首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Late stage extensional character of the Samail Ophiolite, as inferred from structure within the Ibra-Dasir blocks, supports gravity-driven final emplacement for the ophiolite. This however, is not related to ‘collapse’ off ramp-related domal culminations as speculated in Late Cretaceous thrusting scenarios. Domal structures of the Oman Mountains are Tertiary structures as originally inferred by Glennie et al. (1974). Gravity-driven emplacement of the ophiolite is related to the rising NE-directed Saih Hatat fold-nappe, now preserved within the Saih Hatat window and offshore along the Batinah coast as the Saih Hatat axis. Ar-Ar geochronology indicates that the Saih Hatat antiformal fold-nappe development (76–70 Ma) was occurring at the time the ophiolite was being emplaced onto the margin between 70–80 Ma. Evidence for extension is shown by: (1) the truncation of fold structures in the ophiolite pseudostratigraphy by the approximately planar, late stage basal fault (previously referred to as the ‘Samail thrust’ and now as the Samail detachment fault), (2) faults within the ophiolite cutting down section (e.g., Jabal Dimh fault), and (3) by the presence of both high angle and low angle normal faults, particularly in the metamorphic sole rocks at Wadi Tayin. Kinematic analysis of the high angle fault pairs in the metamorphic sole at Wadi Tayin indicates N–S pull-apart. These features of the Samail Ophiolite, along with similar features in the Bay of Islands Ophiolite in New Foundland, suggest that final stages of ophiolite obduction onto continental margins must involve extensional emplacement as a thin (< 5 km) sheet. This emplacement is accompanied by further thinning of the ophiolite sheet with internal development of both low and high angle normal faults.  相似文献   

2.
Exposed Late Cretaceous (Albian-Maastrichtian) marine rocks of the Ariyalur area in the Cauvery Basin have been extensively studied based on biostratigraphy and paleobathymetry with paleobathymetric interpretation carried out using vertical and lateral relationships of rock facies, macro- and microfossil assemblages, textural characteristics and diagenetic changes of the lithologic units. The integration of these data reveals four Transgressive-Regressive (T-R) cycles, viz. Dalmiapuram, Garudamangalam, Sillakkudi and Kallankurichchi (in stratigraphic order). These T-R cycles have been compared with global published relative sea level curves of the study area. The major sea level changes during the Late Turonian and Late Maastrichtian in the study area correlate well with global sea level changes of [Vail et?al., 1977] and [Haq et?al., 1987] and Miller et al. (2005). Based on biostratigraphy, stratal patterns and their relationship, the Late Cretaceous succession of the Ariyalur area is thus subdivided into four 2nd/3rd order sequences.  相似文献   

3.
Reconstructions of the Albian to Campanian foreland basin adjacent to the northern Canadian Cordillera are based on outcrop and well log correlations, seismic interpretation, and reconnaissance-level detrital zircon analysis. The succession is subdivided into two tectonostratigraphic units. First is an Albian tectonostratigraphic unit that was deposited on the flexural margin of a foreland basin. At the base is a shallow marine sandstone interval that was deposited during transgressive reworking of sediment from cratonic sources east of the basin that resulted in a dominant 2000–1800 Ma detrital zircon age fraction. Subsequent deposition in a west-facing muddy ramp setting was followed by east-to-west shoreface progradation into the basin.Near the Albian–Cenomanian boundary, regional uplift and exhumation resulted in an angular unconformity at the base of the Cenomanian–Campanian tectonostratigraphic unit. Renewed subsidence in the Cenomanian resulted in deposition of organic-rich, radioactive, black mudstone of the Slater River Formation in a foredeep setting. Cenomanian–Turonian time saw west-to-east progradation of a shoreface-shelf system from the orogenic margin of the foreland basin over the foredeep deposits. Detrital zircon age peaks of approximately 1300 Ma, 1000 Ma, and 400 Ma from a Turonian sample are consistent with recycling of Mississippian and older strata from the Cordillera west of the study area, and show that the orogen-attached depositional system delivered sediment from the orogen to the foreland basin. A near syndepositional detrital zircon age of ca. 93 Ma overlaps with known granitoid ages from the Cordillera. After the shelf system prograded across the study area, subsequent pulses of subsidence and uplift resulted in dramatic thickness variations across an older structural belt, the Keele Tectonic Zone, from the Turonian to the Campanian.The succession of depositional systems in the study area from flexural margin to foredeep to orogenic margin is attributed to coupled foreland propagation of the front of the Cordilleran orogen and the foreland basin. Propagation of crustal thickening and deformation toward the foreland is a typical feature of orogens and so the distal to proximal evolution of the foreland basin should also be considered as typical.  相似文献   

4.
Most of the structural units of the Western Alps were derived from the European Continental margin of the Ligurian Ocean, a segment of the Mesozoic Tethys ocean. Their Mesozoic palaeotectonic and stratigraphic evolution bears witness of the following main stages: (1) Deposition of the Triassic platform carbonates, essentially prerift but nevertheless bearing the imprint of some extensional movements. (2) The Liassic-Middle Jurassic rifting corresponds to the creation of a horst-and-graben system with especially tilted blocks and hence a shoal-and-basin palaeogeography, but without a preliminary doming event. (3) The late Jurassic-Early Cretaceous opening and spreading of the Ligurian ocean began with a general collapse of the continental margin (‘thermal’ subsidence, latest Middle Jurassic and Earliest Late Jurassic).In this paper, emphasis is given to the refting-derived structures, more especially to the major tilted crustal blocks, a few tens of kilometres wide, which can be either reconstructed or directly observed. The rifting stage lasted roughly 40 m.y., with the alternation of extensional tectonic phases and of relatively ‘quiet’ periods. During the extensional phases, movements along fault-planes and related episodes of tilting were followed by sudden and rapid episodes of subsidence: the latter may be interpreted as resulting from the isostatic and thermal readjustment that follows a phase of stretching of the crust and of the lithosphere. The tectonic evolution of the margin continued, but decreased, during the late Jurassic-Early Cretaceous oceanspreading stage. Tectonic activity resumed in the late Cretaceous: this probably resulting from the beginning of contraction of both the ocean and the continental margin, leading progressively to the continental collision in the Tertiary.  相似文献   

5.
The Angolan margin is the type area for raft tectonics. New seismic data reveal the contractional buffer for this thin-skinned extension. A 200-km-long composite section from the Lower Congo Basin and Kwanza Basin illustrates a complex history of superposed deformation caused by: (1) progradation of the margin; and (2) episodic Tertiary epeirogenic uplift. Late Cretaceous tectonics was driven by a gentle slope created by thermal subsidence; extensional rafting took place updip, contractional thrusting and buckling downdip; some distal folds were possibly unroofed to form massive salt walls. Oligocene deformation was triggered by gentle kinking of the Atlantic Hinge Zone as the shelf and coastal plain rose by 2 or 3 km; relative uplift stripped Paleogene cover off the shelf, provided space for Miocene progradation, and steepened the continental slope, triggering more extension and buckling. In the Neogene, a subsalt half graben was inverted or reactivated, creating keystone faults that may have controlled the Congo Canyon; a thrust duplex of seaward-displaced salt jacked up the former abyssal plain, creating a plateau of salt 3–4 km thick on the present lower slope. The Angola Escarpment may be the toe of the Angola thrust nappe, in which a largely Cretaceous roof of gently buckled strata, was transported seawards above the thickened salt by up to 20 km.  相似文献   

6.
Cenozoic eastward migration of the Caribbean plate relative to the South American plate is recorded by an 1100-km-long Venezuela-Trinidad foreland basin which is oldest in western Venezuela (65-55 Ma), of intermediate age in eastern Venezuela (34-20 Ma) and youngest beneath the shelf and slope area of eastern offshore Trinidad (submarine Columbus basin, 15.0 Ma-Recent). In this study of the regional structure, fault families, and chronology of faulting and tectonic events affecting the hydrocarbon-rich Columbus foreland basin of eastern offshore Trinidad, we have integrated approximately 775 km of deep-penetration 2D seismic lines acquired by the 2004 Broadband Ocean-Land Investigations of Venezuela and the Antilles arc Region (BOLIVAR) survey, 325 km of vintage GULFREX seismic data collected by Gulf Oil Company in 1974, and published industry well data that can be tied to some of the seismic reflection lines. Top Cretaceous depth structure maps in the Columbus basin made from integration of all available seismic and well data define for the first time the elongate subsurface geometry of the 11-15 km thick and highly asymmetrical middle Miocene-Recent depocenter of the Columbus basin. The main depocenter located 150-200 km east of Trinidad and now the object of deepwater hydrocarbon exploration is completely filled by shelf and deepwater sediments derived mainly from the Orinoco delta. The submarine Darien ridge exhibits moderate (20-140 m) seafloor relief, forms the steep (12°-24°), northern structural boundary of the Columbus basin, and is known from industry wells to be composed of 0.5-4.5 km thick, folded and thrust-imbricated, hydrocarbon-bearing section of Cretaceous and early Tertiary limestones and clastic rocks. The eastern and southern boundaries of the basin are formed by the gently (1.7°-4.5°), northward-dipping Cretaceous-Paleogene passive margin of South America that is in turn underlain by Precambrian rocks of the Guyana shield.Interpretation of seismic sections tied to wells reveals the following fault chronology: (1) middle Miocene thrusting along the Darien ridge related to highly oblique convergence between the Caribbean plate and the passive margin of northern South America; continuing thrusting and transpression in an oblique foreland basin setting through the early Pleistocene; (2) early Pliocene-recent low-angle normal faults along the top of the Cretaceous passive margin; these faults were triggered by oversteepening related to formation of the downdip, structurally and bathymetrically deeper, and more seaward Columbus basin; large transfer faults with dominantly strike-slip displacements connect gravity-driven normal faults that cluster near the modern shelf-slope break and trend in the downslope direction; to the south no normal faults are present because the top Cretaceous horizon has not been oversteepened as it is adjacent to the foreland basin; (3) early Pliocene-Recent strike-slip faults parallel the trend of the Darien ridge and accommodate present-day plate motions.  相似文献   

7.
The Upper Cretaceous Bordighera Sandstone of NW Italy is a coarse-grained, sand-rich elongated turbidite system (ca. 15 × 45 km in outcrop) up to 250 m thick, interpreted to have been deposited in a trench setting. The siliciclastic succession interfingers with muddy calcareous turbidites, which become more abundant toward the lateral and distal domains. Bed type associations allow the distinction of a proximal channelized domain which transitions to a more distal lobe domain, characterized by abundant mudclast-rich sandstones and by bipartite and tripartite beds with a mud-rich middle or upper division (hybrid event beds). The transition between the proximal and distal domains occurs over a relatively limited spatial extent (ca. 5 km). The presence of lenticular bed-sets made up of coarse grained and mud-poor sandstones throughout the distal domain suggests that distributary channels were present, indicating sediment bypass further down-dip toward the most distal and not preserved parts of the system. Hybrid event beds - commonly associated with distal and marginal fan environments such as fan fringes - are present throughout the lobe domain and extend for up to ca. 30 km in down-dip distance. They are more abundant in the proximal and axial depositional lobe domain and their appearance occurs within a short basin-ward distance from the inferred channel-lobe transition zone. Flow expansion at the termination of the channelized domain and the enhanced availability of cohesive substrate due to the presence of intra-basinal muddy calcareous beds are interpreted as the key controls on the widespread occurrence of mudclast-rich and argillaceous sandstone beds. The abrupt appearance and the persistent occurrence of such beds across an extensive domain have implications for characterizing bed-scale (sub-seismic) heterogeneity of deep-water clastic hydrocarbon reservoirs.  相似文献   

8.
The deep-water fold and thrust belt of the southern Niger Delta has prominent thrusts and folds oriented perpendicular to the regional slope that formed as a result of the thin-skinned gravitational collapse of the delta above overpressured shale. The thrust-related folds have grown in the last 12.8 Ma and many of the thrusts are still actively growing and influencing the pathways of modern seabed channels. We use 3D seismic reflection data to constrain and analyse the spatial and temporal variation in shortening of four thrusts and folds having seabed relief in a study area of 2600 km2 size in 2200–3800 m water depth. Using these shortening measurements, we have quantified the variation in strain rates through time for both fault-propagation and detachment folds in the area, and we relate this to submarine channel response. The total amount of shortening on the individual structures investigated ranges from 1 to 4 km, giving a time-averaged maximum shortening rate of between 90 ± 10 and 350 ± 50 m/Myr (0.1 and 0.4 mm/yr). Fold shortening varies both spatially and temporally: The maximum interval shortening rate occurred between 9.5 Ma and 3.7 Ma, and has reduced significantly in the last 3.7 Ma. We suggest that the reduction in the Pliocene-Recent fold shortening rate is a response to the slow-down in extension observed in the up-dip extensional domain of the Niger Delta gravitational system in the same time interval. In the area dominated by the fault-propagation folds, the channels are able to cross the structures, but the detachment fold is a more significant barrier and has caused a channel to divert for 25 km parallel to the fold axis. The two sets of structures have positive bathymetric expressions, with an associated present day uphill slope of between 1.5° and 2°. However, the shorter uphill slopes of the fault-propagation folds and increased sediment blanketing allow channels to cross these structures. Channels that develop coevally with structural growth and that cross structures, do so in positions of recent strain minima and at interval strain rates that are generally less than −0.02 Ma−1 (−1 × 10−16 s−1). However, the broad detachment fold has caused channel diversion at an even lower strain rate of c. −0.002 Ma−1 (−7 × 10−17 s−1).  相似文献   

9.
In recent years, exploration of the Lower Congo Basin in Angola has focused on the Neogene turbidite sand play of the Malembo Formation. Gravity tectonics has played an important role during deposition of the Malembo Formation and has imparted a well-documented structural style to the post-rift sediments. An oceanward transition from thin-skinned extension through mobile salt and eventually to thin-skinned compressional structures characterises the post-rift sediments. There has been little discussion, however, regarding the influence of these structures on the deposition of the Malembo Formation turbidite sands. Block 4 lies at the southern margin of the Lower Congo Basin and is dominated by the thin-skinned extensional structural style. Using a multidisciplinary approach we trace the post-rift structural and stratigraphic evolution of this block to study the structural controls on Neogene turbidite sand deposition.In the Lower Congo Basin the transition from terrestrial rift basin to fully marine passive margin is recorded by late Aptian evaporites of the Loeme Formation. Extension of the overlying post-rift sequences has occurred where the Loeme Formation has been utilised as a detachment surface for extensional faults. Since the late Cretaceous, the passive margin sediments have moved down-slope on the Loeme detachment. This history of gravity-driven extension is recorded in the post-rift sediments of Block 4. Extension commenced in the Albian in the east of the block and migrated westwards with time. In the west, the extension occurred mainly in the Miocene and generated allochthonous fault blocks or “rafts”, separated by deep grabens. The Miocene extension occurred in two main phases with contrasting slip vectors; in the early Miocene the extension vector was to the west, switching to southwest-directed extension in the late Miocene. Early Miocene faults and half-grabens trend north–south whereas late Miocene structures trend northwest–southeast. The contrast in slip vectors between these two phases emphasises the differences in driving mechanisms: the early Miocene faulting was driven by basinward tilting of the passive margin, but gravity loading due to sedimentary progradation is considered the main driver for the late Miocene extension. The geological evolution of the late Miocene grabens is consistent with southwest-directed extension due to southwest progradation of the Congo fan.High-resolution biostratigraphic data identifies the turbidite sands in Block 4 as early Miocene (17.5–15.5 Ma) and late Miocene (10.5–5.5 Ma) in age. Deposition of these sands occurred during the two main phases of gravity-driven extension. Conditions of low sedimentation rates relative to high fault displacement rates were prevalent in the early Miocene. Seafloor depressions were generated in the hangingwalls of the main extensional faults, ultimately leading to capture of the turbidity currents. Lower Miocene turbidite sand bodies therefore trend north–south, parallel to the active faults. Cross-faults and relay ramps created local topographic highs capable of deflecting turbidite flows within the half grabens. Flow-stripping of turbidity currents across these features caused preferential deposition of sands across, and adjacent to, the highs. Turbidite sands deposited in the early part of the late Miocene were influenced by both the old north–south fault trends and by the new northwest–southeast fault trends. By latest Miocene times turbidite channels crosscut the active northwest–southeast-trending faults. These latest Miocene faults had limited potential to capture turbidity currents because the associated hangingwall grabens were rapidly filled as pro-delta sediments of the Congo fan prograded across the area from the northeast.  相似文献   

10.
The analysis of 2D deep-seismic-reflection profiles across the slope and abyssal plain of the Angola oceanic basin reveals the existence of a significant and formerly unknown depocentre beneath the giant Cenozoic Congo deep-sea fan, between 7000 m and 9000 m depth, deposited directly onto the Aptian oceanic crust. The unit, which is up to 2.5 km thick and extends for more than 200 km basinwards of the Continent-Ocean boundary, is probably aged Albian–Turonian. Its radial fan-shaped depocentre is centred on the present-day Congo River outlet and contains at least 0.2 Mio km3 of sediments. These observations and the results from flexural modelling indicate that (1) the location of the Congo River's outlet has remained fairly stable since the Late Cretaceous, and (2) the basal unit was indeed sourced by a palaeo-Congo River probably located nearby the present-day one. Thus, the Atlantic sedimentary system related to the exoreism of the Congo River is much older than previously thought. Thermal modelling indicates that the maturation history of this upper-Cretaceous deposits is highly influenced by the interaction between the initial high heat flow of the young oceanic crust and further increase in sediment supply due to the progradation of the overlying Tertiary deep-sea fan during the Miocene. Hence, despite low present-day heat-flow values, should the unit have source rock potential, its basal section may be currently generating hydrocarbons.  相似文献   

11.
China comprises a mosaic of distinct continental fragments separated by fold belts. These fold belts are suture zones resulting from the accretion of various fragments formerly separated by intervening areas of oceanic crust.The major sedimentary basins onshore China can be classified into four groups. Those in western China are flexural, developing as a result of north-south compression. In contrast, those in the east are extensional and related to development of the Pacific oceanic margin. In central China, basins have a more problematic origin. Those of north central China (Ordos, Sichuan) are flexural basins controlled by eastward directed thrusting along their western margin. In contrast, basins further south (Chuxiong, Shiwandashan) are predominantly extensional and related to major strike-slip movements.By synthesizing basin stratigraphies across China in tectonostratigraphic terms (and in particular comparing the nature and timing of unconformities), it is possible to formulate a coherent model for the palaeoreconstruction of China. We identify five major tectonostratigraphic breaks which equate with the collision of the following continental fragments: Tarim/North China (Carboniferous-Permian), South China Block (Permian-Triassic), Qiantang (Late Triassic-Early Jurassic), Lhasa Block (Late Jurassic-Early Cretaceous) and India (Early Tertiary).Prior to Permian times, the southern margin of Eurasia ran approximately along the northern border of modern China. The Late Carboniferous collision of Tarim/North China with Eurasia resulted in the development of a flexural basin (Junggar) and deposition of non-marine clastics. To the south of the suture, shallow marine deposition continued. In the Late Permian-Early Triassic, the progressive collision from east to west of the South China Block with the North China Block resulted in a change to fluvial/lacutrine sedimentation across the entire North China-Tarim block. Open marine carbonate deposition in the north of the South China Block passed southward into a deeper marine clastic sequence deposited in a backarc basin. Further south, a subduction zone existed along the southeastern margin of the South China Block.In western China, northward subduction throughout the Triassic resulted in the development of the Songban-Ganzi accretionary prism with retroarc thrusting resulting in flexure and the first development of the Tarim basin. Oblique collision of the Qiantang Block in the Late Triassic along the east of the South China Block resulted in east-west directed thrusting which initiated the Suchuan and Ordos basins. Continued strike-slip deformation along the south western margin of the South China Block resulted in the development of basins with a significant extensional component such as Chuxiong.The collision of the Qiantang Block with the southern edge of the Tarim Basin (Early Jurassic) resulted in a renewed clastic influx in both the Tarim and Junggar basins. Along the eastern (Pacific) margin a compressional arc and retroarc basin in the south passed northwards into an extensional arc system. Subduction rollback of the extensional arc initiated rifting in the Late Jurassic in the Eren and Songliao basins.The Late Jurassic-Early Cretaceous collision of the Lhasa Block in the west rejuvenated the thrust systems bordering the western basin and resulted in a renewed clastic influx. In the southeast, the compressional arc phase culminated in widespread thrusting and folding of Early Cretaceous age. In the northeast, extension continued with the progressive migration of the rift system southward with time.The arrival of the Indian Block in the Early Tertiary rejuvenated the bounding thrust belts of all the western basins. In the east, the change in convergence of the Pacific plate to a more westerly direction is marked by extension and widespread rifting along the entire length of Eastern China.Throughout most of China, Mesozoic and Cenozoic deposition occurred in predominantly non-marine environments. Source rocks in such settings comprise principally mudstones deposited in lakes (organic-rich mudstones). These can accumulate in both deep and shallow lakes. In order to accumulate substantial volumes, the lake must be significant in space and time.In China, lacustrine ORMs occur in both rift and flexural basins. Lacustrine ORMs deposited under humid climatic conditions are restricted to the period of maximum tectonic subsidence. In the flexural basins of western China, source rock deposition follows basin initiation by 20–30 Ma. In the extensional basins of eastern China, source rock deposition takes place 5–15 Ma after basin initiation. By contrast, semi-arid and arid climate lacustrine ORMs, whilst being best developed during the period of maximum tectonic subsidence, occur at all stages in the basin history.  相似文献   

12.
The results of apatite fission-track analysis in 14 granitic-gneissic samples from two regional transects across the Borborema Plateau, northeastern Brazil, show evidence for two dominant paleothermal events: a Late Cretaceous cooling event beginning sometime between 100 and 90 Ma, and a second cooling event in the Neogene. The distribution of the fission-track results suggests that the cooling events have a broad regional expression and are consistent with the geologic record in the Araripe Basin, western Borborema Province, which attests to a post-Albian uplift of the whole region. We hypothesize that the first event is due to the uplift and denudation of regional, permanent topography generated after the breakup of Brazil and Africa. Such topography is predicted by models of continental margin extension in which continental lithosphere thinning is followed by thickening of the adjacent hinterland lithosphere and crust (Kusznir, N.J., Karner, G.D., 2007. Continental lithospheric thinning and breakup in response to upwelling divergent mantle flow: application to the Woodlark, Newfoundland and Iberia margins. In: Karner, G.D., Manatschal, G., Pinheiro, L. (Eds), Imaging, mapping and modeling continental lithosphere extension and breakup. Special Publication 282, Geological Society, London, pp. 389–419.). In northeastern Brazil, this extension-engendered topography may have been amplified by magmatic underplating related to the Saint Helena and Ascension plumes. The Miocene cooling event (20–0 Ma) occurred at a time characterized by the transition from carbonate ramp to progradational clastic systems on the Pernambuco–Paraíba margin and the offshore Potiguar Basin. This same stratigraphic response characterizes the Neogene stratigraphy of many passive margins and attests to a global increase in the delivery of clastics to margins, the simplest explanation of which is a climate change that accentuated erosion of pre-existing topography. Thus, the present rugged landscape of northeastern Brazil is interpreted to be a product of this younger denudation event. A corollary of this study is that the history, distribution and delivery of clastics to the northern and northeastern margins of Brazil are a function of the regional development of the continental landscape during the Late Cenozoic.  相似文献   

13.
The NW-SE striking Otway Basin in southeastern Australia is part of the continental rift system that formed during the separation of Australia from Antarctica. The development of this sedimentary basin occurred in two phases of Late Jurassic-Early Cretaceous and Late Cretaceous rifting. The evolution of this basin is mainly associated with extensional processes that took place in a pre-existing basement of Archean, Proterozoic to Paleozoic age. In this study, the total amounts of extension and stretching factor (β factor) have been measured for six transects across the entire passive margin of the Otway Basin region. The results show significant variation in extensional stretching along the basin, with the smallest stretching factors in the easternmost (β = 1.73, 1.9) and westernmost part of the basin (β = 2.09), and the largest stretching factors in the central part (β = 2.14 to 2.44). The domain with the lowest β factor is underlain mostly by thicker lithosphere of the Delamerian Orogen and older crustal fragments of the Selwyn Block. In contrast, the region with the largest β factor and amount of extension is related to younger and thinner lithosphere of the Lachlan Orogen. The main basement structures have been mapped throughout eastern South Australia and Victoria to examine the possible relationships between the younger pattern of extensional faults and the older basement fabrics. The pattern of normal faults varies considerably along onshore and offshore components of the Otway Basin from west to east. It appears that the orientation of pre-existing structures in the basement has some control on the geometry of the younger normal faults across the Otway Basin, but only in a limited number of places. In most areas the basement fabric has no control on the younger faulting pattern. Basement structure such as the north-south Coorong Shear Zone seems to affect the geometry of normal faults by changing their strike from E-W to NW-SE and also, in the easternmost part of the basin, the Bambra Fault changes the strike of normal faults from NW-SE to the NE-SW. Our results imply that the properties of the continental lithosphere exert a major influence on the β factor and amount of crustal extension but only a minor influence on the geometry of extensional faults.  相似文献   

14.
Structural analysis of the Indian Merge 3D seismic survey identified three populations of normal faults within the Exmouth Sub-basin of the North West Shelf volcanic margin of Australia. They comprise (1) latest-Triassic to Middle Jurassic N-NNE-trending normal faults (Fault Population I); (2) Late Jurassic to Early Cretaceous NE-trending normal faults (Fault Population II); and (3) latest-Triassic to Early Cretaceous N-NNE faults (Fault Population III). Quantitative evaluation of >100 faults demonstrates that fault displacement occurred during two time periods (210–163 and 145–138 Ma) separated by ∼20 Myr of tectonic quiescence. Latest Jurassic to Early Cretaceous (145–138 Ma) evolution comprises magmatic addition and contemporaneous domal uplift ∼70 km wide characterised by ≥ 900 m of denudation. The areally restricted subcircular uplift centred on the southern edge of the extended continental promontory of the southern Exmouth Sub-basin supports latest Jurassic mantle plume upwelling that initiated progradation of the Barrow Delta. This polyphase and bimodal structural evolution impacts current hydrocarbon exploration rationale by defining the nature of latest Jurassic to Early Cretaceous fault nucleation and reactivation within the southern Exmouth Sub-basin.  相似文献   

15.
Rifting of continental margins is generally diachronous along the zones where continents break due to various factors including the boundary conditions which trigger the extensional forces, but also the internal physical boundaries which are inherent to the composition and thus the geological history of the continental margin. Being opened quite recently in the Tertiary in a scissor-shape manner, the South China Sea (SCS) offers an image of the rifting structures which varies along strike the basin margins. The SCS has a long history of extension, which dates back from the Late Cretaceous, and allows us to observe an early stretching on the northern margin onshore and offshore South China, with large low angle faults which detach the Mesozoic sediments either over Triassic to Early Cretaceous granites, or along the short limbs of broad folds affecting Palaeozoic to Early Cretaceous series. These early faults create narrow troughs filled with coarse polygenic conglomerate grading upward to coarse sandstone. Because these low-angle faults reactivate older trends, they vary in geometry according to the direction of the folds or the granite boundaries. A later set of faults, characterized by generally E–W low and high angle normal faults was dominant during the Eocene. Associated half-graben basement deepened as the basins were filling with continental or very shallow marine sediments. This subsequent direction is well expressed both in the north and the SW of the South China Sea and often reactivated earlier detachments. At places, the intersection of these two fault sets resulting in extreme stretching with crustal boudinage and mantle exhumation such as in the Phu Khanh Basin East of the Vietnam fault. A third direction of faults, which rarely reactivates the detachments is NE–SW and well developed near the oceanic crust in the southern and southwestern part of the basin. This direction which intersects the previous ones was active although sea floor spreading was largely developed in the northern part, and ended by the Late Miocene after the onset of the regional Mid Miocene unconformity known as MMU and dated around 15.5 Ma. Latest Miocene is marked by a regional basement drop and localized normal faults on the shelf closer to the coast. The SE margin of the South China Sea does not show the extensional features as well as the Northern margin. Detachments are common in the Dangerous Grounds and Reed Bank area and may occasionally lead to mantle exhumation. The sedimentary environment on the extended crust remained shallow all along the rifting and a large part of the spreading until the Late Miocene, when it suddenly deepened. This period also corresponds to the cessation of the shortening of the NW Borneo wedge in Palawan, Sabah, and Sarawak. We correlate the variation of margin structure and composition of the margin; mainly the occurrence of granitic batholiths and Mesozoic broad folds, with the location of the detachments and major normal faults which condition the style of rifting, the crustal boudinage and therefore the crustal thickness.  相似文献   

16.
Using a 2D seismic dataset that covers part of the southern Orange Basin offshore South Africa, we reconstructed the geological evolution of the basin. This evolutionary model was then used to investigate the occurrence of natural gas within the sedimentary column and the distribution of gas leakage features in relation to the observed sedimentary and tectonic structures developed in the post-rift succession since the Early Cretaceous. The Cretaceous succession has been subdivided into five seismic units. The highest sedimentation rates occur within the Barremian/Aptian (unit C1) and the Turonian/Coniacian (unit C3). Two Cenozoic units (T1 and T2) have been distinguished. These show a sudden decrease in sedimentation rate for the whole of the Cenozoic. Three phases of gravitational tectonics, with two Late Cretaceous phases of mass movement in the northern study area and Cenozoic slumping in the southern study area, have been related to sedimentation rates, sea-level changes, paleoenvironmental evolution and regional tectonics. The occurrence of natural gas leakage follows a coast-parallel distribution within the study area. In the near shore part at water depths shallower than 400 m, massive gas chimneys penetrate through the sediment layers and reach the (near-) surface. Within an intermediate narrow band, between 300 and <500 m water depth, the gas migrates more diffusely through sub-vertical faulted Cretaceous sediments, while in the outer part of the basin, through the Cretaceous and Cenozoic gravitational wedges, only very few signs of gas accumulation and migration can be seen along the faults. A conceptual model has been established with the Aptian source rock generating gas in the outer part of the basin. This source rock underlies the Cenozoic wedge in the south and the thick Cretaceous wedge in the north and is a postulated source for the natural gas within the sedimentary column. This thermogenically generated gas does not migrate directly through the gravitational faults and the above lying sediments, but moves buoyancy driven up-dip along stratigraphic layers, to escape through the sediments to the sea-floor in the inner shelf area.  相似文献   

17.
The Huldra fault block is a rotated major fault block on the east margin of the Viking Graben in the northern North Sea. Unlike the rest of the Horda Platform area, the Jurassic section in the Huldra fault block was rotated more than 20° during slip on the listric Huldra fault, which forms a low-angle detachment beneath the Huldra fault block. The fault block is interpreted as resulting from marginal collapse of the Horda Platform after relief along the eastern margin of the Viking Graben built up in early parts of the middle to late Jurassic rifting history. The collapse resulted in NW directed transport of the Huldra fault block, consistent with a previously postulated change in extension direction from W–E to NW–SE toward the end of the Jurassic period. Minor faults within the Hulrda fault block are consistent with E–W extension and thus may have formed early during the late Jurassic rifting phase. Nevertheless, the crest (Huldra Field) seems surprisingly intact, considering its proximity to a major fault zone. Deformation bands studied from core material are non-cataclastic and concentrated in zones. Evidence for smearing along a cored fault surface indicates that minor subseismic faults may be sealing. Production data from the field indicate good communication between most wells, suggesting that the subseismic faults and deformation band zones that are present in the reservoir have relatively small influence on the flow of gas in the reservoir.  相似文献   

18.
In this paper, the diagenesis from either side of a major Cenozoic reverse fault in the Northern Oman Mountains is documented. Detailed petrographical and geochemical analysis of calcite-filled fractures in carbonate strata of Late Triassic and Early Cretaceous age in the hanging wall and footwall in Wadi Ghalilah reflect a different diagenetic history. In both hanging wall and footwall most of the fractures are pre-burial, extensional in origin, formed by a crack-seal mechanism, and the calcite vein infill has a host-rock buffered signature. In the hanging wall, the fluid responsible for calcite precipitation of these extensional fractures was a marine fluid at 60 °C. These veins predate deep burial and contractional tectonic deformation and consequently do not provide any information about syntectonic fluid flow. Neither do the pre-burial extension fractures in the footwall which are also host-rock buffered. The fractures post-dating the tectonic stylolitization in the footwall, by contrast, show evidence of syntectonic migration of saline formation waters at temperatures between 80 and 160 °C during contractional deformation. These fluids probably were sourced from the subsurface via the reverse fault, which acted as a fluid conduit. At the same time, however, this fault functioned as a permeability barrier towards the hanging wall, since no evidence of syntectonic fluid flow is present here. In this way compartmentalization of the hanging wall and footwall block was realized.  相似文献   

19.
南沙群岛海域构造地层及构造运动   总被引:1,自引:0,他引:1  
根据对“实验2”号调查船1987—1991年测得的反射地震剖面的解释,论述了南沙群岛海域的构造层划分、时代属性与分布发育特征。提出本区自白垩纪中期以来发生过两次重大的构造运动,形成两个裂谷作用构造旋回。  相似文献   

20.
The Fingerdjupet Subbasin in the southwestern Barents Sea sits in a key tectonic location between deep rifts in the west and more stable platform areas in the east. Its evolution is characterized by extensional reactivation of N-S and NNE-SSW faults with an older history of Late Permian and likely Carboniferous activity superimposed on Caledonian fabrics. Reactivations in the listric NNE-SSW Terningen Fault Complex accommodated a semi-regional rollover structure where the Fingerdjupet Subbasin developed in the hangingwall. In parallel, the Randi Fault Set developed from outer-arc extension and collapse of the rollover anticline.N-S to NNE-SSW faults and the presence of other fault trends indicate changes in the stress regime relating to tectonic activity in the North Atlantic and Arctic regions. A latest Triassic to Middle Jurassic extensional faulting event with E-W striking faults is linked to activity in the Hammerfest Basin. Cessation of extensional tectonics before the Late Jurassic in the Fingerdjupet Subbasin, however, suggests rifting became localized to the Hammerfest Basin. The Late Jurassic was a period of tectonic quiescence in the Fingerdjupet Subbasin before latest Jurassic to Hauterivian extensional faulting, which reactivated N-S and NNE-SSW faults. Barremian SE-prograding clinoforms filled the relief generated during this event before reaching the Bjarmeland Platform. High-angle NW-prograding clinoforms on the western Bjarmeland Platform are linked to Early Barremian uplift of the Loppa High. The Terningen Fault Complex and Randi Fault Set were again reactivated in the Aptian along with other major fault complexes in the SW Barents Sea, leading to subaerial exposure of local highs. This activity ceased by early Albian. Post-upper Albian strata were removed by late Cenozoic uplift and erosion, but later tectonic activity has both reactivated E-W and N-S/NNE-SSW faults and also established a NW-SE trend.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号