首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Icarus》1986,66(2):380-396
A series of experiments with a three dimensional general circulation model developed to simulate Earth's atmosphere is run with planetary rotation rates varying between 1 and 1/64 times Earth's rotation rate and diurnally averaged thermal forcing. Results are used to evaluate theories of Venus' atmospheric superrotation which invoke upward transport of angular momentum from the solid planet by the zonal mean (i.e., axisymmetric) circulation. The theories predict that superrotation is a common feature of slowly rotating planetary atmospheres, suggesting that superrotation should appear in the idealized slowly rotating cases of the present study. We find, however, that although dynamical mechanisms suggested for axisymmetric forcing of superrotation appear in model spinups from rest, the steady-state circulations include only weak globally averaged superrotation, consistent with previously reported results from lower resolution models. It appears that during spinup the thermally driven equator-to-pole circulation rapidly generates zonal-mean winds near the planetary surface which preclude vertical angular momentum transport and thus suppress further development of the superrotation. If this is the case, then the diurnally varying component of solar heating, such as atmospheric tides or the “moving flame”, must be included to explain Venus' strong atmospheric superrotation.  相似文献   

2.
This paper investigates the exchange of global mean angular momentum between an atmosphere and its underlying planet by a simple model. The model parameterizes four processes that are responsible for zonal mean momentum budget in the atmospheric boundary layer for a rotating planet: (i) meridional circulation that redistributes the relative angular momentum, (ii) horizontal diffusion that smoothes the prograde and retrograde winds, (iii) frictional drag that exchanges atmospheric angular momentum with the underlying planet, and (iv) internal redistribution of the zonal mean momentum by wave drag. It is shown that under a steady-state or a long-term average condition, the global relative angular momentum in the boundary layer vanishes unless there exists a preferred frictional drag for either the prograde or the retrograde zonal wind. We further show quantitatively that one cannot have either a predominant steady prograde or retrograde wind in the boundary layer of a planetary atmosphere. The parameter dependencies of the global relative angular momentum and the strength of the atmospheric circulation in the boundary layer are derived explicitly and used to explain the observational differences between the atmospheres of Earth and Venus.  相似文献   

3.
Atmospheric angular momentum variations of a planet are associated with the global atmospheric mass redistribution and the wind variability. The exchange of angular momentum between the fluid layers and the solid planet is the main cause for the variations of the planetary rotation at seasonal time scales. In the present study, we investigate the angular momentum variations of the Earth, Mars and Venus, using geodetic observations, output of state-of-the-art global circulation models as well as assimilated data. We discuss the similarities and differences in angular momentum variations, planetary rotation and angular momentum exchange for the three terrestrial planets. We show that the atmospheric angular momentum variations for Mars and Earth are mainly annual and semi-annual whereas they are expected to be “diurnal” on Venus. The wind terms have the largest contributions to the LOD changes of the Earth and Venus whereas the matter term is dominant on Mars due to the CO2 sublimation/condensation. The corresponding LOD variations (ΔLOD) have similar amplitudes on Mars and Earth but are much larger on Venus, though more difficult to observe.  相似文献   

4.
Copious mass loss on the Asymptotic Giant Branch dominates the late stages of stellar evolution. Maps of extended circumstellar envelopes provide a history of mass loss and trace out anisotropic mass loss. This review concentrates on observations of millimeter wavelength molecular line emission, on high resolution maps of maser emission and on observations of submillimeter, millimeter and radio wavelength continuum emission. Radio continuum observations show that AGB stars are larger at radio than at optical wavelengths. The extended chromospheres indicated by these observations extend to distances from the star large enough for dust to form, thereby initiating mass loss. Molecular line maps have found time-variable mass loss for some stars, including detached shells indicating interrupted mass loss and evidence for a rapid increase in the mass loss rate at the end of the AGB phase. Maps of circumstellar envelopes show evidence of flattening, bipolar outflow and angular variations in both the mass loss rate and the outflow velocity. As stars evolve away from the AGB and planetary nebula formation begins, these structures become more pronounced, and fast bipolar molecular winds are observed. The time scales derived from the dynamical times of these winds and from the expansion rates of the central planetary nebulae are very rapid in some cases, about 100 years, in agreement with the predictions of stellar evolution theory.  相似文献   

5.
The formation of the solar nebula and the distribution of mass in its planetary system is studied. The underlying idea is that the protosun, fragmented out from an interstellar cloud as a result of cluster formation, gathered the planetary material and, hence, spin angular momentum by gravitational accretion during its orbital motion around the centre of the Galaxy. The study gives the initial angular momentum of the solar nebula nearly equal to the present value of the solar system.  相似文献   

6.
Through a combination of aerobraking (drag deceleration) and ablation, meteoroids which enter planetary atmospheres may be slowed sufficiently to soft-land as meteorites. Results of an earlier study suggest that the current 6 mbar atmosphere of Mars is sufficient to aerobrake significant numbers of small (<10 kg) asteroidal-type meteoroids into survivable, low-velocity (<500 m s−1) impacts with the planet's surface. Since rates of meteorite production depend upon the density of Mars's atmosphere, they must also change as the martian climate changes. However, to date, martian meteorite production has received relatively little attention in the literature Here we expand upon our previous work to study martian meteorite production rates and how they depend upon variations of the martian atmosphere, and to estimate the ranges of mass, velocity and entry-angle that produce meteorites. We find that even the current atmosphere of Mars is sufficient to soft-land significant fractions of incident stony and iron objects, and that these fractions increase dramatically for denser martian atmospheres. Therefore, like impact cratering, meteorite populations may preserve evidence of past martian climates.  相似文献   

7.
Though the Moon is considered to have been formed by the so-called giant impact, the mass of the Earth immediately after the impact is still controversial. If the Moon was formed during the Earth's accretion, a subsequent accretion of residual heliocentric planetesimals onto the protoearth and the protomoon must have occurred. In this co-accretion stage, a significant amount of lunar-impact-ejecta would be ejected to circumterrestrial orbits, since the mean impact velocity of the planetesimals with the protomoon is much larger than the escape velocity of the protomoon. Orbital calculations of test particles ejected from the protomoon, whose semimajor axis is smaller than that of the present Moon, reveal that most of the particles escaping from the protomoon also escape from the Hill sphere of the protoearth and reduce the planetocentric angular momentum of the primordial Earth-Moon system. Using the results of the ejecta simulations, we investigate the evolution of the mass ratio and the total angular momentum (Earth's spin angular momentum + Moon's orbital angular momentum) of the Earth-Moon system during the co-accretion. We find that the mass of the protomoon is almost constant or rather decreases and the total angular momentum decreases significantly, if the random velocity of planetesimals is as large as the escape velocity of the protoearth. On the other hand, if the random velocity is the half of the escape velocity of the protoearth, the mass ratio is kept to be almost as large as the present value and the decrease of the total angular momentum is not so significant. Comparing with the results of giant impact simulations, we find that the mass of the protoearth immediately after the Moon-forming impact was 0.7-0.8 times the present value if the impactor-to-target mass ratio was 3:7, whereas the giant impact occurred almost in the end of the Earth's accretion if the impactor-to-target mass ratio was 1:9.  相似文献   

8.
We perform a linear analysis to investigate the dynamical response of a non-synchronized hot Jupiter to stellar irradiation. In this work, we consider the diurnal Fourier harmonic of the stellar irradiation acting at the top of a radiative layer of a hot Jupiter with no clouds and winds. In the absence of the Coriolis force, the diurnal thermal forcing can excite internal waves propagating into the planet's interior when the thermal forcing period is longer than the sound crossing time of the planet's surface. When the Coriolis effect is taken into consideration, the latitude-dependent stellar heating can excite weak internal waves (g modes) and/or strong baroclinic Rossby waves (buoyant r modes) depending on the asynchrony of the planet. When the planet spins faster than its orbital motion (i.e. retrograde thermal forcing), these waves carry negative angular momentum and are damped by radiative loss as they propagate downwards from the upper layer of the radiative zone. As a result, angular momentum is transferred from the lower layer of the radiative zone to the upper layer and generates a vertical shear. We estimate the resulting internal torques for different rotation periods based on the parameters of HD 209458b.  相似文献   

9.
The main topic of this paper is to investigate the exchange of mass and angular momentum between a satellite or planetary system and its primary, and the effects of this exchange to axial rotations and satellite orbits. Various applications on the calculation of axial rotations, present and past satellite masses and orbits and other implications of the theory are presented.  相似文献   

10.
It is proposed that a new mechanism—angular momentum drain—helps account for the relatively slow rotation rates of intermediate-sized asteroids. Impact ejecta on a spinning body preferentially escape in the direction of rotation. This material systematically drains away spin angular momentum, leading to the counterintuitive result that collisions can reduce the spin of midsized objects. For an asteroid of mass M spinning at frequency ω, a mass loss δM correspond to an average decrease in rotation rate δω ≈ ωδMM. A. W. Harris' (1979), Icarus40, 145–153) theory for the collisional evolution of asteroidal spins is significantly altered by inlusion of this effect. While the modified theory is still somewhat artificial, comparison of its predictions with the data of S. F. Dermott, A. W. Harris, and C. D. Murray (1984, Icarus57, 14–34) suggests that angular momentum drain is essential for understanding the statistics of asteroidal rotations.  相似文献   

11.
I propose a mechanism for axisymmetrical mass loss on the asymptotic giant branch (AGB) that may account for the axially symmetric structure of elliptical planetary nebulae. The proposed model operates for slowly rotating AGB stars, having angular velocities in the range of 10−4ω Kep  ω  10−2 ωKep, where ωKep is the equatorial Keplerian angular velocity. Such angular velocities could be gained from a planet companion of mass  0.1  M Jupiter, which deposits its orbital angular momentum to the envelope at late stages, or even from single stars that are fast rotators on the main sequence. The model assumes that dynamo magnetic activity results in the formation of cool spots, above which dust forms much more easily. The enhanced magnetic activity towards the equator results in a higher dust formation rate there, and hence higher mass-loss rate. As the star ascends the AGB, both the mass-loss rate and magnetic activity increase rapidly, and hence the mass loss becomes more asymmetrical, with higher mass-loss rate closer to the equatorial plane.  相似文献   

12.
In this paper, we use a semi-analytical approach to analyze the global structure of the phase space of the planar planetary 3/1 mean-motion resonance. The case where the outer planet is more massive than its inner companion is considered. We show that the resonant dynamics can be described using two fundamental parameters, the total angular momentum and the spacing parameter. The topology of the Hamiltonian function describing the resonant behaviour is investigated on a large domain of the phase space without time-expensive numerical integrations of the equations of motion, and without any restriction on the magnitude of the planetary eccentricities. The families of the Apsidal Corotation Resonances (ACR) parameterized by the planetary mass ratio are obtained and their stability is analyzed. The main dynamical features in the domains around the ACR are also investigated in detail by means of spectral analysis techniques, which allow us to detect the regions of different regimes of motion of resonant systems. The construction of dynamical maps for various values of the total angular momentum shows the evolution of domains of stable motion with the eccentricities, identifying possible configurations suitable for exoplanetary systems.  相似文献   

13.
It is shown that the present day observed linear relationship between the logarithm of the spin angular momentum of the planets and the logarithm of the mass can be explained in terms of mass loss from a set of protoplanets initially identical in mass, chemical composition and spin angular momentum.One leave of absence from Rajshahi University, Bangladesh.  相似文献   

14.
系外类地行星是目前搜寻地外生命的主要目标.随着观测仪器的发展,现在已经能探测到低于10个地球质量的系外行星.该文简要回顾了系外类地行星的形成与演化,介绍了当前研究它们内部结构的模型和方法,以及由此得出的类地行星质量-半径关系.同时,对应不同的行星初始物质成分,讨论了各种可能的大气结构.最后介绍了未来的空间任务在相关方面的工作.  相似文献   

15.
We have considered the new process of atmospheric losses - “sputtering” under bombardment by interplanetary dust. It is demonstrated that “sputtering” due to collisions with the interplanetary dust is an effective way of atmospheric gas loss (10–4–10–3 of the dust particles' accreting mass) and that it changes the composition of the atmospheric gases. In calculations we have taken that the dust particles collide elastically with the atoms and molecules of the atmosphere. Estimation of the effects of inelastic collisions was also considered. As a result of these collisions a part of the atmospheric atoms and molecules will have “upward” velocity and enough energy to escape. It was considered that escaping atoms can collide with the atoms of the “main” gas of the upper atmosphere. The atmospheric gas composition is assumed to be just as in the modern Martian atmosphere - the “main” gases in the upper atmosphere were taken to be O and CO2. In our computations we pay particular attention to the abundance of noble gases in planetary atmospheres since these gases are very important for theories of atmospheric origin. We computed that under “sputtering” by the interplanetary dust, atmospheres were enriched by the “heavy” elements and isotopes in the wide range of the upper atmospheric parameters O/CO2, T/g (O/CO2– on the level of homosphere;T is temperature of the exosphere,g is gravitational acceleration). However the loss efficiency for “heavy” gases is relatively high compared to other known gas loss processes. In the case of noble gases for the specific parameters of the upper atmosphere (small T/g ratio; high O/CO2 on the level of homosphere) we have got the unique result: despite the diffusion separation in the upper atmosphere the loss efficiency of Xe > Kr > Ar. The effect of “sputtering” of the planetary atmospheres was strongest during the early stages of the planetary evolution - when the rate of the dust accretion was intrinsically higher than now because of collisions of planetesimals. In light of the new escape process, the main peculiarities of the noble gases abundance in the planetary atmospheres could be explained. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
In a previous paper, using Eggleton's stellar evolution code, we have discussed the structure and evolution of low-mass W Ursae Majoris (W UMa) type contact binaries with angular momentum loss owing to gravitational radiation or magnetic braking. We find that gravitational radiation is almost insignificant for cyclic evolution of low-mass W UMa type systems, and it is possible for angular momentum to be lost from W UMa systems in a magnetic stellar wind. The weaker magnetic activity shown by observations in W UMa systems is likely caused by the lower mass of the convective envelopes in these systems than in similar but non-contact binaries. The spin angular momentum cannot be neglected at any time for W UMa type systems, especially for those with extreme mass ratios. The spin angular momenta of both components are included in this paper and they are found to have a significant influence on the cyclic evolution of W UMa systems. We investigate the influence of the energy transfer on the common convective envelopes of both components in detail. We find that the mass of the convective envelope of the primary in contact evolution is slightly more than that in poor thermal contact evolution, and that the mass of the convective envelope of the secondary in contact evolution is much less than that in poor thermal contact evolution. Meanwhile, the rate of angular momentum loss of W UMa type systems is much lower than that of poor thermal contact systems. This is indeed caused by the lower masses of the convective envelopes of the components in W UMa type systems. Although the models with angular momentum loss for W UMa systems exhibit cyclic evolution, they seem to show that a W UMa system cannot continue this type of cyclic evolution indefinitely, and it might coalesce into a fast-rotating star after about 1200 cycles of evolution (about  7.0 × 109 yr  ).  相似文献   

17.
Stability of Binary Asteroids   总被引:1,自引:0,他引:1  
D.J. Scheeres 《Icarus》2002,159(2):271-283
The stability and final outcome of a strongly interacting binary asteroid system is considered. We discuss the implications of the system transferring energy and angular momentum between rotational and translational motion while conserving the total system energy and angular momentum. Using these results we can develop a set of sufficient conditions for stability against escape and impact. These allow us to delineate several classes of final outcomes for a binary asteroid system, each of which may have implications for asteroid observations. The effects of energy dissipation on an asteroid binary system are also considered and are shown to be able to change the stability of the system against escape and impact. An example computation for the near-Earth asteroid binary 1996 FG3 is given along with a series of numerical explorations of an evolving binary system consisting of an ellipsoid and a sphere of equal mass.  相似文献   

18.
本文绘出了计算吸积盘边缘物质和角动量损失,以及它们对激变双星演化影响的理论模型.计算结果表明,紫外天文卫星(IUE)观测到的高速物质流是来源于吸积盘边缘,吸积盘边缘的角动量损失可以成为周期大于3小时的激变双星演化的物理机制.  相似文献   

19.
We model the growth of Jupiter via core nucleated accretion, applying constraints from hydrodynamical processes that result from the disk-planet interaction. We compute the planet's internal structure using a well tested planetary formation code that is based upon a Henyey-type stellar evolution code. The planet's interactions with the protoplanetary disk are calculated using 3-D hydrodynamic simulations. Previous models of Jupiter's growth have taken the radius of the planet to be approximately one Hill sphere radius, RH. However, 3-D hydrodynamic simulations show that only gas within ∼0.25RH remains bound to the planet, with the more distant gas eventually participating in the shear flow of the protoplanetary disk. Therefore in our new simulations, the planet's outer boundary is placed at the location where gas has the thermal energy to reach the portion of the flow not bound to the planet. We find that the smaller radius increases the time required for planetary growth by ∼5%. Thermal pressure limits the rate at which a planet less than a few dozen times as massive as Earth can accumulate gas from the protoplanetary disk, whereas hydrodynamics regulates the growth rate for more massive planets. Within a moderately viscous disk, the accretion rate peaks when the planet's mass is about equal to the mass of Saturn. In a less viscous disk hydrodynamical limits to accretion are smaller, and the accretion rate peaks at lower mass. Observations suggest that the typical lifetime of massive disks around young stellar objects is ∼3 Myr. To account for the dissipation of such disks, we perform some of our simulations of Jupiter's growth within a disk whose surface gas density decreases on this timescale. In all of the cases that we simulate, the planet's effective radiating temperature rises to well above 1000 K soon after hydrodynamic limits begin to control the rate of gas accretion and the planet's distended envelope begins to contract. According to our simulations, proto-Jupiter's distended and thermally-supported envelope was too small to capture the planet's current retinue of irregular satellites as advocated by Pollack et al. [Pollack, J.B., Burns, J.A., Tauber, M.E., 1979. Icarus 37, 587-611].  相似文献   

20.
We study the small perturbations in spherical and thin disc stellar clusters surrounding a massive black hole. Because of the black hole, stars with sufficiently low angular momentum escape from the system through the loss cone. We show that the stability properties of spherical clusters crucially depend on whether the distribution of stars is monotonic or non-monotonic in angular momentum. It turns out that only non-monotonic distributions can be unstable. At the same time, instability in disc clusters is possible for both types of distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号