首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the 1997–1999 El Niño/La Nina event on new primary production are examined using a physiologically based algorithm of nitrate uptake by phytoplankton for the Monterey Bay, California region. Primary inputs for the model come from temperature and phytoplankton biomass (chlorophyll) using both moorings and satellite observations, providing estimates of new production with higher spatial and temporal resolution as compared to traditional shipboard measurements. We observed significant decrease in new production values during the El Niño event, and a corresponding enhancement during La Niña as compared to the values during the El Niño period. The observed interannual changes in new production varied as a function of distance from shore, consistent with the hypothesis that productivity offshore from the upwelling center was impacted because of the suppression of the thermocline and nitracline associated with the ENSO event. There was less evidence for a significant downstream trend in new production values, suggesting that distance from shore is the predominant variable in spatial estimates of new production.  相似文献   

2.
Oceanographic samples were collected across the Antarctic Polar Front (APF) region in the vicinity of 60°S, 170°W during the US JGOFS program from December 1997 to March 1998. This paper reports the uptake rates of new (nitrate) and regenerated (ammonium and urea) nitrogen measured by 15N tracer techniques together with the levels of ammonium, urea-N and dissolved free amino acids (DFAAs) during December and mid-February–March. The APF was an important biological boundary, and in December rates of new (nitrate) uptake were greatest south of the APF, exceeding 10 mmol m−2 d−1 near the retreating ice edge. In February, nitrate uptake rates were an order of magnitude lower. Rates of ammonium uptake in both periods were greater in the warmer water north of the front. Nitrogen f-ratios varied from 0.50 to less than 0.05, with larger values associated with the >5 μm size fraction at the ice edge and generally lower values north of the APF. Urea was an important nitrogen source north of the APF, and lowered f-ratios there by 22% on average when included as part of total nitrogen uptake. Urea uptake was less important south of the APF. Ammonium concentrations increased dramatically south of the APF later in the season, suggesting a system dominated by regeneration. Seasonal changes in the concentrations of regenerated organic compounds such as urea and DFAAs were less obvious, although DFAAs exhibited consistent maxima in the high flow regions of the APF. A mass balance based of ammonium fluxes suggests that nitrification was significant at locations south of the APF in February. In these nitrate-replete waters, light/mixing conditions in the surface water (the Sverdrup criterion) accounted for over 50% of the variance in nitrate uptake rates. The stability responsible for higher new production south of the APF is due both to the separation of this region from the maximum zonal wind field to the north as well as to melt-water contribution from the retreating ice field. Estimated new production and exportable carbon production exceeded 500 mmol nitrate m−2 yr−1 and 40 g C m−2 yr−1, respectively, south of the APF. Thus, new production in the marginal ice zone of the Southern Ocean rivals that in coastal systems and indicates that this is an important region for export production.  相似文献   

3.
《Oceanologica Acta》1998,21(2):279-291
During the spring 1995 (2–25 May), a cruise was carried on the RV Poseidon (Germany) on the continental shelf of the south Bay of Biscay. The objective was a comprehensive study of the planktonic food web within the Gironde plume waters. In these waters phosphate was present at very low concentrations (undetectable to < 0.1 μmol.L−1), whereas nitrate, silicate and ammonium concentrations were much higher (several μmol·L−1 for nitrate and silicate and 0.5 to 1.0 μmol·L−1 for ammonium). The size distribution of the phytoplankton biomass (estimated from chlorophyll a measurements by high performance liquid chromatography) and primary production (measured by 14C in situ method) showed a great proportion of small (40 to 70 % < 3 μm) and active autotrophic cells (growth rates estimated from 0.4 to 0.8 d−1 for the entire euphotic layer). Considering the very high values of NO3-N:PO4-P ratios and the high C:P and N:P ratios for the particulate organic matter, it is suggested that an early phosphorus depletion limits the spring bloom phytoplankton and particularly the new production (nitrate uptake coming from the Gironde waters).From these results and other simultaneous observations on the heterotrophic processes (such as grazing of microzooplankton), we can conclude that the planktonic food web would be close to a maintenance system as defined by Platt et al. The possible generalisation of these results for each spring is discussed with respect to the scarcity of previous and reliable phosphate data.  相似文献   

4.
Primary production was measured during two Lagrangian experiments in the Iberian upwelling. The first experiment, in a body of upwelled water, measured day-to-day changes in phytoplankton activity as the water mass moved south along the shelf break. Nutrient concentrations decreased over a five day period, with concomitant increases in phytoplankton biomass. Initially the maximum phytoplankton biomass was in the upper 10m but after four days, a sub-surface chlorophyll maximum was present at 30m. Depth-integrated primary production at the beginning of the experiment was 70mmolC.m−2.d−1 (838mgC.m−2.d−1) and reached a maximum of 88mmolC.m−2.d−1 (1053mgC.m−2.d−1) on day 3. On day 1, the picoplankton fraction (<2μm) was slightly more productive than larger (>5μm) phytoplankton, but the increase in overall production during the drift experiment was by these larger cells. Nitrate was the dominant nitrogen source. As nutrient concentrations declined, ammonium became increasingly more important as a nitrogen source and the f-ratio decreased from 0.7 to 0.5. Picoplankton cells (<2μm) were responsible for most (65–80%) of the ammonium uptake. The C:N:P uptake ratios were very close to the Redfield ratio for the first four days but as nutrients became depleted high C:N uptake ratios (11 to 43) were measured. Over the period of the experiment, nitrate concentration within the upper 40m decreased by 47.91mmolN.m−2. In vitro estimates, based on 15N nitrate uptake, accounted for 56% of the decrease in nitrate concentration observed in the drifting water mass. Ammonium uptake over the same four day period was 16.28mmolN.m−2, giving a total nitrogen uptake of 43.18mmolN.m−2.In the second experiment, an offshore filament was the focus and a water mass was sampled as it moved offshore. Nutrient concentrations were very low (nitrate was <10nmol l−1 and ammonium was 20–40nmol l−1). Primary production rate varied between 36mmolC.m−2.d−1 (436mgC.m−2.d−1) and 21mmolC.m−2.d−1 (249mgC.m−2.d−1). Picophytoplankton was the most productive fraction and was responsible for a constant proportion (ca 0.65) of the total carbon fixation. Uptake rates of both nitrate and ammonium were between 10 and 20% of those measured in the upwelling region. Urea could be a very significant nitrogen source in these waters with much higher uptake rates than nitrate or ammonium; urea turnover times were ca. one day but the source of the urea remains unknown. Urea uptake had a profound effect on calculated f ratios. If only nitrate and ammonium uptake was considered, f ratios were calculated to be 0.42–0.46 but inclusion of urea uptake reduced the f ratio to <0.1. The primary production of this oligotrophic off-shore filament was driven by regenerated nitrogen.  相似文献   

5.
Physiology of Laminaria   总被引:1,自引:0,他引:1  
Abstract. Sporophytes of Laminaria digitata and L. saccharina were collected from the shore at different times of year. Intact sporophytes of both species, and discs cut from L. digitata lamina tissue were maintained for several weeks in laboratory cultures under various nitrate, phosphate, temperature and daylength regimes. Substrate-saturated uptake rates of approximately 24 μgN g dry weight-1 h-1 from 20 μM nitrate and 8 μgP g dry weight-1 h-1 from 10 μM phosphate were more than sufficient to account for internal nitrogen and phosphorus accumulation. Other nitrogen sources - nitrite, ammonium and urea - were also taken up, independently of each other, and supported growth. During the late spring decline of ambient nutrient levels, when growth rates on the shore also decline markedly, enrichment with nitrate (15 μM) and phosphate (3μ) together prevented this decline and also maintained peak photosynthetic rates (net photosynthesis = 10.4 μlO2 cm-2 h-1) which otherwise dropped to 4.5 μO2 cm-2 h-1 over 47 days at ambient nutrient levels (0.5 μM nitrate and phosphate). Slow summer growth rates in June/July were enhanced to greater than spring peak values by combined nitrate (7.5 μM) and phosphate (1.8 μM) enrichment; neither was sufficient alone, although the individual nutrients were accumulated internally. A lesser, but significant enhancement was also achieved in September. In midwinter, nutrient enhancement itself (10.5 μM nitrate and 3.0 μM phosphate) had a small effect on growth rates only if summer water temperature (15°C) was used, but the dramatic effect of an increased photoperiod (7.5 to 17.5 h) was in excess of that expected for the increased radiant energy available. This was found to be due, at least in L. digitaia discs, to the re-establishment of a surface meristoderm in the dormant winter tissue; this was particularly active with high phosphate supply. Growth of the new lamina in January on the shore was much reduced if the old lamina was removed, although the time of initiation of new growth remained unchanged. In the laboratory, the old lamina was found to be a source of nitrogen for new lamina but not of fixed carbon or phosphorus. New lamina photosynthesis, manifest as mannitol accumulation, was directly proportional to phosphate supply up to at least 7.5 μM phosphate. Mannitol accumulation was then suppressed by a nitrate supply above 12 um, presumably by diversion of fixed carbon to other biosynthetic pathways.  相似文献   

6.
We conducted a study that shows that light and dark conditions do not affect the uptake rates of ammonium and nitrate by the seagrass Zostera noltei. This is an important advantage over some seaweed species in which these rates are severely reduced at night. In the light, the ammonium uptake rates were initially higher (15 and 20 μmol·g?1·h?1) and stabilized at a rate of 5 μmol·g?1·h?1 after 1 h, whereas in the dark the rates remained constant at a rate of 10 μmol·g?1·h?1 over the first 180 min of incubation. The rates of nitrate uptake in the light were high within the first 120 min of incubation (7.2–11.1 μmol·g?1·h?1) and decreased afterwards to lower values (0.8–3.9 μmol·g?1·h?1), whereas in the dark the rates fluctuated around 0.0–11.1 μmol·g?1·h?1 throughout the whole incubation time (7 h). The soluble sugar content of Z. noltei leaves increased significantly with both ammonium and nitrate incubations in the light, indicating the metabolic outcome of photosynthesis. In the dark, there was no significant variation in either the soluble sugar or in the starch content of leaves, rhizomes or roots in either the ammonium or nitrate incubations. However, the total starch content of plants decreased at night whereas the total soluble sugars increased, suggesting a process of starch catabolism to generate energy with the consequent production of smaller monosaccharide products. The starch content of rhizomes decreased significantly during the light incubations with nitrate but not with ammonium. These results suggest that carbohydrate mobilization is necessary for Z. noltei to account for extra energetic costs needed for the uptake and assimilation of nitrate. Furthermore, our results suggest that nitrate uptake, at least during the day, requires the mobilization of starch whereas the uptake of ammonium does not.  相似文献   

7.
A theoretical framework for the time-dependent processes leading to the high rates of new production in eastern boundary upwelling systems has been assembled from a series of past upwelling studies. As part of the CoOP WEST (Wind Events and Shelf Transport) study, new production in the Bodega Bay upwelling area and it's control by ambient nitrate and ammonium concentrations and the advective wind regime are described. Data and analyses are focused primarily on the WEST 2001 cruise (May–June 2001) when the two legs differed greatly in wind regimes but not nutrient concentrations. Elevated concentrations of ammonium in upwelled water with high nitrate were observed in both legs. Nitrate uptake by phytoplankton as a function of nitrate concentration was linear rather than Michaelis–Menten-like, modulated by inhibitory levels of ammonium, yielding coefficients that enable the specific nitrate uptake element of new production to be estimated from nutrient concentrations. The range of specific nitrate uptake rates for the two legs of WEST 2001 were similar, essentially a physiological response to nutrient conditions. However, the low “realization” of new production i.e. incorporation of biomass as particulate nitrogen that occurred in this system compared to the theoretical maximum possible was determined by the strong advective and turbulent conditions that dominated the second leg of the WEST 2001 study. These data are compared with other upwelling areas using a physiological shift-up model [Dugdale, R.C., Wilkerson, F.P., Morel, A. 1990. Realization of new production in coastal upwelling areas: a means to compare relative performance. Limnology and Oceanography 35, 822–829].  相似文献   

8.
On the basis of mass balance calculations performed for nitrogen (N) uptake experiments in the Southern California Bight (SCB), it has been suggested that a significant portion of dissolved inorganic N (DIN) uptake results in the production of dissolved organic N (DON). To investigate this process, the fate of ammonium (NH4+) and nitrate (NO3) uptake was quantified within the euphotic zone at three coastal stations in the SCB using 15N tracer techniques. Several trends in the fate of DIN and the production of DON were observed. First, production of particulate N (PN), from both NH4+ and NO3, was quantitatively more important in near surface waters, while DON release dominated within the nitracline. Second, the percentage of gross N uptake released as DON was generally higher when NO3, rather than NH4+, was the substrate. Third, the percentage of N released as DON was higher at night, relative to the day. Fourth, rates of DON release were significantly correlated to NH4+ regeneration, suggesting that similar mechanisms are responsible for both processes—presumably grazing. The results of this study indicate that the DON pool is a sink for DIN uptake on the time scale of hours. One implication of this finding is that new production estimates based on 15NO3 uptake rates will likely underestimate particle flux out of the surface layer because the rate of NO3 uptake is underestimated due to loss of DO15N during the incubation. On time scales of months to years, however, the N that is taken up as NO3 and released as DON will likely contribute to export flux via incorporation of the dissolved phase during seasonal mixing into sinking particles or transport. The export of DON on these time scales argues for the use of gross uptake rates to calculate f-ratios.  相似文献   

9.
The uptake of urea, nitrate and ammonium by phytoplankton was measured using 15N isotopes over a one-year period in Great South Bay, a shallow coastal lagoon. The bay is a unique environment for the study of nutrient uptake since ambient concentrations of NO3?NH4+ and urea remain relatively high through the year, and phytoplankton are probably never nutrient limited. Urea nitrogen averaged 52% of the total assimilated, while ammonium represented 33% and nitrate 13%. High rates of ammonium uptake occurred only at low urea concentrations (ca< 1-μg-atom urea l?1). Over the sampling period urea was present in relatively high concentrations, averaging 5·35 μg-atom N l?1, while means for ammonium and nitrate averaged 1·94 and 0·65 μg-atom N l?1, respectively. Total N uptake measured with 15N averaged about 3·3 times the calculated (from elemental ratios and 14C productivity measurements) N needs of the phytoplankton population. Highest nitrogen uptake occurred in the summer and coincided with the primary production maximum.  相似文献   

10.
W. Koeve   《Marine Chemistry》2001,74(4):96
Observations of wintertime nutrient concentrations in surface waters are scarce in the temperate and subarctic North Atlantic Ocean. Three new methods of their estimation from spring or early summer observations are described and evaluated. The methods make use of a priori knowledge of the vertical distribution of oxygen saturation and empirical relationships between nutrient concentrations and oxygen saturation. A south–north increase in surface water winter nutrient concentration is observed. Winter nitrate concentrations range from very low levels of about 0.5 μmol dm−3 at 33°N to about 13.5 μmol dm−3 at 60°N. Previous estimates of winter nitrate concentrations have been overestimates by up to 50%. At the Biotrans Site (47°N, 20°W), a typical station in the temperate Northeast Atlantic, a mean winter nitrate concentration of 8 μmol dm−3 is estimated, compared to recently published values between 11 and 12.5 μmol dm−3. It is shown that most of the difference is due to a contribution of remineralised nitrate that had not been recognized in previous winter nutrient estimates. Mesoscale variation of wintertime nitrate concentrations at Biotrans are moderate (less than ±15% of the regional mean value of about 8 μmol dm−3). Interannual variation of the regional mean is small, too. In the available dataset, there was only 1 year with a significantly lower regional mean winter nitrate concentration (7 μmol dm−3), presumably due to restricted deep mixing during an atypically warm winter. The significance of winter nitrate estimates for the assessment of spring-bloom new production and the interpretation of bloom dynamics is evaluated. Applying estimates of wintertime nitrate concentrations of this study, it is found that pre-bloom new production (0.275 mol N m−2) at Biotrans almost equals spring-bloom new production (0.3 mol N m−2). Using previous estimates of wintertime nitrate yields unrealistically high estimates of pre-bloom new production (1.21–1.79 mol N m−2) which are inconsistent with observed levels of primary production and the seasonal development of biomass.  相似文献   

11.
Uptake and regeneration of nitrogen in the Almeria-Oran frontal zone (SW Mediterranean) and adjacent (Atlantic and Mediterranean) systems were studied during the Almofront I cruise (JGOFS-France). The frontal zone was characterized by an upsloping of nitracline from about 50 m in the adjacent systems to 25–30 m within. Along with nitrate, ammonium, chlorophyll a and particulate organic nitrogen also were at higher concentrations in the frontal zone than in the adjacent waters.The nitrate uptake rates were significantly higher in the frontal zone (up to 6.4 nmol l−1 h−1) than in the Atlantic and Mediterranean waters (generally <1 nmol l−1 h−1) indicating a significant increase of new production at the front. This increase was related to the upsloping of the nitracline as shown by the significant correlation (p<0.05) between new production and depth of the nitracline. The new production in the Almeria-Oran was much lower than those recorded in other oceanic and coastal fronts. This could be related to the fact that the nitracline did not rise up to the surface and the high concentrations of nitrate were confined to deeper layers where the ambient light intensity was less. Nitrate uptake in the frontal zone was significantly higher, by 1.7–5.8 times (average 4.2), than the calculated diffusive flux of nitrate, suggesting that vertical advection may be an important source of nitrate. New production rates at the front were also significantly higher (3–9 times, average 5.8) than the PON flux to 100 m depth estimated by sediments traps (Journal of Marine Systems 5, 377–389), suggesting a strong decoupling between surface production and downward flux of POM in the frontal zone.The north–south gradient observed with different parameters indicates the presence of a transfrontal secondary circulation. This distribution also suggests that the primary production in the front is initially nitrate-based, with a diatom-herbivore food chain, whereas regenerated production, associated with an intense recycling of organic matter, later becomes progressively important in time and space.  相似文献   

12.
Sediment characteristics, sediment respiration (oxygen uptake and sulphate reduction) and sediment–water nutrient exchange, in conjunction with water column structure and phytoplankton biomass were measured at five stations across the western Irish Sea front in August 2000. The transition from thermally stratified (surface to bottom temperature difference of 2.3 °C) to isothermal water (14.3 °C) occurred over a distance of 13 km. The influence of the front on phytoplankton biomass was limited to a small region of elevated near surface chlorophyll (2.23 mg m−3; 50% > biomass in mixed waters). The front clearly marked the boundary between depositional sediments (silt/clays) with elevated sediment pigment levels (≈60 mg m−2) on the western side, to pigment impoverished (<5 mg m−2) sand, through to coarse sand and shell fragments on the eastern side. Maximal rates of sedimentary respiration on the western stratified side of the front e.g. oxygen uptake S2 (852 μmol O2 m−2 h−1) and sulphate reduction at S1 (149 μmol SO42− m−2 h−1), coupled to significant efflux of nitrate and silicate at the western stations indicate closer benthic–pelagic coupling in the western Irish Sea. Whether this simply reflects the input of phytodetritus from the overlying water column or entrapment and settlement of pelagic production from other regions of the Irish Sea cannot yet be resolved.  相似文献   

13.
Phytoplankton NH4+ and NO3 uptake was examined along the longitudinal salinity gradient of the Delaware Estuary over several seasonal cycles using 15N-tracer techniques. Saturated nitrogen uptake rates increased directly with water temperature and reached a maximum of 380 nmol Nl−1h−1 during summer. This temperature dependence was related primarily to changes in the rate of maximum chlorophyll specific uptake, which varied exponentially between 2 and 70 nmol N [μg Chl h]−1 over a temperature range of 2–28°C. Despite these high uptake rates, balanced growth (C:N7:1) could be maintained over the diel light cycle only by highly efficient nitrogen uptake at low light intensities and dark uptake below the photic zone and at night (dark UPTAKE=25% maximum uptake).Ammonium fulfilled 82% of the annual phytoplankton nitrogen demand in the estuary despite dominance of NO3 in the ambient dissolved inorganic nitrogen pool. The predominance of NH4+ uptake occurred because of the general suppression of NO3 assimilation at NH4+ concentrations in excess of 2 μ . This suppression, however, was not as universal as has been reported for other systems, and it is suggested that the extremely high NO3 concentrations found in the estuary contribute to this pattern. Nitrate was a significant source of nitrogen only during periods of high phytoplankton production in summer, and when NH4+ concentrations were low towards the end of the spring bloom.  相似文献   

14.
We analysed mixed-layer seasonal and interannual variability in phytoplankton biomass and macronutrient (NO3 and Si(OH)4) concentrations from three decades of observations, and nitrogen uptake rates from the 1990s along Line P in the NE subarctic Pacific. Chlorophyll a concentrations near 0.35 mg m−3 were observed year-round along Line P except at the nearshore station (P4) where chlorophyll a concentrations in spring were on average 2.4 times the winter values. In contrast, the temporal variability in carbon-to-chlorophyll ratios at the two main end members of Line P (P4 and OSP) was high. Large seasonal and interannual variability in NO3 and Si(OH)4 concentration were observed along Line P. Highest upper mixed-layer (top 15 m) nutrient concentrations occurred on the continental shelf in late summer and early fall due to seasonal coastal upwelling. Beyond the shelf, maximum nutrient concentrations increased gradually offshore, and were highest in late winter and early spring due to mixing by winter storms. Interannual variations in upper mixed-layer nutrient concentrations beyond the shelf (>128°W) were correlated with E-W winds and the PDO since 1988 but were not correlated with either climate index between 1973 and 1981. Despite differences in nutrient concentration, nutrient utilization (ΔNO3 and ΔSi(OH)4) during the growing season were about 7.5 μM at all offshore stations. Variations in ΔNO3 were correlated with those of ΔSi(OH)4. The annual cycle of absolute NO3 uptake (ρNO3) and NH4 uptake (ρNH4) rates by phytoplankton in the upper mixed-layer showed a weak increasing trend from winter to spring/summer for the period 1992-1997. Rates were more variable at the nearshore station (P4). Rates of ρNO3 were low along the entire line despite abundant NO3 and low iron (Fe), at the offshore portion of Line P and sufficient Fe at the nearshore station (P4). As a result, new production contributed on average to only 32 ± 15% of the total nitrogen (N) uptake along Line P. NO3 utilization in the NE subarctic Pacific is probably controlled by a combination of environmental variables, including Fe, light and ambient NH4 levels. Elevated ambient NH4 concentrations seem to decrease the rates of new production (and f-ratios) in surface waters of the oceanic subarctic NE Pacific. Contrary to expectation, phytoplankton biomass, nutrient utilization (ΔNO3 and ΔSi(OH)4), and nitrogen uptake (ρNO3 + ρNH4) varied relatively little along Line P, despite significant differences in the factors controlling phytoplankton composition assemblages and production. Future studies would benefit from including other variables, especially light limitation, to improve our understanding of the seasonal and interannual variability in phytoplankton biomass and nutrients in this region.  相似文献   

15.
An intense diatom bloom developed within a strong meridional silicic acid gradient across the Antarctic Polar Front at 61°S, 170°W following stratification of the water column in late October/early November 1997. The region of high diatom biomass and the silicic acid gradient propogated southward across the Seasonal Ice Zone through time, with the maximum diatom biomass tracking the center of the silicic acid gradient. High diatom biomass and high rates of silica production persisted within the silicic acid gradient until the end of January 1998 (ca. 70 d) driving the gradient over 500 km to the south of its original position at the Polar Front. The bloom consumed 30 to >40 μM Si(OH)4 in the euphotic zone between about 60 and 66°S leaving near surface concentrations <2.5 μM and occasionally <1.0 μM in its wake. Integrated biogenic silica concentrations within the bloom averaged 410 mmol Si m−2 (range 162–793 mmol Si m−2). Average integrated silica production on two consecutive cruises in December 1997 and January 1998 that sampled the bloom while it was well developed were 27.5±6.9 and 22.6±20 mmol Si m−2 d−1, respectively. Those levels of siliceous biomass and silica production are similar in magnitude to those reported for ice-edge diatom blooms in the Ross Sea, Antarctica, which is considered to be among the most productive regions in the Southern Ocean. Net silica production (production minus dissolution) in surface waters during the bloom was 16–21 mmol Si m−2 d−1, which is sufficient for diatom growth to be the cause of the southward displacement of the silicic acid gradient. A strong seasonal change in silica dissolution : silica production rate ratios was observed. Integrated silica dissolution rates in the upper 100–150 m during the low biomass period before stratification averaged 64% of integrated production. During the bloom integrated dissolution rates averaged only 23% of integrated silica production, making 77% of the opal produced available for export to depth. The bloom ended in late January apparently due to a mixing event. Dissolution : production rate ratios increased to an average of 0.67 during that period indicating a return to a predominantly regenerative system.Our observations indicate that high diatom biomass and high silica production rates previously observed in the marginal seas around Antarctica also occur in the deep ocean near the Polar Front. The bloom we observed propagated across the latitudinal band overlying the sedimentary opal belt which encircles most of Antarctica implying a role for such blooms in the formation of those sediments. Comparison of our surface silica production rates with new estimates of opal accumulation rates in the abyssal sediments of the Southern Ocean, which have been corrected for sediment focusing, indicate a burial efficiency of 4.6% for biogenic silica. That efficiency is considerably lower than previous estimates for the Southern Ocean.  相似文献   

16.
The tropical seagrass Halophila stipulacea is dominant in most regions of the Indo‐Pacific and the Red Sea and was introduced into the Mediterranean Sea after the opening of the Suez canal. The species is considered invasive in the Mediterranean Sea and has been progressively colonizing new areas westward. Growth and photosynthetic responses of H. stipulacea have been described but no information is yet available on the nitrogen nutrition of the species. Here we simultaneously investigated the uptake kinetics of ammonium and nitrate and the internal translocation of incorporated nitrogen in H. stipulacea using 15N‐labelled substrates across a range of Ni levels (5, 25, 50 and 100 μm ). The ammonium uptake rates exceeded the nitrate uptake rates 100‐fold, revealing a limited capacity of H. stipulacea to use nitrate as an alternative nitrogen source. The uptake rates of ammonium by leaves and roots were comparable up to 100 μm 15NH4Cl. At this concentration, the leaf uptake rate was 1.4‐fold higher (6.22 ± 0.70 μmol·g?1 DW h?1) than the root uptake rate (4.54 ± 0.28 μmol·g?1 DW h?1). The uptake of ammonium followed Michaelis–Menten kinetics, whereas nitrate uptake rates were relatively constant at all nutrient concentrations. The maximum ammonium uptake rate (Vmax) and the half‐saturation constant (Km) of leaves (9.79 μmol·g?1 DW h?1 and 57.95 μm , respectively) were slightly higher than that of roots (6.09 μmol·g?1DW h?1 and 30.85 μm , respectively), whereas the affinity coefficients (α = Vmax/Km) for ammonium of leaves (0.17) and roots (0.20) were comparable, a characteristic that is unique among seagrass species. No substantial translocation (<2.5%) of 15N incorporated as ammonium was detected between plant parts, whereas the translocation of 15N incorporated as nitrate was higher (40–100%). We conclude that the Ni acquisition strategy of H. stipulacea, characterized by a similar uptake capacity and efficiency of leaves and roots, favors the geographical expansion potential of the species into areas with variable water‐sediment N levels throughout the Mediterranean.  相似文献   

17.
A five-element mooring array is used to study surface boundary-layer transport over the Northern California shelf from May to August 2001. In this region, upwelling favorable winds increase in strength offshore, leading to a strong positive wind stress curl. We examine the cross-shelf variation in surface Ekman transport calculated from the wind stress and the actual surface boundary-layer transport estimated from oceanic observations. The two quantities are highly correlated with a regression slope near one. Both the Ekman transport and surface boundary layer transport imply curl-driven upwelling rates of about 3×10−4 m s−1 between the 40 and 90 m isobaths (1.5 and 11.0 km from the coast, respectively) and curl-driven upwelling rates about 1.5×10−4m s−1 between the 90 and 130 m isobaths (11.0 and 28.4 km from the coast, respectively). Thus curl-driven upwelling extends to at least 25 km from the coast. In contrast, upwelling driven by the adjustment to the coastal boundary condition occurs primarily inshore of the 40-m isobath. The upwelling rates implied by the differentiating the 40-m transport observations with the coastal boundary condition are up to 8×10−4 m s−1. The estimated upwelling rates and the temperature–nitrate relationship imply curl-driven vertical nitrate flux divergences are about half of those driven by coastal boundary upwelling.  相似文献   

18.
The elevated levels of primary productivity associated with eastern boundary currents are driven by nutrient- rich waters upwelled from depth, such that these regions are typically characterised by high rates of nitrate-fuelled phytoplankton growth. Production studies from the southern Benguela upwelling system (SBUS) tend to be biased towards the summer upwelling season, yet winter data are required to compute annual budgets and understand seasonal variability. Net primary production (NPP) and nitrate and ammonium uptake were measured concurrently at six stations in the SBUS in early winter. While euphotic zone NPP was highest at the stations nearest to the coast and declined with distance from the shore, a greater proportion was potentially exportable from open-ocean surface waters, as indicated by the higher specific nitrate uptake rates and f-ratios (ratio of nitrate uptake to total nitrogen consumption) at the stations located off the continental shelf. Near the coast, phytoplankton growth was predominantly supported by ammonium despite the high ambient nitrate concentrations. Along with ammonium concentrations as high as 3.6 µmol l–1, this strongly suggests that nitrate uptake in the inshore SBUS, and by extension carbon drawdown, is inhibited by ammonium, at least in winter, although this has also been hypothesised for the summer.  相似文献   

19.
-Marine chroococcoid phycoerythrin - containing Synechococcus spp. recently have been implicated as a substantial component of the photosynthetic picoplankton in the ocean. Although the importance of Synechococcus as food sources for heterotrophic nanoplankton are now recognized, the information about its cycling of biomass and diel patterns is limited and the methodology used varies according to different authors. A selective metabolic inhibitor method was used to allow simultanous estimation of both growth rates and grazing disappearance rates of Synechococcus. Results obtained in the English Channel show growth rates ranging from 0. 25 to 0. 72 d-1 with an average value of 0. 51 d -1and grazing disappearance rates ranged from 0. 21 to 0. 64 d-1 (mean = 0. 44 d-1). Offshore in the Celtic Sea of the Northeast Atlantic Ocean, both rates were lower than in the channel. The similarity between average growth and grazing rates suggests a rapid recycling of Synechococcus biomass. In diel pattern, Synechococc  相似文献   

20.
Estuarine profiles of nitrate, nitrite and ammonium concentration taken over a period of six years were analysed by a statistical procedure. While nitrate profiles indicate conservative mixing, those of nitrite and ammonium exhibit maxima indicative of an estuarine input. Calculations using an advective analogue suggest that production of nitrite by oxidation throughout the water column would require unduly high populations of nitrifying bacteria (>106 cells l−1). Sedimentary production rates required to sustain the observed nitrite maxima are compatible with combined nitrification and denitrification rates observed elsewhere (1–2μmol m−2 d−1). The relative displacement of the nitrite and ammonium maxima and the frequent presence of a turbidity maximum in the Tamar estuary suggest that nitrite production in the sediment is probably augmented by water column nitrification in the region of the freshwater/brackish water interface. Simulations on the advective analogue provide circumstantial support for this suggestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号