首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Cosmological model with a viscous fluid in Kaluza-Klein metric is obtained assuming a time-dependent equation of state. The solution is in fact a generalization of an earlier work by Hajj and Boutros for a perfect fluid. It is also found that dimensional reduction of the extra space takes place such that the five-dimensional universe naturally evolves into an effective four-dimensional one. The dynamical behavior of the model is examined and it is also found that with a decrease in extra space the observable 3D space entropy increases thus accounting for the large value of entropy observable at present.  相似文献   

2.
We have presented in homogeneous cosmological models within the framework of Lyra geometry. We have considered an inhomogeneous spherically symmetric higher dimensional model in presence of a mass less scalar field whose potential has a flat part. The scalar field is considered to be inhomogeneous. Also an inhomogeneous cosmological model is derived in a Kaluza-Klein type of space time. The matter field is taken as an inhomogeneous distribution of fluid. It is observed that there is no singularity at finite past in our model and the desirable feature of dimensional reduction is also possible for the extra space. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
A homogeneous cosmological model in Kaluza–Klein metric is obtained assuming a time-dependent equation of state. The solution is in fact generalization of an earlier work by Hajj and Boutros for a perfect fluid. It is also found that dimensional reduction of the extra space takes place such that the five-dimensional universe naturally evolves into an effective four-dimensional one. The dynamical behaviour of the model is examined and it is also found that with a decrease in extra space the observable three-dimensional space entropy increase thus accounting for the large value of entropy observable at present.  相似文献   

4.
The origin of global magnetic fields in celestial bodies is generally ascribed to dynamo action by fluid motions in their electrically conducting interiors. Some objects – e.g. close‐in extra‐solar planets or the moons of some giant planets – are embedded in ambient magnetic fields which modify the generation of the internal field in these bodies. Recently, the feedback of the magnetospheric field by Chapman‐Ferraro currents in the magnetopause onto the interior dynamo has been proposed to explain the observed weakness of the intrinsic magnetic field of planet Mercury. We study a simplified mean‐field dynamo model which allows us to analytically address various issues like positive and negative feedback situations, stationary versus time‐dependent solutions, and the stability of weak and strong field branches. We discuss the influence of the response function on the solutions when the external field depends on the strength of the intrinsic field like in the situation of the feedback dynamo of Mercury. We find that the feedback mechanism works only for a narrow range of dynamo numbers in the case of Mercury which makes him unique in our solar system. We conclude with some implications for extra‐solar planets (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Exact solutions are obtained in a five-dimensional space-time with an energy-momentum tensor containing a viscous fluid, assuming either an equation of state or a special form for the viscous term in line with the assumption of Belinskii and Khalatnikov (1977). The solutions are, in fact, generalizations of an earlier work by Grøn for a perfect fluid in the 5D rest-mass varying theory of gravity proposed recently by Wesson. It is found that dimensional reduction of the extra space takes place in some of the cases such that the 5-dimensional universe naturally evolves into an effective 4-dimensional one. A huge amount of entropy can be produced following this shrinkage of extra-dimension which may account for the very large value of entropy per baryon observed in our 4D world. Moreover, the observed constancy of the rest-mass in the present era is also interpreted.  相似文献   

6.
Bianchi Type-V bulk viscous fluid string dust cosmological model in General Relativity is investigated. It has been shown that if coefficient of bulk viscosity (ζ) is inversely proportional to the expansion (θ) in the model then string cosmological model for Bianchi Type-V space-time is possible. In absence of bulk viscosity (ζ), i.e. when ζ → 0, then there is no string cosmological model for Bianchi Type-V space-time. The physical and geometrical aspects of the model are also discussed.  相似文献   

7.
In this paper considering the turbulent dusty flow of an incompressible viscous fluid which is nearly isotropic and spatially homogeneous with an extra vector argument (rotation symmetry) the expression for acceleration covariance in the presence of the Coriolis force has been derived and solution has been obtained in terms of defining scalars.  相似文献   

8.
In literature usual point like symmetries of the Lagrangian have been introduced to study the symmetries and the structure of the fields. This kind of Noether symmetry is a subclass of a more general family of symmetries, called Noether gauge symmetries (NGS). Motivated by this mathematical tool, in this paper, we study the generalized Noether symmetry of quintom model of dark energy, which is a two component fluid model with quintessence and phantom scalar fields. Our model is a generalization of the Noether symmetries of a single and multiple components which have been investigated in detail before. We found the general form of the quintom potential in which the whole dynamical system has a point like symmetry. We investigated different possible solutions of the system for diverse family of gauge function. Specially, we discovered two family of potentials, one corresponds to a free quintessence (phantom) and the second is in the form of quadratic interaction between two components. These two families of potential functions are proposed from the symmetry point of view, but in the quintom models they are used as phenomenological models without clear mathematical justification. From integrability point of view, we found two forms of the scale factor: one is power law and second is de-Sitter. Some cosmological implications of the solutions have been investigated.  相似文献   

9.
The aim of this work is to combine the model of orbital and rotational motion of the Moon developed for DE430 with up-to-date astronomical, geodynamical, and geo- and selenophysical models. The parameters of the orbit and physical libration are determined in this work from lunar laser ranging (LLR) observations made at different observatories in 1970–2013. Parameters of other models are taken from solutions that were obtained independently from LLR. A new implementation of the DE430 lunar model, including the liquid core equations, was done within the EPM ephemeris. The postfit residuals of LLR observations make evident that the terrestrial models and solutions recommended by the IERS Conventions are compatible with the lunar theory. That includes: EGM2008 gravitational potential with conventional corrections and variations from solid and ocean tides; displacement of stations due to solid and ocean loading tides; and precession-nutation model. Usage of these models in the solution for LLR observations has allowed us to reduce the number of parameters to be fit. The fixed model of tidal variations of the geopotential has resulted in a lesser value of Moon’s extra eccentricity rate, as compared to the original DE430 model with two fit parameters. A mixed model of lunar gravitational potential was used, with some coefficients determined from LLR observations, and other taken from the GL660b solution obtained from the GRAIL spacecraft mission. Solutions obtain accurate positions for the ranging stations and the five retroreflectors. Station motion is derived for sites with long data spans. Dissipation is detected at the lunar fluid core-solid mantle boundary demonstrating that a fluid core is present. Tidal dissipation is strong at both Earth and Moon. Consequently, the lunar semimajor axis is expanding by 38.20 mm/yr, the tidal acceleration in mean longitude is \(-25.90 {{}^{\prime \prime }}/\mathrm{cy}^2\), and the eccentricity is increasing by \(1.48\times 10^{-11}\) each year.  相似文献   

10.
The problem of instability arising in a composite system consisting of an infinitely conducting hydromagnetic fluid interacting through gravitational forces with one or more than one neutral gas, is investigated, allowing for a possible relative streaming between the component fluids. Instability criteria are derived for special cases of a two-component (static or relatively streaming) system and for a three-component system consisting of two gases contra-streaming in the presence of a stationary background gas. It is found that for a static system only one unstable mode exists for wave numbers less than a critical value given by the square root of the sum of the squares of the Jeans's wave numbers for individual gases. However, for a configuration, where components are endured with characteristic streaming speeds, there are present simultaneously more than one unstable modes.  相似文献   

11.
In the present paper, we have considered turbulent flow of an incompressible, viscous fluid which is nearly isotropic with an extra vector argument (i.e. rotational symmetry) and spatially homogeneous. The expression for acceleration covariance in presence of Coriolis force has been derived and solution has been obtained in terms of defining scalars.  相似文献   

12.
Matter collapsing to a singularity in a gravitational field is still an intriguing question. Similar situation arises when discussing the very early universe or a universe recollapsing to a singularity. It was suggested that inclusion of mutual gravitational interactions among the collapsing particles can avert a singularity and give finite value for various physical quantities. We also discussed how inclusion of large dark energy term compensates for the net gravity. The discussion is taken further by including the effects of charge, magnetic fields and rotation. The role of large extra dimensions under the extreme initial conditions is discussed and possible connection with the cyclic brane theory is explored. We constrain various cosmic quantities like the net charge, number density of magnetic monopoles, primordial magnetic fields, size of the extra dimensions, etc. We are also able to arrive at the parameters governing the observed universe.  相似文献   

13.
Many have speculated about the presence of a stiff fluid in very early stage of the universe. Such a stiff fluid was first introduced by Zel’dovich. Recently the late acceleration of the universe was studied by taking bulk viscous stiff fluid as the dominant cosmic component, but the age predicted by such a model is less than the observed value. We consider a flat universe with viscous stiff fluid and decaying vacuum energy as the cosmic components and found that the model predicts a reasonable background evolution of the universe with de Sitter epoch as end phase of expansion. More over, the model also predicts a reasonable value for the age of the present universe. We also performed a dynamical system analysis of the model and found that the end de Sitter phase predicted by the model is stable.  相似文献   

14.
A homogeneous cosmological model in higher dimension is obtained assuming a timedependent equation of state. It is observed that as usual 3-D space expands, extra space (space belonging to the other dimensions) reduces with time, thus exhibiting the desired feature of dimensional reduction. The dynamical behavior of the model is examined and it is noted that with a decrease in extra space the observable 3-D space entropy increase, thus accounting for the large value of entropy observable at present.  相似文献   

15.
This paper presents a study of the Poincaré–Hough model of rotation of the synchronous natural satellites, in which these bodies are assumed to be composed of a rigid mantle and a triaxial cavity filled with inviscid fluid of constant uniform density and vorticity. In considering an Io-like body on a low eccentricity orbit, we describe the different possible behaviors of the system, depending on the size, polar flattening and shape of the core. We use for that the numerical tool. We propagate numerically the Hamilton equations of the system, before expressing the resulting variables under a quasi-periodic representation. This expression is obtained numerically by frequency analysis. This allows us to characterise the equilibria of the system, and to distinguish the causes of their time variations. We show that, even without orbital eccentricity, the system can have complex behaviors, in particular when the core is highly flattened. In such a case, the polar motion is forced by several degrees and longitudinal librations appear. This is due to splitting of the equilibrium position of the polar motion. We also get a shift of the obliquity when the polar flattening of the core is small.  相似文献   

16.
An LRS Bianchi Type V bulk viscous fluid dust distribution string cosmological model in General Relativity is investigated. It has been shown that if coefficient of bulk viscosity (ζ) is proportional to the expansion (θ) in the model then string cosmological model for Bianchi Type V space-time is possible. In absence of bulk viscosity(ζ) i.e. when ζ → 0 then there is no string cosmological model for Bianchi Type V space-time. The physical and geometrical aspects are also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
A two-component theoretical model of the physical libration of the Moon in longitude is constructed with account taken of the viscosity of the core. In the new version, a hydrodynamic problem of motion of a fluid filling a solid rotating shell is solved. It is found that surfaces of equal angular velocity are spherical, and a velocity field of the fluid core of the Moon is described by elementary functions. A distribution of the internal pressure in the core is found. An angular momentum exchange between the fluid core and solid mantle is described by a third-order differential equation with a right-hand side. The roots of a characteristic equation are studied and the stability of rotation is proved. A libration angle as a function of time is found using the derived solution of the differential equation. Limiting cases of infinitely large and infinitely small viscosity are considered and an effect of lag of a libration phase from a phase of action of an external moment of forces is ascertained. This makes it possible to estimate the viscosity and sizes of the lunar fluid core from data of observations.  相似文献   

18.
The further evolution of a massive X-ray binary consisting of a compact object and an OB supergiant is outlined. The supergiant exceeds its critical Roche lobe and a second stage of mass transfer starts. The remnant of the mass losing star — a pure helium star — develops a collapsing iron core and finally undergoes a supernova explosion. If the compact companion is a black hole the system remains bound; if the compact companion is a neutron star the system is disrupted unless an extra kick allowing an asymmetric explosion is given. Computations were performed for the massive binary 22.5M +2M . The possible final evolutionary products are: (1) a black hole and a compact object, in a binary system, (2) two run-away pulsars, (3) a binary pulsar. As final parameters for the described system the eccentricity and period for the recently discovered binary pulsar 1913+16 may be found. An orbital inclination ofi=40° may be derived. The probability for the generation of binary pulsars is very low; in most cases the system is disrupted during the supernova explosion.  相似文献   

19.
The early time behaviour of brane-world models is analysed in the presence of anisotropic stresses. It is shown that that the initial singularity cannot be isotropic, unless there is also an isotropic fluid stiffer than radiation present. Also, a magnetic Bianchi type I brane-world is analysed in detail. It is known that the Einstein equations for the magnetic Bianchi type I models are in general oscillatory and are believed to be chaotic, but in the brane-world model this chaotic behaviour does not seem to be possible. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
We undertake calculations of the time-dependent structure of shock waves propagating in dark and diffuse interstellar clouds. The results of the time-dependent model are compared with those obtained by means of an independent steady-state code and found to agree well at sufficiently late times. Discontinuities in the flow of the neutral fluid are handled by introducing a pseudo-viscosity. Special procedures are adopted to correct for the associated widening of the discontinuity, in order not to distort the role of inelastic collision processes. We find that, in dark clouds, C shocks will tend to predominate, but are unlikely to have attained steady state in the cloud lifetime. On the other hand, in diffuse clouds, steady state may be reached but the discontinuity in the flow of the neutral fluid remains. We find no evidence for the existence of C* shocks, in which the neutral fluid undergoes a continuous transition from supersonic to subsonic flow (in the reference frame of the shock wave). Attention is drawn to the possible importance of these results for the interpretation of H2 rovibrational line intensities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号