, produced from rye grass (Lolium perenne) and pine wood (Pinus sylvestris) at 350 °C under oxic conditions. Solid state 13C and 15N nuclear magnetic resonance (NMR) spectroscopy confirmed increasing aromaticity and the formation of heterocyclic N with prolonged charring. After mixing with a mineral soil, the PyOM was aerobically incubated for 48 days at 30 °C. To account for the input of fresh litter after a fire event, unburnt rye grass residue was added as a co-substrate. The grass-derived PyOM showed the greatest extent of C mineralisation. After 48 days incubation, up to 3.2% of the organic C (OC) was converted to CO2. More severe thermal alteration resulted in a decrease in the total C mineralisation to 2.5% of OC. In the pine-derived PyOM, only 0.7% and 0.5% of the initial C were mineralised. The co-substrate additions did not enhance PyOM mineralisation during initial degradation. 13C NMR spectroscopic analysis indicated structural changes during microbial degradation of the PyOM. Concomitant with a decrease in O-alkyl/alkyl-C, carboxyl/carbonyl C content increased, pointing to oxidation. Only the strongly thermally altered pine PyOM showed a reduction in aromaticity. The small C losses during the experiment indicated conversion of aryl C into other C groups. As revealed by the increase in carboxyl/carbonyl C, this conversion must have included the opening and partial oxidation of aromatic ring structures. Our study demonstrates that plant PyOM can be microbially attacked and mineralised at rates comparable to those for soil organic matter (SOM), so its role as a highly refractory SOM constituent may need re-evaluation.  相似文献   

14.
A depth- and particle size-specific analysis of soil organic carbon (SOC) and its isotopic composition was undertaken to investigate the effects of soil texture (or particle size) on the depth profile of stable carbon isotopic composition of SOC (δ13CSOC) in two tropical soils. Depth-specific samples from two soil profiles of markedly different texture (coarse grained and fine grained) were separated into particle size classes and analyzed for the (mass/mass) concentration of SOC (C) and δ13CSOC. Within 1 m of the soil surface, δ13CSOC in the coarse-textured soil increases by 1.3 to 1.6‰, while δ13CSOC from the fine-textured soil increase by as much as 3.8 to 5.5‰. This increasing depth trend in the coarse-textured soil is approximately linear with respect to normalized C, while the increase in the fine-textured soil follows a logarithmic function with respect to normalized C. A model of Rayleigh distillation describing isotope fractionation during decomposition of soil organic matter (SOM) accounts for the depth profile of δ13CSOC in the fine-textured soil, but does not account for the depth profile observed in the coarse-textured soil despite their similar climate, vegetation, and topographic position. These results suggest that kinetic fractionation during humification of SOM leads to preferential accumulation of 13C in association with fine mineral particles, or aggregates of fine mineral particles in fine-textured soils. In contrast, the coarse-textured soil shows very little applicability of the Rayleigh distillation model. Rather, the depth profile of δ13CSOC in the coarse-textured soil can be accounted for by mixing of soil carbon with different isotopic ratios.  相似文献   

15.
The specific features of the nano-scale secondary ion mass spectrometry (NanoSIMS) technology with the simultaneous analysis of up to seven ion species with high mass and lateral resolution enables us to perform multi-element and stable isotope measurements at the submicron scale. To elucidate the power of this technique, we performed an incubation experiment with soil particles of the fine silt and clay fractions (from an Albic Luvisol), with occluded particulate organic material and intact soil aggregates (from a Haplic Chernozem), using a 13C and 15N labelled amino acid mixture as tracer. Before and during 6-day incubation after the addition of the label, samples were consecutively prepared for NanoSIMS analysis. For this purpose, two different sample preparation techniques were developed: (i) wet deposition and (ii) the sectioning of epoxy resin embedded samples. Single soil particles (fine silt/clay fraction) showed an enrichment of 13C and 15N after label addition that decreased over time. On aggregates of particulate organic matter, re-aggregated during the 6-day incubation experiment, we could show a spatially heterogeneous enrichment of 13C and 15N on the particle surface. The enrichment in 15N demonstrated the diffusion of dissolved organic matter into intact soil aggregate interiors. The prospects of NanoSIMS for three dimensional studies of stable C and N isotopes in organo-mineral associations is demonstrated by the recorded depth profiles of the organic matter distribution on mineral particles.  相似文献   

16.
《Organic Geochemistry》2011,42(12):1476-1488
The specific features of the nano-scale secondary ion mass spectrometry (NanoSIMS) technology with the simultaneous analysis of up to seven ion species with high mass and lateral resolution enables us to perform multi-element and stable isotope measurements at the submicron scale. To elucidate the power of this technique, we performed an incubation experiment with soil particles of the fine silt and clay fractions (from an Albic Luvisol), with occluded particulate organic material and intact soil aggregates (from a Haplic Chernozem), using a 13C and 15N labelled amino acid mixture as tracer. Before and during 6-day incubation after the addition of the label, samples were consecutively prepared for NanoSIMS analysis. For this purpose, two different sample preparation techniques were developed: (i) wet deposition and (ii) the sectioning of epoxy resin embedded samples. Single soil particles (fine silt/clay fraction) showed an enrichment of 13C and 15N after label addition that decreased over time. On aggregates of particulate organic matter, re-aggregated during the 6-day incubation experiment, we could show a spatially heterogeneous enrichment of 13C and 15N on the particle surface. The enrichment in 15N demonstrated the diffusion of dissolved organic matter into intact soil aggregate interiors. The prospects of NanoSIMS for three dimensional studies of stable C and N isotopes in organo-mineral associations is demonstrated by the recorded depth profiles of the organic matter distribution on mineral particles.  相似文献   

17.
We studied the degradation of lignin in leaf and needle litter of ash, beech, maple, pine and spruce using 13C-labelled tetramethylammonium hydroxide (13C TMAH) thermochemolysis. Samples were allowed to decompose for 27 months in litter bags at a German spruce forest site, resulting in a range of mass loss from 26% (beech) to 58% (ash). In contrast to conventional unlabelled TMAH thermochemolysis, 13C-labelling allows thermochemolysis products from lignin, demethylated lignin and other polyphenolic litter compounds (e.g. tannins) to be distinguished. Proxies for lignin degradation (phenol yield; acid/aldehyde ratio of products) changed considerably upon correction for the contribution of non-lignin sources to the thermochemolysis products. Using the corrected values, we found increasing acid/aldehyde values as well as decreasing or constant yield of lignin derived phenols normalised to litter carbon, suggesting pronounced lignin degradation by wood-rotting fungi. No indication for build up of demethylated lignin through the action of brown rot fungi on ring methoxyls was found. The results were compared with those of other analytical techniques applied in previous studies. Like 13C-TMAH thermochemolysis, CuO oxidation showed increasing lignin oxidation (acid/aldehyde ratio) and no/little enrichment of lignin derived phenols in the litter. Molecular lignin degradation patterns did not match those from analysis of total acid unhydrolysable residues (AURs). In particular, the long assumed selective preservation of lignin during the first months of litter decomposition, based on AUR analysis, was not supported by results from the CuO and 13C TMAH methods.  相似文献   

18.
Soil properties and stable carbon isotope ratios contained in the soil organic matter (SOM) were used to investigate the change in vegetative history of land cleared anciently for maize (Zea mays L.) agriculture in the Petexbatún region of Guatemala. Maize and other C4 plants associated with land clearance leave a carbon isotopic signature in the SOM different from the C3 plants of native forest vegetation. Soil profiles were collected from various landscape features around the Classic Maya site of Aguateca: control locations (areas likely not used in ancient agriculture), defensible locations (areas near defensive walls), rejolladas (natural karst depressions), upland locations (well‐drained soils atop the Aguateca escarpment), and bajos (seasonal and perennial wetlands). The chemical and physical properties of the profiles were examined and the soils were taxonomically classified to the great group level. The changes in d13C with soil depth were determined and compared statistically. The 13C enrichment of the SOM in bajo and rejollada profiles were similar and were significantly (p < 0.05) greater than the control, defensible, and upland soils. This isotopic signature of sustained C4 vegetation was likely associated with forest clearance and ancient Maya agriculture. Both the bajo and rejollada landscape features appear to have been valuable agricultural resources for ancient Maya. © 2009 Wiley Periodicals, Inc.  相似文献   

19.
Increased nitrogen (N) input to ecosystems could alter soil organic carbon (C) dynamics, but the effect still remains uncertain. To better understand the effect of N addition on soil organic C in wetland ecosystems, a field experiment was conducted in a seasonally inundated freshwater marsh, the Sanjiang Plain, Northeast China. In this study, litter production, soil total organic C (TOC) concentration, microbial biomass C (MBC), organic C mineralization, metabolic quotient (qCO2) and mineralization quotient (qmC) in 0–15 cm depth were investigated after four consecutive years of N addition at four rates (CK, 0 g N m?2 year?1; low, 6 g N m?2 year?1; moderate, 12 g N m?2 year?1; high, 24 g N m?2 year?1). Four-year N addition increased litter production, and decreased soil organic C mineralization. In addition, soil TOC concentration and MBC generally increased at low and moderate N addition levels, but declined at high N addition level, whereas soil qCO2 and qmC showed a reverse trend. These results suggest that short-term N addition alters soil organic C dynamics in seasonally inundated freshwater marshes of Northeast China, and the effects vary with N fertilization rates.  相似文献   

20.
Soil organic matter (SOM) is important for soil fertility and for the global C cycle. Previous studies have shown that during SOM formation no new compound classes are formed and that it consists basically of plant- and microorganism-derived materials. However, little data on the contribution from microbial sources are available. Therefore, we investigated previously in a model study the fate of C from 13C-labelled Gram-negative bacteria in soil (Kindler, R., Miltner, A. Richnow, H.H., Kästner, M., 2006. Fate of gram negative bacterial biomass in soil – mineralization and contribution to SOM. Soil Biology and Biochemistry 38, 2860–2870) and showed that 44% of the bulk 13C remained in the soil. Here we present the corresponding data on the fate of amino acids hydrolysed from proteins, which are the most abundant components of microbial biomass. After 224 days incubation, the label in the total amino acids in the soil amended with 13C-labelled cells decreased only to >95%. The total amino acids therefore clearly showed a lower turnover than the bulk 13C and a surprisingly stable concentration. Proteins therefore have to be considered as being stabilised in soil in dead, non-extractable biomass or cell fragments by known general stabilisation mechanisms. The label in the amino acids in a fraction highly enriched in living microbial biomass decreased to a greater extent, i.e. to 25% of the initially added amount. The amino acids removed from this fraction were redistributed via the microbial food web to non-living SOM. All amino acids in the microbial biomass were degraded at similar rates without a change in isotopic signature. The nuclear magnetic resonance (NMR) spectra of the soils were very similar and indicate that the residues of the degraded microbial biomass were very similar to those of the SOM and are a significant source for the formation of the SOM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号