首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the Durance valley, high terrace levels are stepped below the young. Villafranchian surface and separated from the middle and low terraces by a step 80 m high. A paleomagnetic study was made of a key bed of freshwater silt on the high terrace, that contains archaic faunal and floral elements. The section contains two sedimentary cycles with opposite polarities, which are therefore placed on either side of the Brunhes-Matuyama boundary. By comparison with the northern European climato-stratigraphy, this sequence is correlated with the base of the Cromerian complex. Taking into account the morphological relations to the upland morainic system, this youngest high terrace is assigned a Günz age.  相似文献   

2.
山地滑坡崩塌是岸坡演化过程中的重要地质事件,其发生发展与河流地貌过程密切相关.目前,对滑坡影响因素的研究虽多,但大多局限于滑坡本身的具体研究.通过河流地貌过程研究,进而探讨岸坡稳定性对河道变迁的响应关系,有助于更深入地认识岸坡演化规律,为岸坡稳定性的评价与预测奠定基础.本文采用自然历史分析法和类比法,结合年龄测试手段,...  相似文献   

3.
黄河的形成与演化对于认识我国宏观地貌格局的形成、青藏高原及黄土高原的区域构造活动历史、华北平原及黄渤海陆架的形成和演化等问题具有重要意义。目前对黄河演化历史的研究主要集中在龙羊峡以下的河段,对于黄河源段的关注较少。文章基于黄河源地区河谷地貌的实地考察,并利用SRTM1-DEM数据,分析了黄河源段干流及支流河谷橫剖面的地貌特征,并与该区典型的冰川谷和兰州附近黄河的河谷横剖面进行了对比。结果表明:黄河源地区的河谷规模巨大,并呈现出谷底开阔、河床窄小、阶地不明显、谷坡陡立、河谷横剖面左右对称的U型谷特征。这些特征与该区冰蚀谷的特征相似,但与兰州段黄河成型河谷的特征相差甚远,且其河谷规模更大。我们推断,黄河源地区的河谷可能主要为冰期时的冰蚀作用所塑造,而非单纯的流水侵蚀形成。由于冰蚀作用的存在,该区早期的河流阶地可能被随后冰期的冰蚀作用所破坏,当前基于黄河源地区现存河流阶地年代的研究很可能低估了该区水系的发育历史。此外,反复的冰川进退也可能导致黄河源水系自上而下贯通,而非溯源侵蚀形成。  相似文献   

4.
兰州黄河阶地演变过程对滑坡活动的控制效应   总被引:1,自引:0,他引:1       下载免费PDF全文
为探索特殊地质环境-河流阶地孕育滑坡的相关性, 更深入地认识这类河流岸坡的变形破坏过程, 在广泛分析区域工程地质资料的基础上, 从第四系地貌学与工程地质学相结合的角度, 研究了兰州市黄河河谷演化发育的阶段性特征和黄河阶地演化对滑坡的控制效应及其诱发模式.研究表明: (1)黄河河谷的演化对兰州地区滑坡发育的控制作用具有时间上的阶段性和空间上的分带性, 在河谷演化不同阶段滑坡有着不同的发育模式和形成机理; (2)阶地型滑坡主要诱发因素为新构造运动的强烈抬升、黄河强烈下切以及阶地形成期相对湿润的古气候.第三系泥岩地层间形成的软弱夹层可诱发大型黄土泥岩滑坡, 而黄土层内多发中小型崩滑.河谷演化期间, 滑坡的发生可能导致部分阶地的缺失.   相似文献   

5.
<正>The Huang Shui River,a main tributary of the Yellow River,crosses a series of tectonically subsided and uplifted areas that show different patterns of terrace formation.The distribution of fluvial terrace of the Huang Shui River is studied through topographic and sedimentologic terrace mapping.Three terraces in the Haiyan Basin,four terraces in the Huangyuan Basin,19 terraces in the Xi'ning Basin(the four high terraces may belong to another river),nine terraces in the Ping'an Basin, five terraces in the Ledu Basin and 12 terraces in the Minhe Basin are recognized.Sedimentology research shows that the geomorphologic and sedimentological pattern of the Huang Shui River,which is located at the margin of Tibet,are different from that of the rivers at other regions.The formation process of the terrace is more complicated at the Huang Shui catchment:both accumulation terrace and erosion terrace were formed in each basin and accumulation terraces were developed in some basins when erosion terraces were formed in other basins,indicating fluvial aggradation may occur in some basins simultaneously with river incision in other basins.A conceptual model of the formation process of these two kinds of fluvial terraces at Huang Shui catchment is brought forward in this paper.First,the equilibrium state of the river is broken because of climatic change and/or tectonic movement,and the river incises in all basins in the whole catchment until reaching a new equilibrium state.Then,the downstream basin subsides quickly and the equilibrium state is broken again,and the river incises at upstream basins while the river accumulates at the subsidence basin quickly until approaching a new equilibrium state again.Finally,the river incises in the whole catchment because of climatic change and/or tectonic movement and the accumulation terrace is formed at the subsidence basin while the erosion terrace is formed at other basins.The existence of the accumulation terrace implied the tectonic subsidence in the sub-basins in Huang Shui catchment.These tectonic subsidence movements gradually developed from the downstream Minhe Basin to the upstream Huangyuan Basin.Dating the terrace sequence has potential to uncover the relationship between the subsidence in the catchment and the regional tectonic at the northeastern Tibetan Plateau.  相似文献   

6.
安妮  蒋玺  钱焕  陈文奇  宁凡  陈华  秦能旭  周涌 《地质论评》2023,69(2):2023020028-2023020028
贵州涟江惠水段级次清晰的四级阶地是流域地貌阶段性演化的直观记录。笔者等利用差分GPS测量法精确厘定了涟江阶地的级序和高程,结合剖面观测发现从上游到下游,涟江惠水段阶地标高和级差逐渐降低,地貌面整体呈“收拢”趋势;阶地沉积物呈现砾石层厚度变小,砾石含量降低、砾径减小,砂质沉积占比增大趋势;阶地类型从基座阶地为主向堆积阶地为主演变。光释光(OSL)测年显示,T1阶地埋藏年龄31.2±2.0 ka BP到14.7±1.3 ka BP,T2阶地122.4±8.5 ka BP到66.9±3.8 ka BP,阶地年龄与贵州高原其他流域十分相近,具有同步演化特征。结合阶地时代和发育特征,认为贵州高原河流阶地是构造运动的产物。涟江四级阶地记录了在更新世以来四次构造抬升背景下,流域经过多期自北向南“削高补低”的地貌改造,逐步由构造洼地演变为山间盆地的地貌过程。  相似文献   

7.
The geomorphology of the river terraces in the lower Vistula River valley of North PÖland is briefly described. They were earlier regarded as Late Wiirmian (terraces IX-IV) and Holocene (terraces III–I). Litho- and biostratigraphical studies of terrace depressions together with radiocarbon datings of their bottom layers indicate that even terrace II was formed during the Allerød Chronozone (11,800 to 11,000 B.P.) or earlier. In addition, radiocarbon datings have shown that the surface sediments of the flood plain were deposited in middle Holocene. These datings are of importance to the chronology of other large river valleys in the southern Baltic region. The interrelationship between erosion/accumulation in the Vistula valley and the shore level of the Baltic is also discussed.  相似文献   

8.
安妮  蒋玺  钱焕  陈文奇  宁凡  陈华  秦能旭  周涌 《地质论评》2023,69(5):1991-2002
贵州涟江惠水段级次清晰的四级阶地是流域地貌阶段性演化的直观记录。笔者等利用差分GPS测量法精确厘定了涟江阶地的级序和高程,结合剖面观测发现从上游到下游,涟江惠水段阶地标高和级差逐渐降低,地貌面整体呈“收拢”趋势;阶地沉积物呈现砾石层厚度变小,砾石含量降低、砾径减小,砂质沉积占比增大趋势;阶地类型从基座阶地为主向堆积阶地为主演变。光释光(OSL)测年显示,T1阶地埋藏年龄31.2±2.0 ka BP到14.7±1.3 ka BP,T2阶地122.4±8.5 ka BP到66.9±3.8 ka BP,阶地年龄与贵州高原其他流域十分相近,具有同步演化特征。结合阶地时代和发育特征,认为贵州高原河流阶地是构造运动的产物。涟江四级阶地记录了在更新世以来四次构造抬升背景下,流域经过多期自北向南“削高补低”的地貌改造,逐步由构造洼地演变为山间盆地的地貌过程。  相似文献   

9.
Coal fires in China consume vast amounts of fuel and cause serious environmental problems. Most of these coal fires are related to mining activity. However, naturally produced palaeo coal fires in Xinjiang, north‐west China, have been recognized via burnt rocks. The burnt rocks in the study area are found at different river terraces underlying unburnt alluvial and river terrace deposits. Several age groups of coal fires have been identified based on the positions of burnt rocks at river terraces and the relationship between the burnt rocks and the terrace deposits. These palaeo coal fires are: (1) Pliocene – Early Quaternary in age at 200 m above present river terrace deposits; (2) Middle Pleistocene in age, at > 90 m; (3) Late Pleistocene, at 90–70 m; (4) Holocene; (5) burnt rocks relating to active coal fires. Palaeomagnetic data of the burnt rocks from different terraces give normal remanent magnetization and help further to constrain the ages of the coal fires.  相似文献   

10.
山西河曲黄河阶地序列初步研究   总被引:3,自引:10,他引:3       下载免费PDF全文
黄河干流奇特的"几"字形格局是其复杂发育历史的表现。由于流域内的地质与气候条件复杂多样,分段开展深入研究是全面认识黄河的基础。晋陕峡谷是研究黄河演化的关键地段之一,河流阶地忠实地记录着河流发育的历史。文章选择山西河曲县城附近黄河阶地发育典型的河段进行研究,在实测河流阶地地貌剖面的基础上,系统采集了20个年代样品进行光释光(OSL)测年。依据地貌类型、沉积特征以及定年结果,建立了该河段黄河阶地的演化序列,得出以下结论:1)河曲地区黄河曲流凸岸形成有4级阶地,T4阶地的形成主要受构造控制,而T3,T2和T1阶地的形成主要与气候变化有关,各阶地的年龄分别是T4为90ka,T3为30ka,T2为20ka,T1为3.4ka。2)河曲地区约140ka以来河流地貌的演化经历了5个阶段,各阶段以下切侵蚀开始,结束于各阶地堆积面的塑造。约90ka以来,该地区河谷谷底下降速度和曲流可能最大侧蚀速度的平均值分别为0.9mm/a和33.4mm/a。在不同阶段,二者的大小变化及组合状况各异,在构造相对稳定条件下,河流以侧蚀作用为主,其侧蚀速度与气候和岩性条件有关。3)河曲地区的黄河曲流是在河流下切过程中逐渐侧蚀、演化而成的,具有内生曲流的特点。4)T4阶地的泥流沉积和加积堆积,可能记录了地方性气候变化,其范围和意义有待进一步研究,另外,T3,T2和T1形成过程中气候变化的作用也有待探讨。  相似文献   

11.
在西宁市区开展的钻探工作,获得了河谷平原区第四系的分布及沉积特征。通过对沉积厚度最大部位的2个钻孔岩芯的地层岩性、年代测试、孢粉组合及粒度分析等,探讨了西宁河谷平原区晚第四纪沉积与环境的关系。认为现今西宁市河谷平原内的主体沉积——低阶地沉积及上覆黄土堆积主要是末次间冰期旋回形成,在暖湿气候条件下沉积河流相砂砾石层,在干冷气候期接受风成黄土堆积,推测T3阶地形成于距今7.4万年前后气候由暖湿向干冷的过渡时期。  相似文献   

12.
A synthesis of previous work and new data on the stratigraphy of high terraces of the Ohio and Monongahela Rivers upstream from Parkersburg, West Virginia, indicates a correspondence between terrace histories in the ancient Teays and Pittsburgh drainage basins. Four terraces are identified in each. Sediments of the lower three alluvial and slackwater terraces, correlated with Illinoian, early Wisconsin, and late Wisconsin glacial deposits, have been traced along the modern Ohio River through the former divide between the Teays and Pittsburgh basins. Sediments in the fourth terrace, the highest well-defined terrace in each basin, were deposited in two ice-dammed lakes, separated by a divide near New Martinsville, West Virginia. Some deposits of the highest slackwater terrace in both the Teays and Pittsburgh basins have reversed remanent magnetic polarity. This, and the stratigraphic succession in the two basins, suggests that both were ponded during the same glaciation. Reversed polarity in these terrace sediments restricts the age of the first ice-damming event for which stratigraphic evidence is well-preserved to a pre-Illinoian, early Pleistocene glaciation prior to 788,000 yr ago. In contrast, slackwater sediments in the Monongahela River valley, upstream from an outwash gravel dam at the Allegheny-Monongahela confluence, have normal remanent magnetic polarity, corroborating correlation with an Illinoian ponding event.  相似文献   

13.
《Quaternary Science Reviews》2007,26(22-24):2864-2882
In this paper, we report our latest observations concerning a Pliocene and Early Pleistocene record from Western Turkey. The sedimentary sequence described comprises the fluvial deposits of an Early Pleistocene palaeo-Gediz river system and its tributaries prior to the onset of volcanism around Kula and the subsequent lacustrine, volcaniclastic and fluvial deposits associated with the first phase of volcanism (∼1.2 Ma) in this area.Early development of an east–west drainage system in this area resulted from tectonic adjustments to north–south extension and the formation of east–west-oriented grabens. Headward erosion of drainage entering the main Alaşehir graben led to the progressive capture of pre-existing drainage systems as eastward (headward) erosion upstream tapped drainage networks previously formed in internally draining NNE–SSW-oriented basins. Within one of these, the Selendi Basin, part of this evolutionary sequence is preserved as a buried river terrace sequence. Eleven terraces are preserved beneath alluvial fan sediments that are, in turn, capped by basaltic lava flows. Using the available geochronology these terraces are considered to represent sedimentation–incision cycles which span the period ∼1.67–1.2 Ma. Although progressive valley incision is a fluvial system response to regional uplift, the frequency of terrace formation within this time period suggests that the terrace formation resulted from sediment/water supply changes, a consequence of obliquity-driven climate changes. The production of sub-parallel terraces suggests that during this period the river was able to attain a quasi-equilibrium longitudinal profile adjusted to the regional uplift rate. Thus, the incision rate of 0.16 mm a−1 during this period is believed to closely mirror the regional uplift rate.After the onset of volcanism at ∼1.2 Ma, there is a destruction of the dynamic link between fluvial system behaviour and climate change. The repeated damming of the trunk river and its tributaries led to the construction of complex stratigraphic relationships. During the first phase of volcanism the palaeo-Gediz river was dammed on numerous occasions leading to the formation of a series of lakes upstream of the dams in the palaeo-Gediz valley. Variations in lake level forced localised base-level changes that resulted in complex fluvial system response and considerable periods of disequilibrium in profile adjustment. Furthermore, response to these base-level changes most likely disrupted the timing of the incisional adjustment to the on-going regional uplift, thus making the use of this part of the archive for inferring regional uplift rates untenable.  相似文献   

14.
The late Pleniglacial and Late-glacial Maas valley, south of Nijmegen, contains four terraces. Three river systems are described based on the morphology of channel scars on these terrace surfaces and by sediment characteristics. The River Maas reacted to climatic warming at the start of the Weichselian Late-glacial by changing its river system slowly, from a braided system to a transitional phase between braiding and meandering and finally to a highly sinuous meandering system. The Maas reacted rapidly to the Younger Dryas climate deterioration by again establishing a braiding system. At the onset of the Holocene, the river changed abruptly to a meandering river without a transitional phase. The triggering factor for change in the Maas river pattern is almost certainly the changing climate in the Late Glacial. Gradient lines on the terrace surfaces show that tectonic activity did not modify the morphology of the channels. A division of the terraces is shown, the morphological, sedimentological and petrographical characteristics are presented and the linking of changing fluvial patterns with climatic changes or tectonic movements is discussed. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
黄河贵德段河流阶地及演变研究   总被引:1,自引:0,他引:1  
贵德盆地作为青藏高原东北部的一个构造地貌单元,处于黄河上游中段,盆地中河流阶地发育,但是阶地的形成时代仍存在很大争议.选择贵德盆地黄河阶地作为研究对象,并从龙羊峡至松坝峡共采集阶地ESR测年样品10个,进行了年代测试,结果表明贵德盆地新构造运动具有间歇性、差异性特征.笔者还并分析了黄河贵德段演变特征  相似文献   

16.
川西高原岷江上游河流阶地初步研究   总被引:9,自引:0,他引:9  
基于岷江上游干流阶地地貌的野外观察和阶地沉积物的ESR年代测定,结合前人阶地测年数据,阐述了岷江上游干流晚第四纪阶地的形成过程和河谷下切历史,探讨了阶地演化对岷山和龙门山构造带隆升的响应过程。   相似文献   

17.
采用热释光(TL)测年方法对龙虎山丹霞地貌区泸溪河的阶地进行了年代学研究,获得了低阶地沉积物的堆积年代及其阶地面的形成时代,该区河流主要发育两级阶地,T1阶地堆积于3 400~6 000 a B.P.,其地貌面形成于3 400~4 000 a,T2阶地堆积于7 600~11 200 a B.P.,该级地貌面形成于7 600~8 000 a B.P.。利用低阶地地貌面的年代学成果,推算出龙虎山丹霞地貌区地壳隆升速率为0.33~0.63 m/ka,根据这一速率推算得出,第一夷平面形成于6×104a左右,第二夷平面形成于28×104a左右。分布于这些夷平面上的丹霞地貌景观的年龄与此相当。  相似文献   

18.
祁连山北麓河流阶地与新构造演化   总被引:44,自引:1,他引:44       下载免费PDF全文
对祁连山北麓十几条河流的阶地进行野外调查和测量,获得大量河流阶地的分布特征、高度、结构、发育程度和形成年龄等资料和数据,分析河流阶地的发育和变形特征及其与新构造活动的关系,划分几种挤压构造区阶地的变形模式及其所反映的新构造演化特征。从阶地发育的年龄序列划分本区自中更新世中期以来,约0.45~0.15MaB.P.和约0.15MaB.P.至今的两次强烈构造活动阶段,以及它们分别具有的约0.100和约30000a的间歇性构造波动。对东西部不同地段阶地发育与变形特征对比研究表明,祁连山北麓西部新构造活动比东部强烈。  相似文献   

19.
The drainage evolution and valley development of the Jinsha River is an important issue constantly concerned by researchers in geology and geomorphology. Despite hundreds of years of research, there is a big dispute on the formation time and the evolution process of the fluvial valley. Fluvial terraces are very important geomorphic markers for studying the formation and evolution of the fluvial valley. Through field investigation combined with Electron Spin Resonance (ESR) dating, we confirmed that 5 fluvial terraces were formed, and then preserved, along the course of the Jinsha River near the Longjie, which are all strath terraces. Among them, T5 developed on the base rock, with an age of (78±12) ka; all T4~T1 developed on the lacustrine sediments, named Longjie Group by Chinese, with an age of (29±1.4) ka, (26±2.4) ka, (23±1.4) ka, (18±1.7) ka, respectively. Compared with the global and regional climate change history, the terraces are all the result of the river responding to the climate change. T5 formed at MIS 5/4, and T4~T1 formed at the period of regional climate fluctuation. The relationship of terraces and the Longjie Formation, combined with sedimentary characteristics analysis demonstrate that the Longjie Formation is landslide dammed lake sediment. The landslide and blocking events.seriously influenced the valley evolution, inhibiting the river incising, and making the valley evolution defer to the mode of “cut-landside-damming-fill-cut” in the period of Late Pleistocene. Synthesized studies of the terraces and the correlative sediments indicate that the formation of the Jinsha River valley may have begun in the late Early Pleistocene.  相似文献   

20.
This paper appraises and compares the Middle-Upper Pleistocene sedimentary sequences preserved in the fluvial systems draining into the Fenland Basin and the Wash estuary. Of the main Fenland rivers the longest records, which extend back to the initial Anglian (glacial) formation of the basin, are found in the Great Ouse and its tributaries, particularly the Cam and the Nar. These sequences preserve sediments representing all four post-Anglian interglacials. The Nene also has an extensive post-Anglian history, with evidence for a Hoxnian estuary that is presumed to have been the precursor of the Wash. North of the Nene, however, the Welland and Witham (proto-Trent) have relatively short sequences, which are thought to commence with a later (post-Anglian-pre-Devensian) glaciation that affected Lincolnshire and fed the previously-recognized Tottenhill outwash delta south of Kings Lynn. Prior to Devensian deglaciation the Witham valley was occupied by the Trent, which was the trunk river of the late Middle Pleistocene Wash system. During periods of low sea level the river would have extended north-eastwards across what is now the floor of the North Sea, possibly via the Inner Silver Pit. Several of the central Fenland sequences show evidence of infrequent terrace formation during the late Quaternary, although this might in part be due to poor vertical separation between terraces, so that differentiating them has been difficult; this has been exacerbated by mixed biostratigraphical signals due to the preservation of sediments representing more than one interglacial beneath a single terrace surface. In several of the systems there is evidence for valley rejuvenation to the lowest terrace or valley-floor level during the MIS 4-3 transition. The observed differences within what, during the predominant periods of lower sea level, would have been a single Wash river system are difficult to explain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号