首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although recent studies have recognized peatlands as a sink for atmospheric CO2, little is known about the role of Siberian peatlands in the global carbon cycle. We have estimated the Holocene peat and carbon accumulation rate in the peatlands of the southern taiga and subtaiga zones of western Siberia. We explain the accumulation rates by calculating the average peat accumulation rate and the long-term apparent rate of carbon accumulation (LORCA) and by using the model of Clymo (1984, Philosophical Transactions of the Royal Society of London Series B 303, 605-654). At three key areas in the southern taiga and subtaiga zones we studied eight sites, at which the dry bulk density, ash content, and carbon content were measured every 10 cm. Age was established by radiocarbon dating. The average peat accumulation rate at the eight sites varied from 0.35 ± 0.03 to 1.13 ± 0.02 mm yr−1 and the LORCA values of bogs and fens varied from 19.0 ± 1.1 to 69.0 ± 4.4 g C m−2 yr−1. The accumulation rates had different trends especially during the early Holocene, caused by variations in vegetation succession resulting in differences in peat and carbon accumulation rates. The indirect effects of climate change through local hydrology appeared to be more important than direct influences of changes in precipitation and temperature. River valley fens were more drained during wetter periods as a result of deeper river incision, while bogs became wetter. From our dry bulk density results and our age-depth profiles we conclude that compaction is negligible and decay was not a relevant factor for undrained peatlands. These results contribute to our understanding of the influence of peatlands on the global carbon cycle and their potential impact on global change.  相似文献   

2.
Freezing–thawing cycle (FTC) is an important environmental factor affecting soil physicochemical properties and microbial activities. The effects of FTC at mid-high latitudes, especially in the permafrost regions impacted by global warming, have become a hot topic for research. However, the responses of active organic carbon fractions and soil enzyme activities to FTC in the active layers of permafrost regions remain far from certain. In this study, soil samples from three soil layers of (0–15, 15–30 and 30–45 cm) an undisturbed peatlands in Da Xing’anling Mountains, Northeast China, were collected, and then subjected to various FTCs with a large (10 to ?10 °C) and a small (5 to ?5 °C) amplitudes, respectively. Results showed that the soil active organic carbon fractions and enzyme activities were sensitive to FTCs. The FTCs significantly increased water-extracted organic carbon (WEOC) concentration in the three soil layers by approximately 5–28 % for the large amplitude and 22–36 % for the small amplitude. In contrast, FTCs significantly decreased microbial biomass carbon (MBC) concentration, cellulase, amylase and invertase activities. Overall, the damage of FTCs to soil enzymes was severe at the deeper soil depths and for the large amplitude. Interestingly, the soil WEOC concentration was lower at the large amplitude of FTC compared with the small amplitude. When the numbers of FTCs increased, WEOC concentration began to decrease and MBC concentration and enzyme activities began to increase. In addition, the significant correlations between active organic carbon fractions and enzyme activities indicate that the increased WEOC by FTCs plays an important role in soil microbes and enzyme activities.  相似文献   

3.
《Quaternary Science Reviews》2003,22(5-7):703-723
The Western Siberian lowlands (WSL) are the world's largest high-latitude wetland, and possess over 900,000 km2 of peatlands. The peatlands of the WSL are of major importance to high-latitude hydrology, carbon storage and environmental history. Analysis of the existing Russian data suggests that the mean depth of peat accumulation in the WSL is 256 cm and the total amount of carbon stored there may exceed 53,836 million metric tons. A synthesis of published and unpublished radiocarbon dates indicates that the peatlands first developed at the end of the Last Glacial, with a rapid phase of initiation between 11,000 and 10,000 cal yr BP. Initiation slowed after 8000 cal yr BP and reached a nadir at 4000 cal yr BP. There has been renewed initiation, particularly south of 62°N, following 4000 cal yr BP. The initial development of peatlands in the WSL corresponds with the warming at the close of the Pleistocene. Cooling after 4000 Cal yr BP has likely led to increased permafrost and increased peatland development particularly in central and southern regions. Cold and dry conditions in the far north may have inhibited peatland formation in the late Holocene.  相似文献   

4.
The purpose of this study was to determine peat formation processes throughout the millennia in four tidal marshes in the Sacramento–San Joaquin Delta. Peat cores collected at each site were analyzed for bulk density, loss on ignition, and percent organic carbon. Core data and spline fit age–depth models were used to estimate inorganic sedimentation, organic accumulation, and carbon sequestration rates in the marshes. Bulk density and percent organic matter content of peat fluctuated through time at all sites, suggesting that peat formation processes are dynamic and responsive to watershed conditions. The balance between inorganic sedimentation and organic accumulation at the sites also varied through time, indicating that marshes may rely more strongly on either inorganic or organic matter for peat formation at particular times in their existence. Mean carbon sequestration rates found in this study (0.38–0.79 Mg C ha−1 year−1) were similar to other long-term estimates for temperate peatlands.  相似文献   

5.
The Hudson Bay Lowlands (HBL) stores a significant proportion of the northern peatland carbon pool, and constraints on the factors controlling local-scale variation are needed to better predict soil carbon stocks. We investigated two treed peatland sites, a fen and a bog, to understand how local ecohydrological factors impacted long-term carbon storage. Ecohydrological conditions were reconstructed using quantitative water table depth reconstructions from testate amoebae (TA) and broad peat type classifications. We also linked these factors and carbon storage to changes in TA community structure through the investigation of morphological and functional traits. Both sites have high rates of peat vertical accretion during the warmer Middle Holocene. A shift to a drier, Sphagnum-dominated habitat after 7400 cal a bp at the bog site, however, led to lower apparent carbon accumulation rates (aCARs) than at the fen site. aCARs decreased with the transition to a cooler Late Holocene climate at both sites. Both sites have higher total carbon masses (kg m−2) than other more open and younger HBL localities, demonstrating the potential importance of treed peatlands in regional carbon storage. Shifts in the frequency of TA traits corresponded to changing ecohydrological conditions and provided insights into the role of TA in carbon storage.  相似文献   

6.
The northwest region of the Iberian Peninsula is home to a unique ecosystem of bogs,which are particularly sensitive to projected climate cha nge.In this context,the rate of carbon(C)accumulation in Chao de Veiga Mol.an intact raised bog,was analysed.Changes in the accumulation rate over the past10 millennia were determined in a peat core of 847 cm in depth,with a high mean rate of peat growth(11 yr cm^-1,0.09 cm yr^-1).An age-depth model was generated from 22 14C dates and fallout radionuclides.Chronological,stratigraphical and physico-chemical data confirmed the existence of a single cycle of peat formation throughout the Holocene and the formation of ombrotrophic peat 9500 years ago.The total mean C content was 50.2%,and over 10 millennia 583 kg C m^-2 accumulated at a mean rate of 35.3 g C m^-2 yr^-1,with a long-term(apparent)rate of carbon accumulation in the catotelm of59.9 g C m^-2 yr^-1.These values are much higher than reported for other Iberian peatlands and are amongst the highest documented for peatlands in the northern hemisphere.The dynamics of C accumulation and other measured parameters reveals important variations throughout the Holocene.They could be associated with the main climatic events described in the northern hemisphere and are highly consistent with models established for northern latitudes.The Chao de Veiga Mol raised bog is unique and of great potential value for carrying out high resolution palaeoenvironmental studies,especially in relation to regional and Iocal modulations in southern Europe.  相似文献   

7.
Northern peatlands represent one of the largest biospheric carbon reservoirs in the world. Their southern margins act as new carbon reservoirs, which can greatly influence the global carbon dynamics. However, the Holocene initiation, expansion and climate sensitivity of these peatlands remain intensely debated. Here we used a compilation of basal peat ages across six isolated peatlands at the southern margins of northern peatlands to address these issues. We found that the earliest initiation event of these peatlands occurred after the Younger Dryas (YD, 12,800–11,700 years ago) period. The second initiation event and rapid expansion occurred since 5 ka cal. BP. The recession of East Asian summer monsoon (EASM) during the YD period and at around 5 ka cal. BP likely played a major role in controlling the initiation and expansion of these peatlands. The rapid expansion of these peatlands possibly contributed to the significant increases in atmospheric methane concentrations during the late Holocene because of the minerotrophic fens status and rapid expansion of them. These ecological processes are different from northern peatlands, indicating the special carbon sink and source implications of these peatlands in the global carbon cycle.  相似文献   

8.
Under changing climatic conditions permafrost peatlands can play an important role in the global carbon budget through permafrost carbon feedbacks and shifts in carbon assimilation. To better predict future dynamics in these ecosystems an increased understanding of their Holocene carbon and permafrost history is needed. In Tavvavuoma, northern Sweden, we have performed detailed analyses of vegetation succession and geochemical properties at six permafrost peatland sites. Peatland initiation took place around 10 000 to 9600 cal. a BP, soon after retreat of the Fennoscandian Ice Sheet, and the peatlands have remained permafrost‐free fens throughout most of the Holocene. At the four sites that showed a continuous accumulation record during the late Holocene radiocarbon dating of the shift from wet fen to dry bog vegetation, characteristic of the present permafrost peatland surface, suggests that permafrost developed at around 600–100 cal. a BP. At the other two sites peat accumulation was halted during the late Holocene, possibly due to abrasion, making it more difficult to imply the timing of permafrost aggradation. However also at these sites there are no indications of permafrost inception prior to the Little Ice Age. The mean long‐term Holocene carbon accumulation rate at all six sites was 12.3±2.4 gC m−2 a−1 (±SD), and the mean soil organic carbon storage was 114±27 kg m−2.  相似文献   

9.
Temperature sensitivities of microbial respiration and dissolved organic carbon (DOC) production were investigated by using a novel method, thermal gradient (2–20°C) temperature bar, in two typical peatlands (bog and fen) in North Wales, UK over 12 months. The study indicated that temperature sensitivity of soil organic carbon decomposition in North peatlands was regulated not only by temperature but soil water content, dry–rewet event and phenologies. Potential decreases of Q10 (CO2) with increasing soil temperature were confirmed in both peatlands, but Q10 (DOC) increase with increasing soil temperature in both bog and fen sites. These results imply, if other factors such as the so-called CO2 fertilization effect are simultaneously taken into account, that the feedback of global warming induced CO2 release from peatlands to climate change may be overestimated in current biogeochemical models. However, global warming might have been nonlinearly accelerating DOC thermal production, and therefore it helps explaining the causes of remarkable increase of DOC in surface water in the Northern Hemisphere during last several decades.  相似文献   

10.
气候变化是影响全球泥炭沼泽分布和演化的最重要的因子之一,而泥炭地由于自身的特点成为过去气候变化的良好地质档案。在介绍泥炭沉积过程及不同类型的泥炭沼泽的发育特点基础上,从过去气候变化的常用泥炭记录和泥炭地碳记录等方面总结了国际上针对泥炭地反演气候变化研究的若干重要进展,重点剖析了泥炭腐殖化度、植物残体、有壳变形虫、生物标志化合物、同位素和孢粉等泥炭地过去气候变化重建的代用指标的适用范围和优缺点,同时也分析了泥炭地碳累积和碳循环等热点研究问题。最后从泥炭地作为过去气候变化的记录档案、泥炭地对现在气候变化的响应与反馈及在泥炭地进行现场气候变化监测与实验等方面对泥炭地与气候变化研究进行了展望。  相似文献   

11.
In 65 samples, we got values (unusually replicable and consistent for this type of work) of concentration, 14C/13C (AMS) age, and δ13C for: peat, dissolved organic carbon (DOC), peat fractions, and dissolved CO2 and CH4 at 50-cm intervals down to 700 cm in Ellergower Moss, a rainwater-dependent raised (domed) bog in southwest Scotland. (1) We attribute the consistency of the results to Ellergower Moss being unusually homogeneous, with unusually low hydraulic conductivity, and containing only a few gas spaces; and to the sampling methods including 18-month equilibration of in situ samplers. (2) The dissolved gas concentration depth profiles are convex and very similar to each other, though CO2 is 5-10 times more concentrated than CH4, while the profile of DOC is concave. (3) The age profile of peat is near linearly proportional to depth; that for DOC is about 500-1000 yr younger than the peat at the same depth; the dissolved gases are 500-4300 years younger than the peat. The age of the operational peat fractions humic acid and humin is similar to that of whole peat. (4) The δ13C profile for deep peat is almost constant; δ13C-CO2 is more enriched than the peat (δ13C-CO2 35‰ more); δ13C-CH4 is the same amount more depleted. Nearer the surface both dissolved gases become steadily more depleted, δ13C is about 20‰ less at the surface. (5) A simulation shows that mass flow can account for the concentration and age profiles of DOC, but for the gases diffusion and an additional source near the surface are needed as well, and diffusion accounts for over 99% of the dissolved gas movements. (6) The same processes must operate in other peatlands but the results for Ellergower should not be extrapolated uncritically to them.  相似文献   

12.
Peatlands contain approximately 25% of the total soil organic carbon, despite covering only 3% of earth’s land surface. The ecological, hydrological and biogeochemical functions of peatlands are tightly coupled to climate. Therefore, both direct human impacts and indirect effects of climate change can threaten the ecological function of peatlands through changes in hydrology. However, little is known about how peatland ecosystems, and specifically their biogeochemistry, carbon cycling, and development, may respond to climatic change. In this study, the Peat Accumulation Model was adapted to investigate the response of peatland development and carbon cycling to climatic change through simulating changes in precipitation and temperature at different stages of peatland development history. The warming and wetting were imposed on this system at 10,000 years since its initialization (mid-development stage) and at 20,000 years since its initialization (late-development stage). Here, it was revealed that peatlands can switch between carbon sinks and sources suddenly, but the extent to which the change takes place depends on the developmental stage of peatland ecosystems. The simulation results for the late-development stage showed that peatlands could function as carbon sources once warming and wetting was imposed but that peatland ecosystems during the mid-development stage can still function as carbon sinks under warming and wetting conditions. Moreover, peatland ecosystems have self-regulation capabilities so that they can go back to their normal ecological and biogeochemical functions under newly stabilized climates. Also, it is the change in temperature that results in the fundamental change in peatland development and carbon cycling. This study indicates that the response of peatland ecosystems to climate change is largely determined by their developmental stages.  相似文献   

13.
Tropical peatlands of SE-Asia represent a significant terrestrial carbon reservoir of an estimated 65 Gt C. In this paper we present a comprehensive data synthesis of radiocarbon dated peat profiles and 31 basal dates of ombrogenous peat domes from the lowlands of Peninsular Malaysia, Sumatra and Borneo and integrate our peatland data with records of past sea-level and climate change in the region. Based on their developmental features three peat dome regions were distinguished: inland Central Kalimantan (Borneo), Kutai basin (Borneo) and coastal areas across the entire region. With the onset of the Holocene the first peat domes developed in Central Kalimantan as a response to rapid post-glacial sea-level rise over the Sunda Shelf and intensification of the Asian monsoon. Peat accumulation rates in Central Kalimantan strongly declined after 8500 cal BP in close relation to the lowering rate of the sea-level rise and possibly influenced by the regional impact of the 8.2 ka event. Peat growth in Central Kalimantan apparently ceased during the Late Holocene in association with amplified El Niño activity as exemplified by several truncated peat profiles. Peat domes from the Kutai basin are all younger than ~8300 cal BP. Peat formation and rates of peat accumulation were driven by accretion rates of the Mahakam River and seemingly independent of climate. Most coastal peat domes, the largest expanse of SE-Asian peatlands, initiated between 7000 and 4000 cal BP as a consequence of a Holocene maximum in regional rainfall and the stabilisation and subsequent regression of the sea-level. These boundary conditions induced the highest rates of peat accumulation of coastal peat domes. The Late Holocene sea-level regression led to extensive new land availability that allowed for continued coastal peat dome formation until the present. The time weighted mean Holocene peat accumulation rate is 0.54 mm yr?1 for Central Kalimantan, 1.89 mm yr?1 for Kutai and 1.77 mm yr?1 for coastal domes of Sumatra and Borneo. The mean Holocene carbon sequestration rates amount to 31.3 g C m?2 yr?1 for Central Kalimantan and 77.0 g C m?2 yr?1 for coastal sites, which makes coastal peat domes of south-east Asia the spatially most efficient terrestrial ecosystem in terms of long term carbon sequestration.  相似文献   

14.

来自北方泥炭地的研究表明, 沼泽表面湿度变化时常受控于气候变化。然而火山活动区泥炭地的表面湿度是否受到了火山地质的影响?这个问题值得进一步明晰。本研究以长白山赤池泥炭地38cm深的沉积物作为对象, 通过植物大化石、有壳变形虫和腐殖化度多指标分析, 重建该泥炭地过去近50年的地表湿度变化。研究表明, 3个指标揭示的地表湿度变化趋势总体一致, 即38~27cm(1957~1965A.D.)由干向湿转变; 27~18cm(1965~1976A.D.)干湿波动; 18~0cm(1976~2008A.D.)由湿向干转变。与当地的气象数据对比, 发现剖面底部湿度偏低与地热引起的强烈蒸发有关; 而剖面上部湿度偏低与降水少、温度高的气候变化模式较吻合。理解泥炭地表面湿度变化对于泥炭记录的古气候、古环境和古生态重建具有重要意义。

  相似文献   

15.
Forested peatlands are widespread in boreal regions of Canada, and these ecosystems, which are major terrestrial carbon sinks, are undergoing significant transformations linked to climate change, fires and human activities. This study targets millennial‐scale vegetation dynamics and related hydrological variability in forested peatlands of the Clay Belt south of James Bay, eastern Canada, using palaeoecological data. Changes in peatland vegetation communities were reconstructed using plant macrofossil analyses, and variations in water‐table depths were inferred using testate amoeba analyses. High‐resolution analyses of macroscopic charcoal >0.5 mm were used to reconstruct local fire history. Our data showed two successional pathways towards the development of present‐day forested peatlands influenced by autogenic processes such as vertical peat growth and related drying, and allogenic factors such as the occurrence of local fires. The oldest documented peatland initiated in a wet rich fen around 8000 cal. a BP shortly after land emergence and transformed into a drier forested bog rapidly after peat inception that persisted over millennia. In the second site, peat started to accumulate from ~5200 cal. a BP over a mesic coniferous forest that shifted into a wet forested peatland following a fire that partially consumed the organic layer ~4600 cal. a BP. The charcoal records show that fires rarely occurred in these peatlands, but they have favoured the process of forest paludification and influenced successional trajectories over millennia. The macrofossil data suggest that Picea mariana (black spruce) persisted on the peatlands throughout their development, although there were periods of more open canopy due to local fires in some cases. This study brings new understanding on the natural variability of boreal forested peatlands which may help predict their response to future changes in climate, fire regimes and anthropogenic disturbances.  相似文献   

16.
Coastal plains are amongst the most densely populated areas in the world. Many coastal peatlands are drained to create arable land. This is not without consequences; physical compaction of peat and its degradation by oxidation lead to subsidence, and oxidation also leads to emissions of carbon dioxide (CO2). This study complements existing studies by quantifying total land subsidence and associated CO2 respiration over the past millennium in the Dutch coastal peatlands, to gain insight into the consequences of cultivating coastal peatlands over longer timescales. Results show that the peat volume loss was 19.8 km3, which lowered the Dutch coastal plain by 1.9 m on average, bringing most of it below sea level. At least 66 % of the volume reduction is the result of drainage, and 34 % was caused by the excavation and subsequent combustion of peat. The associated CO2 respiration is equivalent to a global atmospheric CO2 concentration increase of ~0.39 ppmv. Cultivation of coastal peatlands can turn a carbon sink into a carbon source. If the path taken by the Dutch would be followed worldwide, there will be double trouble: globally significant carbon emissions and increased flood risk in a globally important human habitat. The effects would be larger than the historic ones because most of the cumulative Dutch subsidence and peat loss was accomplished with much less efficient techniques than those available now.  相似文献   

17.
《Applied Geochemistry》2000,15(3):369-383
Surface water and peat in the northern Everglades have very low natural concentrations of U and are therefore sensitive to the addition of small amounts of U from anthropogenic sources such as fertilizer. Peat samples collected along a nutrient gradient in the northern Everglades have unusually high concentrations of U (>1 μg/g, dry basis) and also have a distinctive 234U/238U activity ratio (AR). AR values for U-enriched peat fall in the narrow range of AR values for commercial phosphate fertilizer (1.00±0.05). In contrast, AR values for low-U peat from background sites exceed 1.05. The spatial distribution of anomalous U concentration, and of fertilizer-like AR values in peat, parallel a previously documented pattern of P enrichment. These results strongly suggest that some of the U in nutrient-impacted peatlands is fertilizer-derived. Agricultural drainage water sampled in the northern Everglades has high concentrations of dissolved U (0.3–2.4 μg/l) compared to surface water from background sites (<0.1 μg/l). Measured AR values in drainage water (0.949–0.990) are also permissive of a fertilizer origin for the U and are different from AR values in surface water or peat at background sites (AR>1.05). Synoptic sampling of surface water along drainage canals indicate that Lake Okeechobee, and some drainage from agricultural fields, are sources of dissolved U, whereas wetlands farther downstream act as sinks for U. Historically cultivated agricultural soil has only a marginally elevated (+0.2 μg/g) average concentration of U compared to nearby uncultivated soil and incorporates only 20% of the U from an aqueous solution that was slurried with the soil. In contrast, a similar experiment with fresh Everglades peat indicated uptake of 90% of the added U. These experiments support the proposed removal of U from agricultural fields and concentration of U in downstream peatlands. The methodology of this study can be used to describe the behavior of fertilizer-derived U in other low-U environments.  相似文献   

18.
The mid-Holocene eruption of Aniakchak volcano (Aniakchak II) in southwest Alaska was among the largest eruptions globally in the last 10,000 years (VEI-6). Despite evidence for possible impacts on global climate, the precise age of the eruption is not well-constrained and little is known about regional environmental impacts. A closely spaced sequence of radiocarbon dates at a peatland site over 1000 km from the volcano show that peat accumulation was greatly reduced with a hiatus of approximately 90–120 yr following tephra deposition. During this inferred hiatus no paleoenvironmental data are available but once vegetation returned the flora changed from a Cyperaceae-dominated assemblage to a Poaceae-dominated vegetation cover, suggesting a drier and/or more nutrient-rich ecosystem. Oribatid mites are extremely abundant in the peat at the depth of the ash, and show a longer-term, increasingly wet peat surface across the tephra layer. The radiocarbon sample immediately below the tephra gave a date of 1636–1446 cal yr BC suggesting that the eruption might be younger than previously thought. Our findings suggest that the eruption may have led to a widespread reduction in peatland carbon sequestration and that the impacts on ecosystem functioning were profound and long-lasting.  相似文献   

19.
We report the results of continuous temperature monitoring (812 days, from 28 June 2005 to 26 September 2007) in a 80 cm layer of peat soil in Bakchar bog (West Siberia), at sampling rates of 60 min in wintertime and 15 min in summertime. Both annual and daily temperature patterns are controlled by water table position and weather conditions. Wintertime soil temperature patterns are disturbed by the formation of a seasonal frozen layer with its thickness (freezing depth) depending on the time when steady snow cover sets up and on soil moisture. During the period of frozen layer thawing, the temperature of peat becomes sensitive to peat moisture and water table position as well as to the air and peat surface temperature. The warm-season soil temperature patterns bear effects of peat warming by rainwater percolation, both in nightand daytime. The patterns with soil warming during rainfall and phase change during seasonal freezing-thawing cycles record disturbances to conductive heat transfer.  相似文献   

20.

泥炭是陆地生态系统碳库的重要组成部分,其发育演化对全球碳循环具有重要的影响。然而,目前轨道时间尺度上中低纬泥炭发育与季风演化关系及其对全球CH4浓度变化的影响,还存在很大的争议。本研究基于末次冰盛期以来我国泥炭发育的起始14C年龄数据,通过年龄概率密度方法,系统重建了东亚季风区泥炭发育的时空演变历史。结果表明:末次冰盛期我国南方泥炭开始发育,冰消期以来泥炭发育逐步扩展至华北、东北、西北和青藏高原地区,并发育增强;全新世时段,不同区域泥炭发育存在明显的空间差异,东北和西北泥炭发育呈现持续增加,而南方、华北和青藏高原地区在早-中全新世增加,之后呈现下降趋势。结合全国孢粉记录的古气候定量化重建结果,发现我国末次冰盛期以来不同区域泥炭发育主要受降水变化的影响,揭示出泥炭发育主要受控于东亚季风降水的演化。研究表明在轨道时间尺度上,东亚季风演化及其导致的泥炭发育变化对全球CH4浓度变化具有重要的贡献。

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号