首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The newly developed P-Cable 3D seismic system allows for high-resolution seismic imaging to characterize upper geosphere geological features focusing on geofluid expressions (gas chimneys), shallow gas and gas hydrate reservoirs. Seismic imaging of a geofluid system of an Arctic sediment drift at the Vestnesa Ridge, offshore western Svalbard, provides significantly improved details of internal chimney structures from the seafloor to ∼500 m bsf (below seafloor). The chimneys connect to pockmarks at the seafloor and indicate focused fluid flow through gas hydrated sediments. The pockmarks are not buried and align at the ridge-crest pointing to recent, topography-controlled fluid discharge. Chimneys are fuelled by sources beneath the base of gas hydrate stability zone (GHSZ) that is evident at ∼160–170 m bsf as indicated by a bottom-simulating reflector (BSR). Conduit centres that are not vertically straight but shift laterally by up to 200 m as well as discontinuous internal chimney reflections indicate heterogeneous hydraulic fracturing of the sediments. Episodically active, pressure-driven focused fluid flow could explain the hydro-fracturing processes that control the plumbing system and lead to extensive pockmark formation at crest of the Vestnesa Ridge. High-amplitude anomalies in the upper 50 m of the chimney structures suggest formations of near-surface gas hydrates and/or authigenic carbonate precipitation. Acoustic anomalies, expressed as high amplitudes and amplitude blanking, are irregularly distributed throughout the deeper parts of the chimneys and provide evidence for the variability of hydrate and/or carbonate formation in space and time.  相似文献   

2.
Multidisciplinary surveys were conducted to investigate gas seepage and gas hydrate accumulation on the northeastern Sakhalin continental slope (NESS), Sea of Okhotsk, during joint Korean–Russian–Japanese expeditions conducted from 2003 to 2007 (CHAOS and SSGH projects). One hundred sixty-one gas seeps were detected in a 2000 km2 area of the NESS (between 53°45′N and 54°45′N). Active gas seeps in a gas hydrate province on the NESS were evident from features in the water column, on the seafloor, and in the subsurface: well-defined hydroacoustic anomalies (gas flares), side-scan sonar structures with high backscatter intensity (seepage structures), bathymetric structures (pockmarks and mounds), gas- and gas-hydrate-related seismic features (bottom-simulating reflectors, gas chimneys, high-amplitude reflectors, and acoustic blanking), high methane concentrations in seawater, and gas hydrates in sediment near the seafloor. These expressions were generally spatially related; a gas flare would be associated with a seepage structure (mound), below which a gas chimney was present. The spatial distribution of gas seeps on the NESS is controlled by four types of geological structures: faults, the shelf break, seafloor canyons, and submarine slides. Gas chimneys that produced enhanced reflection on high-resolution seismic profiles are interpreted as active pathways for upward gas migration to the seafloor. The chimneys and gas flares are good indicators of active seepage.  相似文献   

3.
Characteristics of two natural gas seepages in the North Sea   总被引:1,自引:0,他引:1  
Two occurrences of active gas seepages are described from the North Sea. The southernmost one, situated above a salt diapir in Norwegian block , has been studied and sampled by use of a remotely operated vehicle (ROV). This seepage consists of about 120 single seeps located within a diameter of 100 m. It is estimated to produce 24 m3 of methane gas per day (at ambient pressure, 75 m water depth). Isotope values of the methane gas and higher hydrocarbon gases in the surrounding seafloor sediments, show that their origin is from a deep seated, thermogenic source. No typical gas-induced erosion features are found on the seafloor at this location, probably due to the lack of very fine grained material.The second occurrence is located in U.K. block (Geoteam, 1984), where the seepage is associated with a very large pockmark depression, measuring 17 m in depth and 700×450 m in width. This depression represents an eroded fine grained sediment volume of 7.105 cubic metres. No detailed inspection or sampling of the gas has been performed here. However seismic reflection anomalies are seen on airgun seismic records at various levels down to a depth of at least 1100 m below seafloor. The seeping gas, possibly mixed with liquids, at this location is therefore also expected to be of a thermogenic origin.  相似文献   

4.
Seafloor pockmarks and subsurface chimney structures are common on the Norwegian continental margin north of the Storegga Slide scar. Such features are generally inferred to be associated with fluid expulsion, and imply overpressures in the subsurface. Six long gravity and piston cores taken from the interior of three pockmarks were compared with four other cores taken from the same area but outside the pockmarks, in order to elucidate the origins and stratigraphy of these features and their possible association with the Storegga Slide event. Sulfate gradients in cores from within pockmarks are less steep than those in cores from outside the pockmarks, which indicates that the flux of methane to the seafloor is presently smaller within the pockmarks than in the adjacent undisturbed sediments. This suggests that these subsurface chimneys are not fluid flow conduits lined with gas hydrate. Methane-derived authigenic carbonates and Bathymodiolus shells obtained from a pockmark at >6.3 m below the seafloor indicate that methane was previously available to support a chemosynthetic community within the pockmark. AMS 14C measurements of planktonic Foraminifera overlying and interlayered with the shell-bearing sediment indicate that methane was present on the seafloor within the pockmark prior to 14 ka 14C years b.p., i.e., well before the last major Storegga Slide event (7.2 ka 14C years b.p., or 8.2 ka calendar years b.p.). These observations provide evidence that overpressured fluids existed within the continental margin sediments off Norway during the last major advance of Pleistocene glaciation.  相似文献   

5.
Pockmarks are observed worldwide along the continental margins and are inferred to be indicators of fluid expulsion. In the present study, we have analysed multibeam bathymetry and 2D/3D seismic data from the south-western Barents Sea, in relation to gas hydrate stability field and sediment type, to examine pockmark genesis. Seismic attributes of the sediments at and beneath the seafloor have been analysed to study the factors related to pockmark formation. The seabed depths in the study area are just outside the methane hydrate stability field, but the presence of higher order hydrocarbon gases such as ethane and/or propane in the expelled fluids may cause localised gas hydrate formation. The selective occurrence of pockmarks in regions of specific seabed sediment types indicates that their formation is more closely related to the type of seabed sediment than the source path of fluid venting such as faults. The presence of high acoustic backscatter amplitudes at the centre of the pockmarks indicates harder/coarser sediments, likely linked to removal of soft material. The pockmarks show high seismic reflection amplitudes along their fringes indicating deposition of carbonates precipitated from upwelling fluids. High seismic amplitude gas anomalies underlying the region away from the pockmarks indicate active fluid flow from hydrocarbon source rocks beneath, which is blocked by overlying less permeable formations. In areas of consolidated sediments, the upward flow is limited to open fault locations, while soft sediment areas allow diffused flow of fluids and hence formation of pockmarks over a wider region, through removal of fine-grained material.  相似文献   

6.
Here we apply quantitative technique to describe the seafloor seepages based on the multi-beam backscatter and bathymetric investigations to characterize the pockmark morphology. The variable seafloor backscatter strength for coarser seafloor sediments are related to the diagenesis derived from biodegraded seepages. In this regard, box counting method is used to estimate ‘fractal dimension’ for backscatter imagery data of 398 blocks. These blocks are further sub-grouped into six classes depending on the spread of pockmark related seepages. The study area lies 102 km west off Marmagao along the central west coast of India which contains pre-dominantly (70%) gas-charged sediments. Comparison between the estimated self-similar fractals reveals that there is approximately 97% correlation between the box (Dbox) and information (Dinfo) dimensions. Box dimension–derived fractal dimension values, suggest that the seepages are more along the fault trace in deeper waters, in comparison to sparsely distributed shallow water seepages. Besides, this poor seepage is confined within the smooth to moderately rough seafloor. It is established that the high backscatter strength along the upper slope of the pockmark region having higher fractal dimensions reflects multifractal behavior of seepage distribution. Entire area indicates patchy seepage patterns as supported by estimated fractal values showing intermittent fluctuations, which emphasizes non-linear behavior. Estimated self organizing criticality (SOC) parameters for six representative blocks reveal that the nature of pockmark, fault trace, sediment nature coupled with slumping of pockmark’s wall, sediment movement due to bottom currents are controlling the dynamic balance in the area seepage system. Further, our study emphasizing the multifractal behavior of seepage blocks, clearly depicts the drift in the seepage pattern.  相似文献   

7.
The Ulleung Basin, East (Japan) Sea, is well-known for the occurrence of submarine slope failures along its entire margins and associated mass-transport deposits (MTDs). Previous studies postulated that gas hydrates which broadly exist in the basin could be related with the failure process. In this study, we identified various features of slope failures on the margins, such as landslide scars, slide/slump bodies, glide planes and MTDs, from a regional multi-channel seismic dataset. Seismic indicators of gas hydrates and associated gas/fluid flow, such as the bottom-simulating reflector (BSR), seismic chimneys, pockmarks, and reflection anomalies, were re-compiled. The gas hydrate occurrence zone (GHOZ) within the slope sediments was defined from the BSR distribution. The BSR is more pronounced along the southwestern slope. Its minimal depth is about 100 m below seafloor (mbsf) at about 300 m below sea-level (mbsl). Gas/fluid flow and seepage structures were present on the seismic data as columnar acoustic-blanking zones varying in width and height from tens to hundreds of meters. They were classified into: (a) buried seismic chimneys (BSC), (b) chimneys with a mound (SCM), and (c) chimneys with a depression/pockmark (SCD) on the seafloor. Reflection anomalies, i.e., enhanced reflections below the BSR and hyperbolic reflections which could indicate the presence of gas, together with pockmarks which are not associated with seismic chimneys, and SCDs are predominant in the western-southwestern margin, while the BSR, BSCs and SCMs are widely distributed in the southern and southwestern margins. Calculation of the present-day gas-hydrate stability zone (GHSZ) shows that the base of the GHSZ (BGHSZ) pinches out at water depths ranging between 180 and 260 mbsl. The occurrence of the uppermost landslide scars which is below about 190 mbsl is close to the range of the GHSZ pinch-out. The depths of the BSR are typically greater than the depths of the BGHSZ on the basin margins which may imply that the GHOZ is not stable. Close correlation between the spatial distribution of landslides, seismic features of free gas, gas/fluid flow and expulsion and the GHSZ may suggest that excess pore-pressure caused by gas hydrate dissociation could have had a role in slope failures.  相似文献   

8.
Two sites of the Deep Sea Drilling Project in contrasting geologic settings provide a basis for comparison of the geochemical conditions associated with marine gas hydrates in continental margin sediments. Site 533 is located at 3191 m water depth on a spit-like extension of the continental rise on a passive margin in the Atlantic Ocean. Site 568, at 2031 m water depth, is in upper slope sediment of an active accretionary margin in the Pacific Ocean. Both sites are characterized by high rates of sedimentation, and the organic carbon contents of these sediments generally exceed 0.5%. Anomalous seismic reflections that transgress sedimentary structures and parallel the seafloor, suggested the presence of gas hydrates at both sites, and, during coring, small samples of gas hydrate were recovered at subbottom depths of 238m (Site 533) and 404 m (Site 568). The principal gaseous components of the gas hydrates wer methane, ethane, and CO2. Residual methane in sediments at both sites usually exceeded 10 mll?1 of wet sediment. Carbon isotopic compositions of methane, CO2, and ΣCO2 followed parallel trends with depth, suggesting that methane formed mainly as a result of biological reduction of oxidized carbon. Salinity of pore waters decreased with depth, a likely result of gas hydrate formation. These geochemical characteristics define some of the conditions associated with the occurrence of gas hydrates formed by in situ processes in continental margin sediments.  相似文献   

9.
The Pliocene and Pleistocene sediments at lease block Green Canyon 955 (GC955) in the Gulf of Mexico include sand-rich strata with high saturations of gas hydrate; these gas hydrate accumulations and the associated geology have been characterized over the past decade using conventional industry three-dimensional (3D) seismic data and dedicated logging-while-drilling (LWD) borehole data. To improve structural and stratigraphic characterization and to address questions of gas flow and reservoir properties, in 2013 the U.S. Geological Survey acquired high-resolution two-dimensional (2D) seismic data at GC955. Combined analysis of all available data improves our understanding of the geological evolution of the study area, which includes basin-scale migration of the Mississippi River sediment influx as well as local-scale shifting of sedimentary channels at GC955 in response to salt-driven uplift, structural deformation associated with the salt uplift, and upward gas migration from deeper sediments that charges the main gas hydrate reservoir and shallower strata. The 2D data confirm that the sand-rich reservoir is composed principally of sediments deposited in a proximal levee setting and that episodes of channel scour, interspersed with levee deposition, have resulted in an assemblage of many individual proximal levee deposit “pods” each with horizontal extent up to several hundred meters. Joint analysis of the 2D and 3D data reveals new detail of a complex fault network that controls the fluid-flow system; large east-west trending normal faults allow fluid flow through the reservoir-sealing fine-grained unit, and smaller north-south oriented faults provide focused fluid-flow pathways (chimneys) through the shallower sediments. This system has enabled the flow of gas from the main reservoir to the seafloor throughout the recent history at GC955, and its intricacies help explain the distributed occurrences of gas hydrate in the intervening strata.  相似文献   

10.
The formation of sub-seafloor gas hydrates in marine environments can be described as a coupled transport and thermodynamic process inside a host sediment matrix undergoing structural evolution. The transport processes are driven by the sedimentary load and induced overpressure gradients, controlled by sediment permeability. In order to accurately model the resulting fluid flow profile, the decrease of sediment permeability during hydrate precipitation has to be taken into account, which affects both the transport of solutes and sediment compaction. In this paper, we investigate how total hydrate abundance is affected by regions of low permeability which deflect the flow field in their vicinity. For this purpose, a two-dimensional numerical hydrate system model was set up which permits to quantify this effect in scenarios where changes in water depth cause lateral variations of the thickness of the hydrate stability field, as well as of hydrate saturation and sediment permeability. The microscopic structure of gas hydrate crystals in the host sediment matrix defines the evolution of the permeability reduction during hydrate formation. Grain-coating precipitates have a stronger tendency to clog flow paths through pore throats than do pore-filling precipitates. Our results clearly show that these pore-scale processes affect the large-scale flow field and hydrate abundance. The sensitivity depends on the model geometry and, for a 5° slope of the seafloor, 4.1% relative difference is predicted for the hydrate saturation according to different porosity-permeability relationships.  相似文献   

11.
We studied specific lipid biomarkers of archaea and bacteria, that are associated with the anaerobic oxidation of methane (AOM) in a cold seep environment as well as the origin of sedimentary organic matter on the continental slope off NE Sakhalin in the Sea of Okhotsk. The organic geochemical parameters demonstrated that most of the sedimentary organic matter containing hydrate layers could be derived from marine phytoplankton and bacteria, except for a station (LV39-29H) which was remarkably affected by terrestrial vascular plant. Specific methanotrophic archaea biomarkers was vertically detected in hydrate-bearing cores (LV39-40H), coinciding with the negative excursion of the δ13Corg at core depths of 90–100 cm below the seafloor. These results suggest that methane provided from gas hydrates are already available substrates for microbes thriving in this sediment depth. In addition, the stable isotope mass balance method revealed that approximately 2.77–3.41% of the total organic carbon (or 0.036–0.044% dry weight sediment) was generated by the activity of the AOM consortium in the corresponding depth of core LV39-40H. On the other hand, the heavier δ13C values of archaeol in the gas hydrate stability zone may allow ongoing methanogenesis in deeper sediment depth.  相似文献   

12.
Analysis was carried out of part of the northern North Sea to test what the presence and style of gas chimneys indicate about fluid pressure (Pf) within hydrocarbon reservoirs. Previous results suggest that broad chimneys above a trap and thin chimneys on the flanks indicate the presence of hydrocarbons, whilst thin chimneys in the crest suggest the hydrocarbons have escaped. Each type of gas chimney is usually associated with overpressure within Mesozoic reservoirs, but the water leg is hydrostatically-pressured in most Cenozoic reservoirs. This indicates: (a) gas leaking from a trap does not necessarily cause Pf to become hydrostatic; (b) overpressure may not be necessary for the expulsion of gasses through seal units to create the chimneys; (c) although gas chimneys indicate the existence of an active hydrocarbon system, their presence does not appear to indicate anything significant about present-day Pf.  相似文献   

13.
A mound related to a cold vent in a columnar seismic blanking zone (CSBZ) was formed around site UBGH1-10 in the central Ulleung Basin (2077 m water depth), East Sea, Korea. The mound is 300–400 m wide and 2–3 m high according to multi-beam bathymetry, 2–7 kHz sub-bottom profiler data, and multi-channel reflection seismic data. Seafloor topography and characteristics were investigated using a remotely operated vehicle (ROV) around site UBGH1-10, which is located near the northern part of the mound. The origin of the mound was investigated through lithology, mineralogy, hydrate occurrence, and sedimentary features using dive cores, piston cores, and a deep-drilling core. The CSBZ extends to ∼265 ms two-way traveltime (TWT) below the seafloor within a mass-transport deposit (MTD) unit. Gas hydrate was entirely contained 6–141 m below the seafloor (mbsf) within hemipelagic deposits intercalated with a fine-grained turbidite (HTD) unit, characteristically associated with high resistivity values at site UBGH1-10. The hydrate is commonly characterized by veins, nodules, and massive types, and is found within muddy sediments as a fracture-filling type. Methane has been produced by microbial reduction of CO2, as indicated by C1/C2+, δ13CCH4, and δD4CH analyses. The bowl-shaped hydrate cap revealed at 20–45 ms TWT below the seafloor has very high resistivity and high salinity, suggesting rapid and recent gas hydrate formation. The origin of the sediment mound is interpreted as a topographic high formed by the expansion associated with the formation of the gas hydrate cap above the CSBZ. The lower sedimentation rate of the mound sediments may be due to local enhancement of bottom currents by topographic effects. In addition, no evidence of gas bubbles, chemosynthetic communities, or bacterial mats was observed in the mound, suggesting an inactive cold vent.  相似文献   

14.
In order for methane to be economically produced from the seafloor, prediction and detection of massive hydrate deposits will be necessary. In many cases, hydrate samples recovered from seafloor sediments appear as veins or nodules, suggesting that there are strong geologic controls on where hydrate is likely to accumulate. Experiments have been conducted examining massive hydrate accumulation from methane gas bubbles within natural and synthetic sediments in a large volume pressure vessel through temperature and pressure data, as well as visual observations. Observations of hydrate growth suggest that accumulation of gas bubbles within void spaces and at sediment interfaces likely results in the formation of massive hydrate deposits. Methane hydrate was first observed as a thin film forming at the gas/water interface of methane bubbles trapped within sediment void spaces. As bubbles accumulated, massive hydrate growth occurred. These experiments suggest that in systems containing free methane gas, bubble pathways and accumulation points likely control the location and habit of massive hydrate deposits.  相似文献   

15.
Gas seepage, pockmarks and mud volcanoes in the near shore of SW Taiwan   总被引:2,自引:0,他引:2  
In order to understand gas hydrate related seafloor features in the near shore area off SW Taiwan, a deep-towed sidescan sonar and sub-bottom profiler survey was conducted in 2007. Three profiles of high-resolution sub-bottom profiler reveal the existence of five gas seeps (G96, GS1, GS2, GS3 and GS4) and one pockmark (PM) in the study area. Gas seeps and pockmark PM are shown in lines A and C, while no gas venting feature is observed along line B. This is the first time that a gas-hydrate related pockmark structure has been imaged off SW Taiwan. The relatively high backscatter intensity in our sidescan sonar images indicates the existence of authigenic carbonates or chemosynthetic communities on the seafloor. More than 2,000 seafloor photos obtained by a deep-towed camera (TowCam) system confirm the relatively high backscatter intensity of sidescan sonar images related to bacteria mats and authigenic carbonates formation at gas seep G96 and pockmark PM areas. Water column gas flares are observed in sidescan sonar images along lines A and C. Likewise, EK500 echo sounder images display the gas plumes above gas seep G96, pockmark PM and gas seep GS1; the gas plumes heights reach about 150, 100 and 20 m from seafloor, respectively. Based on multichannel seismic reflection (MCS) profiles, an anticline structure trending NNE-SSW is found beneath gas seep G96, pockmark PM and gas seep GS2. It implies that the gas venting features are related to the anticline structure. A thermal fluid may migrate from the anticline structure to the ridge crest, then rises up to the seafloor along faults or fissures. The seafloor characteristics indicate that the gas seep G96 area may be in a transitional stage from the first to second stage of a gas seep self-sealing process, while the pockmark PM area is from the second to final stage. In the pockmark PM area, gas venting is observed at eastern flank but not at the bottom while authigenic carbonates are present underneath the pockmark. It implies that the fluid migration pathways could have been clogged by carbonates at the bottom and the current pathway has shifted to the eastern flank of the pockmark during the gas seep self-sealing process.  相似文献   

16.
海底麻坑是由地层中流体向海底快速喷发或缓慢渗漏所形成的一种凹陷地貌,对其形态及成因机理进行深入研究具有重要意义.本研究基于高分辨率多波束地形、侧扫声纳、浅地层剖面及多道地震探测数据,对舟山群岛东部青浜岛海域发育的麻坑及其微地貌进行研究,分析表明:研究区发育有3个大型麻坑,并受到NE—SW向底流的改造而出现不同程度沿此方...  相似文献   

17.
18.
Multi-scale reflection seismic data, from deep-penetration to high-resolution, have been analyzed and integrated with near-surface geophysical and geochemical data to investigate the structures and gas hydrate system of the Formosa Ridge offshore of southwestern Taiwan. In 2007, dense and large chemosynthetic communities were discovered on top of the Formosa Ridge at water depth of 1125 m by the ROV Hyper-Dolphin. A continuous and strong BSR has been observed on seismic profiles from 300 to 500 ms two-way-travel-time below the seafloor of this ridge. Sedimentary strata of the Formosa Ridge are generally flat lying which suggests that this ridge was formed by submarine erosion processes of down-slope canyon development. In addition, some sediment waves and mass wasting features are present on the ridge. Beneath the cold seep site, a vertical blanking zone, or seismic chimney, is clearly observed on seismic profiles, and it is interpreted to be a fluid conduit. A thick low velocity zone beneath BSR suggests the presence of a gas reservoir there. This “gas reservoir” is shallower than the surrounding canyon floors along the ridge; therefore as warm methane-rich fluids inside the ridge migrate upward, sulfate carried by cold sea water can flow into the fluid system from both flanks of the ridge. This process may drive a fluid circulation system and the active cold seep site which emits both hydrogen sulfide and methane to feed the chemosynthetic communities.  相似文献   

19.
Sediments recovered from 0 to 27 + meters below the seafloor (mbsf) of a gas-hydrate and gas-venting active area in the Gulf of Mexico were added to a hydrate growth test cell to determine the influence of the organic and inorganic sedimentary components on hydrate induction times and formation rates. Induction times were sixteen times shorter in the presence of sediment from approximately 18 mbsf (relative to sediment from 1 mbsf), and remained stable in the presence of sediment from 18 to 27 mbsf. Formation rates increased by a factor of 2.5 in the presence of sediments from approximately 18 mbsf and decreased somewhat in the presence of sediment from 18 to 27 mbsf. Selected samples (surface, 18 and 27 mbsf) were density fractionated and subjected to bulk elemental and X-ray photoelectron spectroscopy (XPS) analysis. XPS revealed the presence of iron in various chemical environments at depths of 18 and 27 mbsf. High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HR-MAS NMR) was used to characterize the organic component of sediments from selected depths. The discovery of intact proteinaceous material in the surface sediment was surprising due to the labile nature of these biopolymers, and potentially reflects microbial activity in these surface layers. This material was less abundant in sediment from increasing depths, where more lipid-like compounds were prominent. The results suggest that hydrate growth is inhibited by the presence of proteinaceous material but enhanced by lipid-like compounds associated with iron-bearing mineral surfaces.  相似文献   

20.
In the Russian sector of the Gdansk Basin (Baltic Sea), high organic matter influx fuels microbial processes resulting in the formation of reduced sediments with elevated methane concentrations. Investigated areas of geoacoustic anomalies (~245 km2) were found to contain three distinct geomorphologic structures (pockmarks), with a total area of ~1 km2. Methane anomalies recorded in the water above one of these pockmarks were traced as high as 10 m above the bottom. In pockmark sediments, sulfate reduction and anaerobic oxidation of methane (AOM) occurred at high rates of 33 and 50 µmol dm?3 day?1, respectively. Integrated over 0–180 cm sediment depths, AOM exceeded methanogenesis almost tenfold. High AOM rates resulted from methane influx from deeper sediment layers. The δ13C signature of methane carbon (?78.1 to ?71.1‰) indicates the biogenic origin of pockmark methane. In pockmark sediments, up to 70% of reduced sulfur compounds was possibly produced via AOM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号